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Purpose: To evaluate the effects of 2 noise
reduction techniques on the auditory brainstem
response (ABR).
Method: ABRs of 20 normal hearing adults were
recorded during quiet and active behavioral
conditions using 2 stimulus intensity levels. Wave
V amplitudes and residual noise root-mean-
square values were measured following the offline
application of artifact rejection and Bayesian
weighting. Repeated measures analysis of
variance and Bonferroni adjusted pairwise t tests
were utilized to evaluate significant main effects
and interactions between the 2 noise reduction
techniques.
Results: ABRs recorded during the quiet
behavioral condition resulted in minimal differ-
ences in wave V amplitude and noise reduction

improvement, suggesting that the 2 techniques
were equally effective under ideal recording
situations. During the active behavioral condition,
however, the techniques differed significantly in
the ability to preserve the evoked potential and
reduce noise. Consequently, strict artifact rejection
levels resulted in an inherent underestimation
of wave V amplitudes when compared with the
Bayesian approach.
Conclusion: Artifact rejection had a detrimental
effect on waveform morphology of the ABR. This
could lead to difficulty in ABR interpretation
when patients are active and ultimately result
in diagnostic errors.
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Amplitude measurements of the auditory brainstem
response (ABR) provide valuable information re-
garding the peripheral auditory pathway and lower

brainstem nuclei (Boston & MLller, 1984; Chandrasekhar,
Brackmann, & Devgan, 1995; Coats & Martin, 1978; Don,
Masuda, Nelson, & Brackmann, 1997; Kotlarz, Eby, &
Borton, 1992; Marangos, Maier, Merz, & Laszig, 2001;
Wilson, Hodgson, & Gustafson, 1992). This important
measurement is negatively affected by excessive noise, and
researchers have continuously made efforts to reduce such
contaminants by implementing noise reduction techniques
on the averaged ABR (Don & Elberling, 1994; Kavanagh &
Franks, 1989; Scherg & Von Cramon, 1984; Turetsky,
Raz, & Fein, 1988).

In general, techniques such as filtering, signal averaging,
and artifact rejection have been employed to facilitate the
extraction of the evoked potential (EP) from unwanted noise

(Kavanagh & Franks, 1989; Schimmel, 1967). An underlying
assumption made when utilizing such techniques is that the
signal of interest (i.e., the EP) is preserved while noise is
substantially reduced, thus improving the signal-to-noise ratio
(SNR). Filtering, however, provides minimal improvement
of the SNR because the frequency spectrum of noise often
overlaps with the frequency composition of the EP (Boston &
Ainslie, 1980; Elton, Scherg, & Von Cramon, 1984; Marsh,
1988; Osterhammel, 1981). Similarly, signal averaging theo-
retically reduces noise by the square root of the number of
sweeps in the averaged response. This theoretical assumption,
however, is not always attainable due to random noise
variations caused by episodic movement (Don, Elberling, &
Waring, 1984). Artifact rejection, on the other hand, evaluates
the amplitude of the incoming noise from the electrodes for
individual sweeps. If the noise exceeds a predeterminedmicro-
volt level, the sweep is rejected from the computer memory
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and not included in the averaging process. Since the EP is
considered a deterministic component (i.e., invariant in time
and amplitude), it is generally assumed that its amplitude is
minimally affected while noise is reduced by the square root
of the number of sweeps in the averaged response. Thus, the
averaged resulting trace better reflects the true EP when
compared with individual sweeps.

Contrary to such assumptions, artifact rejection can have a
detrimental effect on ABR testing, which has warranted the
development of superior noise reduction techniques (Don &
Elberling, 1994; Stecker, 2002). Hoke, Ross, Wickesberg, and
Lütkenhöner (1984) used a weighted averaging technique that
was more efficient at estimating the EP from noise when
compared with the traditional averaging technique. Numerous
others have incorporatedweighted averaging in EP testing, and
there is a general consensus among these studies that such a
technique is efficient in reducing excessive noise (Bezerianos,
Laskaris, Fotopoulos, & Papathahasopoulos, 1995; Davila &
Mobin, 1992; Don et al., 1984; Elberling & Don, 1984;
Elberling&Wahlgreen, 1985;Gasser,Mocks,&Verleger, 1983;
Gerull, Graffunder, &Wernicke, 1996; Hoke et al., 1984; John,
Dimitrijevic, & Picton, 2001; Lütkenhöner, Hoke, & Pantev,
1985; Sparacino, Milani, Arslan, & Cobelli, 2002; Wicke,
Gogg, Wallace, & Allison, 1978; Wong & Bickford, 1980).

Bayesian weighting uses an estimating technique (Elberling
& Don, 1984) to reduce destructive effects of noise variation
on the ABR (Elberling & Wahlgreen, 1985). The Bayesian
approach toweighted averaging is a variation on the traditional
averaging technique and is derived from a statistical method
known as Bayesian inference. The approach stems from con-
dition probability, which uses a mathematical model that is
contingent upon several theoretical assumptions. Specifically,
Bayesian inference is established on three principles: a priori
knowledge, the likelihood function, and a posteriori informa-
tion. Bayesian inference relies on the principle that adding new
data through the likelihood function to established a priori
knowledge, updated a posteriori information will be produced
(Elberling&Wahlgreen, 1985). Such principles arewell suited
for ABR testing, because new data are continuously added
to prior data and averaged.

Few, if any, studies have directly evaluated whether artifact
rejection has a destructive effect on waveform morphology
compared with Bayesian weighting. Don and Elberling (1994)
compared the two techniques and found theBayesian approach
to be the superior technique for improving the SNR. They
also suggested that differences in SNRs were evident when
patients presented with episodic noise. They, however, did not
compare the two techniques during systematic active behav-
ioral conditions, nor did the study evaluate the effects of the
techniques on waveform morphology, in particular, on the
peak-to-trough amplitude of waveV. Therefore, the major goal
of this study was to demonstrate how different methods of
reducing noise in the averaged ABR affect the amplitude
measurement of wave V.

Method
Participants

Twenty normal hearing adults (15 women, 5 men) were
randomly selected from the Kent State University Speech and

Hearing program. Each participant signed a consent form
approved by the Human Subject Research Review Board at
Kent State University prior to testing. The mean age of the
participants was 23 years (SD = 5 years). Otoscopic
examinations and tympanometry were performed to rule out
conductive problems that might preclude audiometric and
ABR testing. Pure-tone audiometry was performed with a
Grason-Stadler GSI-61 audiometer using Etymotic Research
ER-3A insert earphones. All participants had pure-tone
thresholds less than or equal to 10 dB HL (American National
Standards Institute, 1996; Carhart & Jerger, 1959) for octave
frequencies ranging from 250 to 8000 Hz at the time of ABR
data collection.

Apparatus
ABRs were recorded differentially using a silver-silver

chloride disk electrode applied to the high forehead (active)
and disposable gold-foil tiptrodes applied to the ipsilateral
(reference) and contralateral (ground) ear canals. Overall
electrode impedances were less than 5.0 kW, and interelectrode
impedances were less than 1.0 kW for each participant. Scalp
activity was amplified 104 using two CWE differential
amplifiers (BMA 831, BMA 830) and analog filtered between
100 Hz and 5000 Hz at 12 dB per octave slope. A second
offline digital filter was implemented at a bandpass setting
between 100 and 3000 Hz.

A 100-ms rectangular voltage pulse was presented to a
Coulbourn audio-mixer amplifier and adjusted to 1 V peak-to-
peak. Shielded ER-3A insert earphones served as transducers.
Rarefaction clicks were presented 25.1 per second at 104
and 74-dB peak-to-peak equivalent sound pressure level
(p-pe SPL) with a 1000-Hz tone as reference. The 104-dB
p-pe SPL click was 60 dB above the average perceptual
detection threshold, or 60 dB nHL, while the 74-dB p-pe SPL
click was 30 dB nHL. Average thresholds using clicks were
evaluated in 1-dB steps for 10 normal hearing participants to
determine 0 dB nHL. The rationale for using two intensity
levels was to mimic a neurodiagnostic suprathreshold tech-
nique (60 dB nHL) and a near-threshold estimation procedure
(30 dB nHL). The ER-3A insert earphones were calibrated
using a Bruel & Kjaer 1613 sound level meter fitted with a
2 cm3 coupler.

Custom computer software was developed for data re-
cordings and analysis. Data were sampled at a rate of 48 kHz
for 15 ms poststimulus onset (sweep) using a Quantum DSP-
3210 analog-to-digital converter board connected to a Dell
Pentium IV personal computer. Each sweep was composed of
720 digitized points and saved to disk without any modifica-
tions. Sampled sweeps were analyzed offline for the first
7.5 ms of the 15 ms sweep. Electrode activity was amplified
such that the maximum clipping level was set to an effective
value of ±240 mVor ±2.4 V input to the analog-to-digital
converter. In no case was this clipping level reached for any
participant during any test condition.

Procedures
ABRs were recorded from each participant during two

conditions (i.e., quiet and active) at two intensity levels
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(60 and 30 dB nHL). Therefore, a total of four recordings were
stored on disk. Each recording contained 16,384 sweeps that
were later analyzed offline and initially reprocessed to form
three sets of averages based on individual noise reduction
techniques: Bayesianweighted average, artifact rejection equal
noise (AREN) average, and artifact rejection ±10 mV (AR10)
average. This resulted in 12 traces for each participant or a total
of 240 ABR traces for 20 normal hearing adults.

Quiet condition ABR recordings were performed in the
traditional manner. Participants were placed in a reclining chair
and asked to remain in a quiet and relaxed state. For the ac-
tive condition, participants were instructed to perform an
activity that introduced excessive physiological movement.
A computer program was used to instruct participants to
randomly perform one of three tasks periodically throughout
the active ABR recording. Tasks included opening and closing
the mouth, moving the head side to side, and moving the head
up and down. The computer used to generate the animated
program was placed in an adjacent sound suite to reduce
electrical interference. The viewing monitor was placed ap-
proximately 1 m in front of the participant. This active con-
dition was used to simulate difficult-to-test populations,
such as infants or children, who often show high levels of
periodic movement.

Each of the three noise reduction techniques were imple-
mented offline, and the resulting ABR traces were subse-
quently analyzed. For Bayesian weighting, the residual noise
was first estimated according to the variance approach de-
scribed by Elberling and Don (1984). The noise was estimated
for a block of 256 sweeps by computing the sweep-to-sweep
variance of a single time point in the sweep. The single time
point 6 ms after stimulus onset, corresponding to the 288th
digitized point, was utilized. Thus, for a block of 256 sweeps,
256 discrete single point values were used in computing the
variance and estimating the noise. Blocks of sweeps were then
weighted inversely proportional to the amount of noise es-
timated for that particular block (Elberling & Wahlgreen,
1985). When the estimated noise was large, that particular
block received proportionally less weight in the final average.
For the current study, two weighted averages were formed
using blocks of 16 (i.e., 4,096 sweeps) and 64 (16,384 sweeps).
A detailed description of the averaging technique is found in
the Appendix.

While Elberling and Don (1984) used a calculation related
to the single point variance as an estimate of residual noise in
the averaged response, herein the residual noise root-mean-
square (RMS) values for both Bayesian weighting and artifact
rejection following the theoretical removal of the EP from
the ABR recording were calculated. This was achieved by
storing 256 consecutive sweeps in alternate buffers. Buffers
were subtracted to obtain an overall noise RMS value. This
process ensured that any deterministic elements of the re-
cording (i.e., the EP) were eliminated (John et al., 2001;
Schimmel, 1967). However, it should be noted that the sub-
traction method increased noise levels relative to each indi-
vidual buffer. To correct for this, buffers were averaged to
reduce further residual noise and to obtain accurate noise RMS
levels. The first 4,096 accepted sweeps were used in estimat-
ing noise RMS levels for Bayesian weighting and artifact
rejection.

For artifact rejection, two rejection levels were used: AREN

and AR10. If any data point exceeded the rejection level, the
entire sweep was rejected and not included in the averaging
process. For AREN, the rejection levels were systematically
reduced in 1-mV steps until the noise RMS values were equal
to the noise RMS values attained by Bayesian weighting
(16 blocks). Mean artifact rejection levels for AREN were
26 mV (SD = 19 mV) and 43 mV (SD = 26 mV) during the quiet
and active ABR conditions, respectively. This method was
used to compare Bayesian weighting and AREN based on
identical noise RMS values. For AR10, a fixed artifact rejection
level of ±10 mV was used. The first 4,096 accepted sweeps
were used for each artifact rejection criteria.

Bayesian weighting and artifact rejection calculations
(i.e., wave Vamplitude measurements and noise RMS values)
were performed using custom software without experimenter
intervention. The amplitude of wave Vwas measured from the
first positive peak of the largest waveform component 5 ms
poststimulus onset to the most negative following trough 2 ms
before positive deflection. If wave V appeared trough-like,
round or bimodal, the last point before rapid negative reflection
was identified as the peak (Durieux-Smith, Edwards, Picton,&
MacMurray, 1985; Stuart & Yang, 1994). The second author
and one independent scorer who was unaware of the purpose
of the study and blind to the test conditions subjectively
selected the peak-to-trough amplitude of wave V for 50%
of the data. An interjudge agreement coefficient (Pearson r)
was .93 for wave V amplitude measurement.

Results
Wave V Amplitude Analysis

Table 1 summarizes the descriptive statistics for mean
wave V amplitudes as a function of stimulus level, ABR test
condition, and noise reduction technique. A three-factor
repeated measures analysis of variance (ANOVA) was per-
formed to study differences in mean wave V amplitudes as a

Table 1. Mean wave V amplitude measurement in microvolts
(mV) and standard deviations of the mean as a function of
stimulus intensity level, auditory brainstem response (ABR) test
condition, and noise reduction technique (NRT).

Stimulus intensity level ABR test condition NRT M SD

60 dB nHL Quiet Bayesian 0.357 0.114
AREN 0.322 0.098
AR10 0.317 0.095

Active Bayesian 0.368 0.112
AREN 0.288 0.106
AR10 0.182 0.084

30 dB nHL Quiet Bayesian 0.181 0.062
AREN 0.154 0.053
AR10 0.152 0.060

Active Bayesian 0.220 0.086
AREN 0.156 0.076
AR10 0.104 0.058

Note. AREN = artifact rejection equal noise; AR10 = artifact rejection
±10 mV; n = 20.
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function of ABR test condition, stimulus intensity level, and
noise reduction technique. Statistical analyses were performed
with a significance alpha level of p < .05.

The results of the ANOVA are presented in Table 2.
Statistically significant main effects were found for noise
reduction techniques and stimulus intensity level. The intensity
effect was expected (i.e., wave V amplitude being larger for
60 dB nHL vs. 30 dB nHL) and therefore not evaluated due
to the well-documented aspects of stimulus level on wave V
amplitude (Hall, 1992; Jacobson, 1994). A statistically sig-
nificant interaction between noise reduction techniques and
ABR test conditions was also observed (see Table 2). Post hoc
mean pairwise comparisons were performed using Bonferroni
adjusted t tests ( p < .01; Keselman, Keselman, & Shaffer,
1991; Sato, 1996). Figure 1 shows mean wave Vamplitudes
recorded during quiet and active ABR conditions for each
noise reduction technique. During the quiet ABR condition,
there were no significant wave Vamplitude differences
between the techniques (see Figure 1a). During the active ABR
condition, however, AR10 resulted in significantly smaller
wave Vamplitudes than AREN, t(19) = 4.85, p < .01, and
Bayesian weighting, t(19) = 8.22, p < .01 (see Figure 1b). In

addition, AREN resulted in significantly smaller wave Vampli-
tudes than Bayesian weighting, t(19) = 4.68, p < .01. Overall,
artifact rejection yielded significantly smaller wave Vampli-
tudes in 90% of the traces (108 of 120 traces) compared with
Bayesian weighting. Thus, nonstationary noise plays a role
in how effective the techniques are in extracting the EP.

Noise RMS Analysis
Table 3 summarizes the descriptive statistics for mean

noise RMS values as a function of stimulus level, ABR test
condition, and noise reduction technique. Similar to the
wave V amplitude analysis, a three-factor repeated measures
ANOVAwas undertaken to investigate differences in mean
noise RMS values as a function of ABR test condition,
stimulus intensity level, and noise reduction technique. The
results of the ANOVA are presented in Table 4.

Statistically significant main effects were found for noise
reduction techniques and ABR test condition. The test
condition effect was expected. That is, physiological move-
ment produced during the active condition resulted in
significantlymore noise than the quiet condition.A statistically
significant interaction between noise reduction techniques
and ABR test conditions was also observed (see Table 4).

Table 2. Repeated measures analysis of variance investigating
wave V amplitude as a function of NRT, ABR test condition,
and stimulus intensity level.

Source F df p h2 B

NRT 36.90 2 <.0001 .660 1.000
ABR test condition 4.62 1 .05 .196 0.271
Stimulus intensity level 120.12 1 <.0001 .863 1.000
NRT × Condition 27.67 2 <.0001 .593 1.000
NRT × Intensity 3.38 2 .05 .151 0.340
Condition × Intensity 5.44 1 .03 .222 0.328
NRT × Condition × Intensity 2.27 2 .07 .126 0.261

Note. Statistical analysis was performed with a significance alpha
level of .05.

Figure 1. Mean wave V amplitudes as a function of noise
reduction techniques recorded during the quiet (a) and active
(b) auditory brainstem response (ABR) conditions. BW = Bayesian
weighting; AREN = artifact rejection equal noise; AR10 = artifact
rejection ±10 mV. Error bars represent 1 SEM. Asterisks
identify statistically significant Bonferroni adjusted pairwise
comparisons ( p < .01).

Table 3. Meannoise root-mean-square (RMS) valuesandstandard
deviations of the mean as a function of stimulus intensity level,
ABR test condition, and NRT.

Stimulus intensity level ABR test condition NRT M SD

60 dB nHL Quiet Bayesian 20.7 6.8
AREN 20.6 6.8
AR10 19.3 4.0

Active Bayesian 66.7 28.5
AREN 66.6 28.3
AR10 21.3 4.6

30 dB nHL Quiet Bayesian 23.9 11.4
AREN 23.8 11.5
AR10 18.4 6.1

Active Bayesian 52.9 27.0
AREN 53.2 27.1
AR10 22.2 11.2

Note. n = 20.

Table 4. Repeated measures analysis of variance investigating
noise RMS values as a function of NRT, ABR test condition, and
stimulus intensity level.

Source F df p h2 B

NRT 50.65 2 <.0001 .727 1.000
ABR test condition 58.98 1 <.0001 .756 1.000
Stimulus intensity level 1.80 1 .20 .087 0.089
NRT × Condition 42.70 2 <.0001 .692 1.000
NRT × Intensity 1.66 2 .20 .081 0.137
Condition × Intensity 3.88 1 .06 .170 0.219
NRT × Condition × Intensity 5.41 2 .03 .222 0.589

Note. Statistical analysis was performed with a significance alpha
level of .05.
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Figure 2 shows mean noise RMS values achieved by each
technique during quiet and active ABR conditions. Post hoc
mean pairwise comparisons were performed using Bonferroni
adjusted t tests ( p < .01). During the quiet ABR condition,
there were no significant noise RMS differences between the
noise reduction techniques (see Figure 2a). During the active
condition, however, AR10 resulted in significantly less noise
than AREN, t(19) = 7.13, p < .01, and Bayesian weighting,
t(19) = 7.12, p < .01 (see Figure 2b). There were no signif-
icant differences between Bayesian weighting and AREN,
t(19) = 0.22, p = .82, which supports the conclusion that noise
levels obtained by AREN were equal to Bayesian weighting.
The fact that AR10 reduced more noise than the other two
techniques when patients were active again leads one to
suggest that nonstationary noise plays a role in technique
effectiveness.

One could further suggest that the two techniques work
on different aspects of the ABR, prompting the following
question: What effect would AR10 and Bayesian weighting
have on the amplitude of wave V if noise RMS levels were
made equivalent? To address this question, we empirically
investigated Bayesian weighting and AR10 based on equal
amounts of noise reduction. To optimize the noise RMS for
Bayesianweighting, all 64 blocks of sweeps (i.e., 16,384 sweeps)
were used. It should be noted that no sweeps were clipped
by the input amplifier. Therefore, all 16,384 sweeps were
included in the overall averaged response. This technique was
called Bayesian weighting 16k (BW16k). The residual noise
levels achieved by BW16k were not target noise levels. None-
theless, they were directly compared with AR10 in order to
evaluate our attempt at achieving equal noise levels between
the two techniques.

Figure 3 shows mean wave V amplitudes and noise RMS
values achieved by BW16k and AR10. Paired samples t tests
revealed that AR10 resulted in significantly smaller wave V
amplitudes than BW16k, t(19) = 6.23, p < .05 (see Figure 3a).
However, there was not a significant difference in noise
reduction between the two techniques, t(19) = 1.09, p =.19,
which demonstrates that our attempt to achieve equal noise
RMS was successful (see Figure 3b). These results further

suggest that noise reduction achieved by BW16k did not affect
EP amplitude, whereas noise reduction achieved by AR10

resulted in reduced EP amplitudes.
Figure 4 best illustrates the main results of this study. Grand

averaged ABR traces recorded for a participant during the

Figure 2. Mean noise root-mean-square (RMS) values as a
function of noise reduction techniques recorded during the quiet
(a) and active (b) ABR conditions. Error bars represent 1 SEM.
Asterisks identify statistically significant Bonferroni adjusted
pairwise comparisons ( p < .01).

Figure 3. Mean wave V amplitudes (a) and noise RMS values
(b) as a function of noise reduction techniques. BW16k = Bayesian
weighting averaged for 16,384 sweeps. Error bars represent
1 SEM. Asterisks identify statistically significant paired sample
comparisons ( p < .05).

Figure 4. Grand averaged ABR traces for a participant recorded
during the active condition at 60 dB nHL. Raw data were
reprocessed to form 4 sets of averages based on individual noise
reduction techniques: (a) BW, (b) AREN, (c) AR10, and (d) BW16k.
WVA = Wave V amplitude; vertical bar = 0.25 mV; horizontal
bar = 1 ms.
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active condition at 60 dB nHL are shown. Raw data were
reprocessed to form four sets of averages based on individual
noise reduction techniques: Bayesian weighting, AREN, AR10,
and BW16k. Using 4,096 sweeps, AR10 resulted in a reduced
wave Vamplitude (0.389 mv) compared with AREN (0.496
mV) and Bayesian weighting (0.542 mV). Additionally, AR10

resulted in more noise reduction (27.2 nV) than Bayesian
weighing (57.5 nV) and AREN (59.0 nV). It should be noted,
however, that before attaining 4,096 accepted sweeps, the total
number of rejected sweeps for AREN and AR10 was 278 and
1,933, respectively. When Bayesian weighting noise level was
equated to AR10 (AR10 = 27.2 nV vs. BW16k = 31.8 nV), the
amplitude of wave V for AR10 was significantly reduced com-
pared with BW16k (BW16k = 0.519 mV vs. AR10 = 0.389 mV).
This result further supports our conclusion that artifact re-
jection has a destructive effect on the amplitude of wave V
despite a substantial reduction in noise.

Discussion
Bayesian weighting and artifact rejection are well-established

techniques that reduce noise during ABR testing, thus
improving the SNR (Don & Elberling, 1994; Elberling &
Wahlgreen, 1985; Pantev & Khvoles, 1984). This is especially
true when participants are quiet and relaxed during testing.
Consequently, one would expect that the two techniques are
equally effective during ideal testing conditions. The results
from the current study support this expectation. When partic-
ipants were quiet and relaxed, the differences in wave V
amplitudes and noise RMS values were minimal, suggesting
that the techniques are equally effective in ABR testing under
ideal situations. To our knowledge, however, no study has
investigated systematically whether the two techniques are
equally effective when patients are periodically active. We
found that during the active behavioral condition, the two
techniques differed significantly in their ability to extract the
EP and in their ability to reduce noise. Thus, the findings of this
study are twofold. First, strict artifact rejection levels have a
detrimental effect on the amplitude measurement of wave V.
Second, setting strict levels significantly reduces the noise but
does not always guarantee an improvement in waveform
morphology. This is especially evident when participants are
periodically active.

The initial use of 4,096 averaged sweeps allowed us to
compare Bayesian weighting with artifact rejection based on
equivalent noise levels. That is, we were able to compare the
two techniques based on equal noise by systematically
readjusting the rejection criterion until the residual noise
achieved by artifact rejection was equivalent to Bayesian
weighting. During the active condition ABR recording, the
average artifact rejection level used to obtain equal noise
(i.e., AREN) with Bayesian weighting was 43 mV, which is
a lenient rejection level but not unusual for clinical use
(Schwartz & Schwartz, 1991). As defined and empirically
determined, the amount of noise reduction achieved by the
two techniques was equal, but unexpectedly, the amplitude of
wave V was significantly more reduced for AREN than for
Bayesian weighting. Thus, we concluded that artifact rejection
has a destructive effect on ABR testing during active behav-
ioral conditions.

Further support of the above conclusion was found when
the artifact rejection criterion was made strict (i.e., 10 mV) but
still within levels that are used clinically. Again, the noise in the
traces for all participants was significantly reduced from the
less strict criterion of AREN. Nevertheless, and more surpris-
ingly, the wave Vamplitude was also significantly reduced. It
should be noted, however, that residual noise in the averaged
trace contributes to the amplitude of wave V. In theory, the
larger the residual noise, the greater its contribution to the
peak-to-trough amplitude of waveV. Thus, the smaller waveV
amplitudes, as seen with AR10, could also be due to less
residual noise in the averaged trace. To address the issue, we
comparedAR10with Bayesian weighting based on equal noise
(i.e., BW16k). Surprisingly, the amplitude of wave V was
significantly reduced for AR10 compared with BW16k despite
the fact that both techniques essentially reduced the same
amounts of noise.

Such results raise an obvious question: How does artifact
rejection reduce an already small EP that is embedded in large
amounts of noise? It is generally assumed that the EP is
deterministic (i.e., invariant in time and amplitude) and
therefore unaffected by noise reduction techniques. If this
assumption is true, techniques that reduce equal amounts of
noise should yield similar wave Vamplitudes. In the current
study, this assumption was true for Bayesian weighting but
not for artifact rejection.

One possible explanation is that the EP is not deterministic
and that the rejected sweeps contain a different subgroup of
EPs than accepted sweeps. This explanation is not likely
because the Bayesian approach sampled all sweeps and
showed no such reduction. A more likely explanation is that
artifact rejection aggressively reduced low-frequency energy
of both the EP and noise. It is well established that spectral
information of the ABR is composed of components from three
spectral bands: 0–350 Hz, 350–700 Hz, and 700–1200 Hz
(Kevanishvili & Aphonchenko, 1979; Yokoyama, 1989).
WaveVis represented by a frequency region consistingmainly
of low-frequency energy below 350 Hz (Suzuki, Sakabe, &
Mujasbita, 1982; Yokoyama, Aoyagi, Suzuki, Kiren, &Koike,
1994). Myogenic noise resulting from physiological activity
is also composed of low-frequency energy but was not a
contaminating factor in this study because the analyses were
limited to 7.5 ms, well below the temporal onset of any
myogenic activity.

If artifact rejection destructively minimizes the EP because
of its aggressive reduction in low-frequency energy, then it
is possible that the phase relationships between the EP and
noise interact in a detrimental way. For example, if low-
frequency noise is in phase (i.e., positive) with positive on-
going wave V, it could result in an exaggerated increase in
positive amplitude. This increase in amplitude would cause the
sweep to be rejected if artifact rejection criterion was stringent.
If, however, noise is out of phase (i.e., negative) with posi-
tive ongoing wave V, the overall sweep amplitudes would be
reduced and accepted even for a strict rejection criterion. For
active participants, the final average would contain an ab-
normally high percentage of sweeps when wave V was out
of phase with the noise. This biased result would lead to an
averaged ABR that had smaller than expected EPs (Stecker,
2002). Indeed, late component EPs have been reported to be
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smaller than normal in sleeping participants when large alpha
rhythm activity interacts with the EP of interest (Rodionov &
Sohmer, 2004).

We believe our results have practical clinical implications.
It is generally assumed that strict rejection levels ensure SNR
improvement, thus improving ABR waveform morphology.
Don and Elberling (1994) found that as they lowered rejection
levels from ±10 mV to ±2.5 mV, the noise was significantly
reduced. However, more sweeps were needed to obtain the
ABR, and the overall “quality” of the ABR waveform
deteriorated. They further concluded that the SNR did not
improve with systematic reductions in rejection levels, sug-
gesting that averaging noisy sweeps may be more beneficial
than averaging a subset of less noisy sweeps.

The above results were also evident in the current study for
artifact rejection. Several thousand sweeps were rejected
before noise RMS values were equal to Bayesian weighting,
suggesting that stringent rejection levels can be time con-
suming and often ineffective in clinical settings. Rejected
sweeps can be so numerous that a given clinical value of ac-
cepted sweeps (e.g., 2,048) may never be obtained. In fact,
an example of this observation was seen in the current set
of data. During the active ABR condition, the mean rejected
sweeps were 4,234 (SD = 2,220). This clearly demonstrates
that in order to achieve results comparable to Bayesian
weighting, an excessive number of sweeps, sometimes
thousands more, needed to be averaged. This ultimately
increased test time, thereby decreasing time efficiency of the
ABR. Furthermore, averaging less noisy sweeps did not
guarantee better waveform morphology as seen by a reduction
in wave V amplitude.

In summary, strict artifact rejection levels can lead to
difficulty in ABR interpretation and could ultimately result in
diagnostic errors. Our results suggest an inherent underesti-
mation of wave Vamplitude in noisy conditions when artifact
rejection criteria are strictly set. Such detrimental effects
contribute to reduced amplitudes and poor waveform mor-
phology because the EP is sacrificed at the expense of the noise
reduction. Upon examination of ABRmorphology with AR10,
it was evident that waveforms appeared qualitatively flat.
As mentioned above, a possible explanation that supports our
observation is that some aspect of artifact rejection biases
strongly against low-frequency energy, and caution should be
taken when implementing stringent criteria. Future research
should be directed toward evaluating whether strict rejection
levels reduce important low-frequency spectral information
of the ABR.
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Appendix (p. 1 of 2)

Signal Averaging Procedure

The following is amathematical descriptiveof the traditional signal averaging techniqueused in thecurrent study. The terminology is as follows:

S = signal picked up from electrodes
EP = evoked potential
BN = background noise
N = number of sweeps
SNR = signal-to-noise ratio

Assuming that the EP is mixed with BN, the S was the sum of the EP and BN:

S ¼ EPþ BN: ð1Þ

Sampled data were obtained and analyzed for the 7.5 ms of a 15-ms period (i.e., one sweep). Data obtained during the sweep were
stored in the computer memory. The entire procedure was repeated N times. After N repetitions, the computers memory summed
the sweeps and divided the data by the number of sweeps taken to form an averaged trace. Averaging assumes the EP to be
deterministic (i.e., invariant in time and amplitude) during the sweep. Therefore, the EP is considered part of the averaged S.
BN, however, is different from sweep to sweep, and after the completion of the averaging procedure, the noise amount is an
averaged value of the BN. Thus, the final formula in the averaging procedure was expressed as

S ¼ EPþ BN: ð2Þ

Since BN is independent of acoustic stimulus, noise contribution from sweep to sweep will tend to decrease, and therefore the
averaged BN will be smaller than the BN. How much smaller depends on the number of N sweeps taken. Generally, the amount of
noise reduction is equal to the square root of N :

BN ¼ BN=
ffiffiffiffi
N

p
: ð3Þ

Bayesian Weighting Procedure

Despite the use of noise reduction techniques such as filtering and artifact rejection, sweeps taken from different noise levels introduce
large amounts of uncertainty in the recording of the ABR. Aware of the above problem, Hoke et al. (1984) developed a mathematical
model for the EP and BN and modified the traditional signal averaging technique according to a weighted average. The equation is as
follows:

S ¼ EPþ kðBNÞ: ð4Þ

The equation states that the averaged S equals the EP and the averagedBNmultiplied by a factor k ,which is amultiplication factor that
best describes the BN when it is considered nonstationary (i.e., the mean and variance change over time) of the stationary zero mean
BN. Under these assumptions, the weighted averaging technique theoretically estimates the true EP with a linear least mean square
error. Another way to approach the above assumptions is based on a statistical theory known as Bayesian inference. The following
mathematical explanation is adopted from Elberling and Wahlgreen (1985) and Elberling and Don (1984). Bayesian inference requires
that individual sweeps used in the traditional signal averaging technique be weighted proportionally to their individual precision.
According to Equation 4, the nonstationarity of the averagedBN ismodeled by themultiplication factor k , so that sweeps are taken from
a Gaussian distribution with changing variance. As information carrier of the EP, the precision of the individual sweep is inversely
proportional to the magnitude of the variance. It is, however, difficult to estimate the variance based on a single sweep. Therefore, the
variance of the BN is estimated based on the signal point estimate of the BN used by Elberling and Don (1984). The equation is as
follows:

Vi ¼
X256 ðVi � VÞ2

256
; ð5Þ

where Vi is the variance of the BN based on the single point estimated of 256 sweeps (one block). The amount of BN in one sweep is
obtained at a single time point within the sweep. For the current study, the time point was the 288th digitized point, or the 6 ms time
point, or as follows:

48;000 Hz sampling rate equals 48 digitized points per millisecond ðppsÞ:
48 pps� 6 ms ¼ 288th digitized pps:

ð6Þ

Each value of the single point estimate (V1) was summed and divided by 256 (one block) to obtain the mean variance of the block ( V ).
Themean variance (V) was subtracted from (V1), squared, and divided by 256 to obtain the overall variance for oneblock of 256 sweeps (Vi).
Once Vi was obtained, the Bayesian estimate of the EP was as follows: After the first block (256 sweeps), we have

cEP1 ¼ ðS1=V1Þ � 1=C1; C1 ¼ 1=V1; ð7Þ

where cEP1 denotes the Bayesian estimate of the EP after the first block. S1 indicates the waveform of the first block, and V1 indicates
the estimated variance of the first block. After the second block we have

cEP2 ¼ ðS1=V1 þ S2=V2Þ � 1=C2; C2 ¼ 1=V1 þ 1=V2: ð8Þ
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After the nth block, we have

cEPn ¼ ðS1=V1 þ S2=V2 . . .þSn=VnÞ � 1=Cn; Cn ¼ 1=V1 þ 1=V2 . . .þ 1=Vn

or; Cn ¼ 1=Vn:
ð9Þ

Equation 9 describes how Bayesian inference was used to produce an EP estimate. After division with the corresponding variances, the
blocks were added together and the sum was finally multiplied by a factor 1/Cn, which was obtained by combining all the variances.
Therefore, the individual ith block was weighted with

i th ¼ n=ðVi � CnÞ: ð10Þ
As a result, Equation 9 can be rewritten as

cEPn ¼ 1=n� ðS1=V1 þ S2=V2 . . .þ Sn=VnÞ � n=Cn:

This enables comparison to be made with the traditional signal averaging technique:

cEPn ¼ 1=nðS1 þ S2 þ . . .SnÞ:

Appendix (p. 2 of 2)

Signal Averaging Procedure
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