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Chapter 1

Pou4f3DTR Mice Enable Selective and Timed Ablation of Hair
Cells in Postnatal Mice

Jennifer S. Stone, Edwin W. Rubel, and Mark E. Warchol

Abstract

Experimental studies of inner ear development and regeneration, as well as investigations of the influences
of sensory input on CNS development, often require a rapid and nearly complete elimination of the hair
cells of the inner ear at any postnatal age. Although these cells can be killed by noise trauma or by exposure
to ototoxic drugs, both of these interventions are highly variable in their efficacy, resulting in considerable
differences in sensory functions among individual animals that receive the same treatment. Furthermore,
much current research of the auditory and vestibular systems is conducted using mice, and the ears of mice
are relatively resistant to the effects of many ototoxins. In response to these concerns and others, the Rubel
and Palmiter labs at the University of Washington developed a transgenic mouse line (called Pou4f3DTR) in
which the human form the diphtheria toxin receptor (also known as HB-EGF) is expressed under regula-
tion of the Pou4f3 promoter. Because Pou4f3 is expressed by all hair cells (and relatively few other cells in the
body), this mouse model permits the selective elimination of hair cells via 1–2 systemic injections of
diphtheria toxin. This mouse line has been successfully used in studies of auditory CNS development and
hair cell regeneration. This chapter provides an overview of this model, as well as detailed protocols for
its use.

Key words Hair cells, Cell death, Mouse model, Deafness, Diphtheria toxin, Auditory system,
Vestibular system, Regeneration

1 Historical Background

The sensory hair cells of the inner ear detect sound vibrations
(in the cochlea) and head position and motion (in the vestibular
organs) and convey this information to the brain via synapses upon
the eighth cranial nerve. Injury or death of hair cells is relatively
common in humans and can lead to permanent hearing loss, dis-
equilibrium, and vertigo. The causes are varied and are likely to
consist of a combination of genetic predisposition, along with a
history of ototoxic drug exposure, noise exposure, or other forms
of injury. Given the high prevalence of these conditions, it is of
great interest to understand how hair cells die, how their death (and

Andrew K. Groves (ed.), Developmental, Physiological, and Functional Neurobiology of the Inner Ear, Neuromethods, vol. 176,
https://doi.org/10.1007/978-1-0716-2022-9_1,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2022

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-2022-9_1&domain=pdf
https://doi.org/10.1007/978-1-0716-2022-9_1#DOI


subsequent lack of neural input) affects other regions of the ner-
vous system, and also how hair cells might be replaced or regener-
ated. Basic research on all of these issues relies on the use of animal
models.

Early research on the function and pathology of the inner ear
has employed a number of mammalian and non-mammalian mod-
els (e.g., [1, 2]). Insights into the operation of the cochlea were
largely derived from studies of guinea pigs (which have a large and
readily accessible cochlea), chinchillas (which also have an accessible
cochlea and a hearing range similar to humans), and cats (which are
advantageous for single unit physiology at all levels of the auditory
system). Beginning in the 1990s, however, much of the research on
the inner ear has involved the use of mice. Adoption of mice as a
common animal model is attributable in part to the development of
powerful tools for genetic sequencing and manipulation in mice,
which has greatly enhanced our knowledge of the genetic and
molecular basis of inner ear dysfunction. Mice are also easy to
breed and maintain in laboratory environments. Apart from their
genetic advantages, however, mice are not an optimal model for the
study of hearing. The hearing range of mice (~4–60 kHz) is very
different from that of humans (~0.02–20 kHz), which may be
indicative of differences in the mechanics of the cochlea. In addi-
tion, quantifying the physiological function of the cochlea (e.g., via
the recording of cochlear microphonics or the sound-evoked
responses of single afferents) in mice is experimentally challenging.
Similarly, mice are somewhat ill-suited for the study of vestibular
function. Their vestibular sensory organs are small and relatively
inaccessible, and their quadrupedal location makes it difficult to
detect subtle changes in balance function. Mice also have small
laterally positioned eyes, and their vestibulo-ocular reflexes
(VORs) are difficult to quantify. Still, mice have emerged as very
productive models in the studies of aging, ototoxicity, and acoustic
trauma; the genetic homogeneity of inbred strains can minimize
the degree of variability that is common for these types of insults.

The initial impetus to develop a transgenic mouse for time-
sensitive, targeted ablation of hair cells was to better study the role
of experience on shaping the development of structure and func-
tion of the brain. These types of studies can be traced back at least
to the observations and writings of Aristotle. In the modern era,
this includes the contributions of D. O. Hebb, visual system scien-
tists like Austin Riesen, David Hubel and TorstenWiesel, neuroem-
bryologists like Victor Hamburger and behaviorists like Konrad
Lorenz and Gilbert Gottlieb.

Building on the classic studies of auditory system embryology
of Ramon y Cajal and Levi-Montalcini, and of visual system depri-
vation, the laboratory of one author (EWR) studied the role of
synaptic activity on development of auditory pathways in birds and
mammals for over four decades. One important observation made
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by this group and others was that while damage to the inner ear
prior to the onset of hearing had rapid and dramatic consequences
on cochlear nucleus neuron survival, the response was
age-dependent; the same manipulation a few days later resulted in
no or minimal cell death. These studies provided further examples
of critical periods wherein normal CNS development relies on
synaptic inputs from the periphery (reviewed in [3–7]).

One of the challenges for these studies in the auditory system as
well as other pathways has been how to remove or manipulate
synaptic activity in areas of the brain in quantifiable ways without
destroying other cellular components or creating other pathologies
in inner ear or brain regions under investigation. In vivo approaches
applied in the auditory field have included raising animals with ear
plugs or in environments with abnormal acoustic experiences.
While it is obvious that such manipulations change the pattern of
activity, the unusually high levels of spontaneous activity of audi-
tory neurons were likely not significantly altered under these con-
ditions (e.g., [4, 8]). Another approach to silencing synaptic input
to the brain included removal of the cochlea, as first shown by
Kiang [9]. However, this manipulation did successfully eliminate
excitatory synaptic activity at the level of the ventral cochlear
nucleus, and it created pathologies in the inner ear, the nerve, and
the cochlear nucleus. Investigators also pharmacologically blocked
eighth nerve action potentials (e.g., [10–12]). While this approach
was used in mature animals to great advantage, it is cumbersome,
requires monitoring, and is difficult to validate in young animals.

Since the most common cause of hearing loss in humans is loss
of hair cells, it makes sense to use a method that eliminates hair cells
but does not damage other cochlear or CNS cells for altering
synaptic input to the brain. Unfortunately, none existed. Therapeu-
tic medicines that killed hair cells also damage other cochlear struc-
tures, and we do not know their direct effects on CNS neurons.
Some genetic manipulations were becoming available (e.g., [13])
but usually limited to induction only in young animals. The obvi-
ous solution was to use genetics to remove or silence hair cells or
auditory nerve axons in developing and mature animals.

Discovery of hair cell regeneration in birds [14, 15] brought
attention to a new methodological problem. How could one dis-
tinguish the difference between a native (original) hair cell, a
regenerated hair cell, and a hair cell that had been injured, had
changed the expression of marker proteins, and had recovered?
While tritiated thymidine or other cell cycle markers were immedi-
ately used to distinguish recently divided offspring [16, 17], it was
quickly discovered that new hair cells could also arise by direct
transdifferentiation (a non-mitotic conversion supporting cells in
the sensory epithelia into hair cells [18, 19]) and that this method
was the primary way in which hair cells were naturally regenerated
in rodents [20–22]. While ototoxins and noise were available to
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induce hair cell death, these methods had problems (discussed
below) due to high rates of animal mortality, high lesion variability,
off-target effects, or age restrictions.

Careful consideration revealed that the ideal mouse model for
studying the role of synaptic activity on auditory brain development
and hair cell regeneration should: (1) be inducible at any age; (2) be
highly specific to hair cells (no off-target effects in key cell types in
the inner ear or CNS); (3) work rapidly, in a matter of hours or a
few days; (4) be reliably quantifiable and consistent across subjects
or complete; (5) be non-invasively inducible; and (6) be effective
in vitro and in vivo. Fortuitously, Richard Palmiter’s group at the
University of Washington had developed a method to selectively
ablate hypothalamic neurons that control feeding behavior in mice
[23, 24], as discussed in more detail in Subheading 3. The applica-
tion of this method to create Pou4f3DTR mice resulted in a highly
useful model for time-controlled and selective ablation of hair cells
in postnatal mice.

2 Traditional Methods for Inducing Hair Cell Death in Mice

The exact method used to create a hair cell lesion in mice depends
on the goals of the study. If the objective is to identify the cellular
mechanisms that underlie hair cell death caused by specific ototox-
ins (e.g., aminoglycoside antibiotics or the chemotherapy agent
cisplatin), then the use of those specific drugs is mandated. On
the other hand, studies focused on the consequences of inner ear
injury (such as CNS plasticity, effects of sensory deprivation, or hair
cell regeneration) will require creation of a hair cell lesion, but the
actual method used to kill hair cells may not be critical. Instead, it
may be more important that the lesion method is reliable and
consistent, so that all experimental animals experience the same
kind and extent of hair cell loss, or complete killing of all hair cells
in the organ. Furthermore, it is often desirable that other cell types
in the ear, such as organ of Corti supporting cells, peripheral and
central neurons in auditory and vestibular pathways, or stria vascu-
laris and dark cells, are not adversely affected by the method
intended to kill hair cells.

2.1 Cochlear Hair

Cells

The most common method for lesioning cochlear hair cells is to
expose animals to intense sound. Before employing this technique,
several species-specific parameters must be considered. First, the
frequency range of hearing sensitivity varies greatly among mam-
mals, so the sound frequency (or frequency band) to be used must
be optimized for the specific animal species that is being studied.
Also, the cellular effects of noise vary with the intensity and dura-
tion of exposure. In most strains of laboratory mice, moderately
loud sounds (~90 dB SPL) will induce injury to afferent synapses
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but will not impact hair cells or supporting cells [25, 26]. In con-
trast, exposure to higher sound levels (�106 dB SPL) will kill
cochlear hair cells, and intense sound (>116 dB SPL) can disrupt
the integrity of the sensory epithelium [27]. Noise-induced hearing
loss is common in humans, so identifying the mechanisms by which
noise damages the cochlea is of great translational interest. How-
ever, the effects of noise on cochlear hair cells can be highly variable,
such that the lesion induced by a particular noise regimen can vary
from animal to animal. For this reason, unless noise exposure is a
critical aspect of the rationale for a particular experiment, noise
trauma is probably not the best option for ablating cochlear hair
cells.

Another option for inducing cochlear injury involves treatment
with ototoxic drugs. Most studies using drugs to kill hair cells in
mice have used either aminoglycoside antibiotics or platinum-
containing chemotherapeutic drugs that are widely used to treat
tumors. Unfortunately, mice are often a suboptimal model for such
studies. Killing cochlear hair cells with aminoglycosides requires
delivery of multiple injections over 1–3 weeks, with doses that
approach systemic toxicity [28, 29]. Aminoglycoside-induced
death of cochlear hair cells is greatly enhanced when the antibiotic
is administered in combination with a “loop” diuretic (e.g., furose-
mide, ethacrynic acid, bumetanide; [30]), and this approach has
been used to create ototoxic lesions in mice [28, 31, 32]. The
precise mechanism of the pharmacological interaction between
loop diuretics and aminoglycosides is not fully understood, but it
is likely that the diuretic permits increased transport of aminoglyco-
sides across the stria vascularis, leading to higher concentrations of
those drugs in the cochlear fluids. From an experimental stand-
point, co-administration of loop diuretics and aminoglycosides is a
reasonably reliable method for inducing hearing loss in mice. While
aminoglycosides (with or without loop diuretics) mainly target
outer hair cells and—at higher doses—inner hair cells, these treat-
ments often cause damage or death of other cells in the organ of
Corti, in the stria vascularis, and/or amongst spiral ganglion neu-
rons. Also, the extent of damage to hair cells, and probably other
cell types, varies dramatically as a function of age.

Cisplatin and other chemotherapeutic drugs have been used to
lesion cochlear hair cells since the early 1970s (when those drugs
were first developed). However, their use in mice presents similar
challenges to those encountered with aminoglycosides. A clinically
relevant protocol for cisplatin ototoxicity in mice has recently been
developed [33], and it involves giving mice three 4-day courses of
systemic injections of cisplatin, with each series separated by a
10-day drug-free “recovery” period. However, creating a cisplatin
lesion with this protocol in mice requires 2–3 months and careful
attention to detail. Finally, it should be noted that both high doses
of cisplatin and intense noise can damage supporting cells [34–37],
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stria vascularis [38, 39], and/or neurons (e.g., [40–42]) as well as
hair cells.

A few transgenic mouse lines have been used to destroy hair
cells in mice. Fujioka et al. [43] engineered Pou4f3-Cre;Mos-iCsp3
mice in which treatment in vivo or in vitro with a drug called
AP20187 results in mosaic, partial killing of the auditory hair
cell population. This method should also work to achieve partial
killing of vestibular hair cells. Additionally, mice generated by
crossing Atoh1-CreER mice to Rosa26-stop-loxp-DTA mice show
near-complete killing of hair cells in both the cochlea [44] and
vestibular organs [45] when tamoxifen is injected in the neonatal
period. Unfortunately, this method does not work in adult mice
because Atoh1-CreER expression is lost in hair cells as mice mature.

2.2 Vestibular Hair

Cells

The traditional method for killing vestibular hair cells in
non-mammals and large rodents (guinea pigs) is to treat animals
with a series of subcutaneous injections of aminoglycoside antibio-
tics. However, this approach is problematic in mice. In adult mice,
kanamycin fails to induce any substantial hair cell loss in the utricle
[31, 32] and, presumably, other vestibular organs. The high doses
of aminoglycosides that are apparently required to kill vestibular
hair cells in vivo are lethal to mice, and unlike in the cochlea,
supplementation with diuretics such as furosemide does not
enhance vestibular hair cell loss [31, 32]. Intralabyrinthine delivery
of gentamicin creates near-complete lesions in adult mice [46], but
this approach requires surgery.

There have been very few studies examining cisplatin as an
inducer of vestibular hair cell damage in mice. Although small
changes in a vestibular reflex and motor behaviors have been
noted after cisplatin treatment [47], studies have found little or
no loss of vestibular hair cells following cisplatin treatments at
different doses and schedules [33, 47]. Furthermore, Fernandez
et al. [33] detected no change in vestibular stimulus-evoked elec-
trical potentials in the brain stem. There are other disadvantages to
using cisplatin to kill hair cells including its lethal effects on sup-
porting cells and neurons (see Subheading 2.1). Therefore, similar
to aminoglycosides, cisplatin seems to pose technical limitations for
studies requiring extensive and precise loss of hair cells.

Another toxin, 3,30-Iminodipropionitrile (IDPN), has been
employed to destroy vestibular hair cells in mice (e.g., [48, 49]).
Although IDPN is easily administered to mice, it can cause patho-
logical changes in different regions of the rodent body including
the kidney, liver, and brain (e.g., [50–53]). In rats and mice, IDPN
induces loss of hair cell-afferent nerve synapses in both vestibular
and cochlear organs [54–56] and structural and molecular changes
in the hair cell-calyx junction [56]. In addition, at high doses,
IDPN can cause supporting cell death [57]. Most studies of
IDPN ototoxicity have focused on the vestibular organs and
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IDPN’s effects on the cochlea are not well-characterized. The
off-target effects of IDPN can make it challenging to isolate behav-
ioral or physiological effects of hair cell loss and regeneration,
which is important in many studies.

3 Selective Cell Ablation in Mice Expressing the Human Diphtheria Toxin Receptor

To minimize the off-target effects and extend the age range of
treatment that accompany the more traditional methods for hair
cell ablation, Edwin Rubel and Richard Palmiter engineered the
Pou4f3DTR transgenic mouse line [58–60]. In this line, the human
diphtheria toxin receptor (hDTR) is expressed specifically on hair
cells, thus allowing those cells to be selectively ablated upon admin-
istration of diphtheria toxin (DT also called DTx). Diphtheria toxin
is a bacterial protein that kills cells by inhibiting protein synthesis
[51, 61–63]. The DTmolecule has two functional domains: DT-B,
which is the receptor-binding and transactivating domain (which
facilitates entry into the cell), and DT-A, which is the catalytic, toxic
domain. DT binds to a receptor on the cell surface, which has been
shown in some cells to be the precursor of heparin-binding epider-
mal growth factor like growth factor (HB-EGF) [64]. HB-EGF,
which is expressed in many cell types, acts as a ligand and regulates a
variety of cellular behaviors [65]. However, because HB-EGF can
bind to and internalize DT, it is commonly referred to as the “DT
receptor” (DTR). Once bound to HB-EGF, DT becomes
incorporated into clathrin-coated pits and then endosomes. In the
acidic environment of the endosome, the toxin becomes translo-
cated to the cytosol, where it enzymatically alters the structure of
eukaryotic elongation factor 2 (EF2), affects the actin cytoskeleton
[66], and activates nucleases, resulting in apoptosis. Much of the
DT that enters the cell is degraded in the lysosomal pathway. In
cases where the extracellular fluid is acidic, DT may be directly
transported across the plasma membrane to the cytoplasm.

Diphtheria toxin is very potent; once internalized within a cell,
a single molecule of DT appears to be sufficient to induce cell death
[67]. However, susceptibility to DT varies across species and cell
types and depends on expression of the DTR and affinity of the
DTR for DT [62]. Cells of humans and mice differ greatly in their
vulnerability to DT, which is a consequence of species-specific
differences in the amino acid sequence of HB-EGF that endows
the human version with a ~1000� higher affinity for DT than
mouse version [23]. Richard Palmiter and other genetic engineers
took advantage of these features to generate mice that express the
full coding region of the human DTR gene (hDTR) in specific cell
types in mice [23, 24]. hDTR expression is driven by gene regu-
latory elements that are specific to a given cell type. Such mice then
receive systemic injection(s) of DT. Since DT interacts very weakly
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with mouse HB-EGF, this treatment has only minor effects on
most cells of these mice. However, cells that express hDTR quickly
undergo cell death.

To target hair cells for DT-induced ablation, hDTR was
inserted into exon 1 of the Pou4f3 gene, generating Pou4f3DTR

mice (Fig. 1b; [58, 59, 60, 68]). Pou4f3 is a transcription factor
that, at the protein level, is highly expressed in the nucleus of all
inner ear hair cells (Fig. 1a), at early and late stages of development
and in maturity but is not expressed in other key cell types in the
auditory or vestibular periphery such as supporting cells or primary
sensory neurons [69–71]. This hDTR insertion inactivates the
Pou4f3 coding region. Germline knockout mice that are homozy-
gous null for Pou4f3 experience hair cell death in the early postnatal
period [69, 71]. By contrast, mice heterozygous for Pou4f3 exhibit
apparently normal development of cochlear hair cells, vestibular
hair cells, and hearing [72]. Therefore, Pou4f3DTR mice are used
as heterozygotes.

A related—but very different—approach to cell killing is to
express an inducible form of the gene for the DT-A fragment within
a specific cell population (e.g., [73, 74]). This approach has been
used to kill supporting cells (e.g., [75]) and hair cells (e.g.,
[44, 45]) in the mouse inner ear. Another similar approach has
been to use mice with Cre-inducible DTR expression (e.g., [76]),
killing cochlear ganglion neurons.

Fig. 1 Strategy for generating Pou4f3DTR/+ mice. (a) Pou4f3 expression is limited to hair cells in the inner ear,
as verified two ways: by labeling whole-mount tissue with the Pou4f3 antibody and using sectioned tissue
from the Pou4f3GFP reporter mouse. Pou4f3 immunolabel (main panel, green) is selectively expressed in the
nuclei of hair cells reacted for myosin VI (red) from a mature (P56) WT mouse. An orthogonal view from the
same tissue is shown in the upper inset. The Pou4f3GFP reporter mouse demonstrates expression in both inner
and outer hair cells (lower inset). Scale bar, 50 μm. (b) Pou4f3DTR/+ mice were genetically engineered to
contain the human DTR downstream of the Pou4f3 promoter, creating a mouse model in which sensory hair
cells in the inner ear can be selectively ablated after a systemic injection of DT. From [58]
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The first studies to implement the Pou4f3DTR mouse line
[58, 59, 60, 68] sought to destroy all hair cells in the cochlea and
vestibular organs of neonatal and adult mice, in order to assess
changes in cellular properties in the cochlear nucleus, hair cell
regeneration in the vestibular epithelium, or development of voca-
lizations in mice.

4 Auditory Hair Cell Ablation Using Pou4f3DTR Mice

Figure 2 shows phenotypic responses of mature Pou4f3DTR/+ mice
given single IM injections at a dosage of 25 ng/g of diphtheria
toxin [58]. A single intramuscular (IM) injection of DT (25 ng/g)
is sufficient to kill all cochlear hair cells (Fig. 2a–d). Hair cell loss is
evident within 3 days of DT injection. At 5 days after DT treatment
at this dosage, no normal-appearing hair cells remain. Assessment
of cochlear function by auditory brainstem response (ABR) thresh-
olds indicates that these DT-treated mice fail to show any reliable
response to clicks or pure tone stimuli up to 90 dB (SPL) by 5 days
after the DT treatment (Fig. 2e). None of these pathologies are
seen in wild type mice from the same litters given identical injec-
tions of DT nor in Pou4f3DTR/+ mice given saline injection. Of
importance, both qualitative and quantitative analyses indicate
that the cochlear pathologies resulting from the DT injection at
this dosage (or below) appear entirely specific for hair cells. Other
cell types of the cochlea, such as epithelial supporting cells, lateral
wall fibrocytes, cells of stria vascularis, and spiral ganglion cells
appear unaffected [58, 59, 68, 77]. Interestingly, during the period
of hair cell loss, there appears to be a small but significant reduction
of the endocochlear potential (EP) that subsequently recovers to
normal levels. DT dosage, survival period, and age of injection were
also varied by Tong et al. and Kaur et al. Complete loss of inner and
outer hair cells is also observed in mature Pou4f3DTR/+ mice given
single injection dosages of 15 ng/g and 5 ng/g, but the timing of
hair cell loss is delayed by up to 5 days. For the use of Pou4f3DTR/+

mice to study the influence of synaptic activity on development of
brain structure and function, it is critical to quantify neural activ-
ity in the neurons under investigation. Studies cited above lead to
the assumption that auditory nerve activity will be severely dimin-
ished (see also ref. 78), and the expected dramatic reduction of
spontaneous activity has been confirmed in young animals in studies
conducted in the laboratory of Prof. Rudolf Rubsamen in Leipzig
(Fig. 2f). At 6 days after DT injection, spontaneous discharge in
AVCN neurons was reduced by >99%. More extensive studies on
the changes on ongoing (“spontaneous”) activity throughout the
auditory pathways in neonatal and mature Pou4f3DTR/+ mice are
needed. Recent developments in methods for in vivo Ca2+ imag-
ing should facilitate this.
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In summary, the studies cited above indicate that the
Pou4f3DTR/+ mouse appears to be an excellent experimental
model for quickly eliminating cochlear hair cells and hearing func-
tion, with minimal damage to other cell types. This technique has
now been employed in a number of studies, with highly consistent
outcomes (e.g., [79, 80]).

As noted above, an important aspect of the Pou4f3DTR/+ model
is the ability to eliminate hair cells at any postnatal age. Several
studies have used this property for studies of organ of Corti hair cell
regeneration and the effects of hearing loss in neonatal vs mature
mice (e.g., [44, 58, 68, 81]). Results of DT injections have been
similar to those noted above with a couple of exceptions. First,
smaller injections of DT have typically been used (<10 ng/g).
Unpublished experience revealed considerable lethality with doses
>15 ng/g. With P2–P7 mice, a single dose of 5 mg/g yields
complete hair cell loss within 10 days and minimal but detectable
rapid changes in organ of Corti supporting cells. On the other

Fig. 2 Summary of auditory phenotype of Pou4f3DTR/+ mice following DT treatment. (a–d) Low and high
magnification confocal images of mature cochleas from wild type (WT) mice (a, b) and Pou4f3DTR/+ mice at
8 days following IM injection of 25 ng/g DT (c, d). Tissue is reacted for myosin 7a (green), neurofilaments (red),
and nuclei (blue). Note complete loss of all hair cells and robust survival of nerve fibers in c and d. Scale bar in
a ¼ 100 μm. b and c from [58]. (e) Average (+/� SEM) auditory brainstem response (ABR) thresholds from
WT, mice and Pou4f3DTR/+ mice at 1–5 days after DT treatment. Note total loss of response by 5 days. From
[58]. (f) Electrophysiological recordings from single neurons in the antero-ventral cochlear nucleus (AVCN) of a
young Pou4f3DTR/+ mouse before and 6 days after 15 ng/g IM injection of DT. Note the difference in time scale
on x-axis. Action potential frequency is reduced by over 99% by 6 days after DT injection. Data provided
courtesy of Prof. Rudolf Rubsamen, Univ. of Leipzig
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hand, the response of spiral ganglion cells was profoundly different
than mature mice. When neonatal Pou4f3DTR/+ mice were injected
with DT, they showed profound loss of SGNs as early as 8 days
later. This loss progressed such that only 30% of spiral ganglion cell
bodies remained 70 days later. Wild type mice injected with DT as
neonates did not have any observable SGN cell body loss at any
time point [58]. Finally, the neonatal mouse cochlea can be
explanted and maintained in organotypici culture. Hair cells in
explanted cochleae from Pou4f3DTR/+ mice can be selectively
lesioned by adding DT to the culture medium. Treating such
cultures for 3 days with 25 ng/ml DT results in complete loss of
inner hair cells, extensive loss of outer hair cells, and survival of
supporting cells [58]. Much more detailed and quantitative work
needs to be conducted on the use of this model for in vitro studies.

5 Vestibular Hair Cell Ablation Using Pou4f3DTR Mice

Golub et al. [60] sought to destroy all hair cells in the vestibular
organs of adult mice (6–9 weeks of age) and then assess subsequent
hair cell regeneration over time. This study employed Pou4f3DTR/+

mice in order to overcome the limitation of partial hair cell ablation
that was observed with all prior methods. For studies of hair cell
regeneration, it is advantageous to kill all original (native) hair cells,
so that any newly produced hair cells can be definitively identified as
“replacement” or “regenerated.” In contrast, an incomplete hair
cell lesion leaves open the possibility for cellular repair or migration
of surviving hair cells into the injured area, both of which would
confound data interpretation. Therefore, Golub et al. [60] imple-
mented Pou4f3DTR mice, with the goal of killing all vestibular hair
cells and preserving other cell types. Hair cells were counted in
several control mice to assess the specificity of the method. Analysis
of utricular hair cell numbers in Pou4f3DTR/+ mice that did not
receive DT injection revealed that vestibular hair cells develop
normally in Pou4f3 heterozygotes [60]. In addition, injection of
DT (two intramuscular injections of 25 ng/g, 2 days apart) to
Pou4f3DTR wild type mice (Pou4f3+/+) failed to cause hair cell loss.
This finding was expected because the low dose of DT should not
induce hair cell loss in mice lacking the hDTR. However, in
Pou4f3DTR/+ mice, the same DT regimen caused 50% of vestibular
hair cells to die by 7 days post-DT and 94% of hair cells to die by
14 days post-DT. A few papers have demonstrated that DT induces
apoptosis-like death of vestibular hair cells (e.g., [82, 83]). Termi-
nal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)
at 7 days post-DT revealed wide-spread chromatin degradation
characteristic of apoptosis in cells throughout the utricle (Fig. 3a,
b). Condensed chromatin could be detected using 40,6-diamidino-
2-phenylindole (DAPI) labeling in small numbers of hair cells as
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early as 3 days post-DT (Fig. 3f). Imaging with transmission elec-
tron microscopy also provided evidence for pyknotic nuclei at
7 days post-DT (not shown). Additional pieces of evidence of hair
cell demise were: (1) deformation of the nucleus; (2) ectopic distri-
bution of myosin 7a (Myo7a) protein, which is normally

Fig. 3 Hair cell degeneration and death in adult mouse utricles following DT administration. (a) TUNEL labeling
in a whole-mount utricle from a Pou4f3DTR/+ mouse at 7 days post-DT. (b) Higher magnification of the box
shown in a. (c) Undamaged WT hair cells (arrows) with cytoplasm labeled green (Myosin 7a) and nuclei labeled
blue. (d)–(f) Utricle with similar labeling as c, showing hair cells (arrows) from Pou4f3DTR/+ mice at 3 days
post-DT. Arrowhead in F points to nucleus of an apoptotic cell. (g) Phalloidin labeling of filamentous (F) actin in
stereocilia (arrow) in an undamaged WT utricle. (h, i) Stereocilia of surviving hair cells (arrows) at 14 (h) and
70 (i) days post-DT in Pou4f3DTR/+ mice. Arrowhead in (h) shows a bundle of abnormally splayed stereocilia,
indicative of injury. The stereocilia of regenerated hair cells are too small and too lightly labeled in panel i at
70 days post-DT to be evident. Scale bar: 100 μm in a, 12 μm in b, 4 μm in c–f, and 20 μm in g–i
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cytoplasmic (Fig. 3c) but in some cells appeared to penetrate the
nucleus (Fig. 3d–f); and (3) degeneration of stereocilia in the apical
hair bundle (Fig. 3g–i).

Amniotes have two types of vestibular hair cell—type I and type
II (reviewed in [84]). Mouse utricles contain approximately 3800
hair cells, about half of which are type I [85, 86]. Golub et al. [60]
showed that ~200 hair cells of both types remained at 14 days post-
DT, but over the next several months, cells resembling type I hair
cells decreased further in number. In contrast, hair cells with type II
characteristics increased in number to approximately 700 by
60 days post-DT, after which their numbers remained the same.
These observations are consistent with the hair cell replacement
noted in mice or guinea pigs after hair aminoglycoside treatment,
indicating the Pou4f3DTR mouse model is a viable tool for regener-
ation research.

The delay of hair cell destruction, particularly in type I hair
cells, indicated that DT uptake, DT trafficking, and/or execution
of cell death takes place over several weeks. The design logic for
Pou4f3DTR/+ mice predicted that DT administration should rapidly
kill hair cells in adult mice. Further, it was anticipated that all hair
cells in adult mice would die rapidly because they continue to
express high levels of Pou4f3 (see Fig. 1). The finding that 6% of
utricular hair cells remained in Pou4f3DTR/+ mice at 14 days post-
DT was surprising, and there are several possible interpretations.
First, some of these hair cells may have already been regenerated.
This interpretation is supported by the observation that many hair
cells at this time lacked a well-formed bundle, which is a sign of
immaturity. However, this interpretation cannot account for all
remaining hair cells, because many of them were type I and are
not naturally regenerated in adult mammals (e.g., [21, 22, 46, 82,
87]). A second possibility is that Pou4f3 promoter activity may vary
amongst hair cells, causing some cells to have insufficient human
DTR expression, which would result in DT resistance. In other
mouse lines employing a similar strategy, complete cell death is
obtained in a shorter period. For instance, Wu et al. [88] killed
99% of neurons expressing agouti-related protein within 6 days.
Third, DT may be processed differently by similar cell types. For
instance, DT enters the cell via endosomes and may remain in that
compartment longer in some cells, which would protect them from
DT’s lethal inhibition of protein translation.

DT kills hair cells in other vestibular organs beside the utricle.
Hicks et al. [87] found that, in addition, hair cells were killed, and
type II hair cells were regenerated in the anterior and lateral ampul-
lae and in the saccule. It is not clear from studies if there are any
spatial gradients in hair cell loss within the vestibular organs.

The degree and nature of hair cell loss in utricles of adult mice
can be reduced by administering DT at lower overall doses. A single
injection of DT at 25 ng/g induces less extensive hair cell loss in the
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utricle [77], seemingly inducing a comparable amount of type II
hair cell death and regeneration but sparing approximately half of
the type I hair cell population (J. Stone, unpublished data).

Golub et al. [60] also used DT to kill vestibular hair cells in
organ cultures. They found that, in whole utricles that were
explanted and incubated at 37 �C, overnight incubation with DT
(dissolved in culture media at 3–333 ng/ml) destroyed 99% of hair
cells in adult utricles within 5 days. These tests were intended as a
demonstration of efficacy of the mouse model; systematic dosage
and timing studies are needed to make this model more useful for
studies in cultured inner ear organs. There are important considera-
tions for studying hair cell damage and regeneration ex vivo. For
instance, Lin et al. [89] showed there is substantial spontaneous
death of hair cells in cultures even in the absence of a damaging
agent presumably due to stress and malnutrition in those condi-
tions, and hair cell regeneration is thwarted in whole cultured
utricles, which can only be maintained for 3–4 weeks before tissue
undergoes degeneration.

Vestibular hair cells of neonatal Pou4f3DTR/+ mice can also be
lesioned by systemic DT treatment. Much lower dosages are used in
neonates. For instance, a single 5 ng/g DT injection kills ~80% of
hair cells in the cristae of the semicircular canals (M. Warchol,
unpublished data). However, this dose is highly toxic to the sensory
epithelium of the neonatal utricle. Treatment of neonates with
5 ng/g DT at P0-1 results in a large epithelial “wound” in the
central region of the utricular sensory epithelium, which is caused
by the loss of both hair cells and supporting cells [90]. Such wounds
are apparent at 7 days post-injection, and lead to the mixing of the
inner ear fluids (perilymph and endolymph). Such extensive dam-
age also results in the death of the majority of afferent neurons.
Interestingly, such wounds begin to close between 7 and 14 days
post-DT, probably via the contraction of a “purse-string” actin ring
that surrounds the outer border of the wound [90]. These unex-
pected findings point to an epithelial repair process that is present in
the neonatal utricle, similar to that described by Meyers and Cor-
win [91] after induction of small “punch” wounds in organotypic
cultures.

6 Methods

6.1 Mouse Breeding To drive expression of hDTR in mouse hair cells, the gene for
human HB-EGF was inserted into exon 1 of Pou4f3 in the mouse
genome (Fig. 1). Mice that are heterozygous for this allele retain
one functional copy of Pou4f3, and their auditory and vestibular
hair cells appear to develop normally [58, 60, 69–71]. However,
mice that possess two copies of hDTR lack a functional Pou4f3
gene, and such mice exhibit a profound loss of cochlear and
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vestibular hair cells after they are formed during development. For
this reason, an optimal breeding strategy for studies targeting hair
cell damage in an otherwise physiologically normal animal is to
mate Pou4f3DTR+/� mice to WT mice, which will yield 50% of
offspring that are Pou4f3DTR+/� (“experimental” mice) and 50%
that are WT and can be used as controls.

For genotyping, DNA is extracted from mouse tissue (typically
via tail-clip), polymerase chain reaction amplifies a portion of the
Pou4f3 gene that is either WT or contains the hDTR allele, and gel
electrophoresis is used to distinguish between these two gene seg-
ments, which differ in size. Detailed methods for genotyping these
mice can be found in Tong et al. [58] and Kaur et al. [77].

Genetic background is important to consider when breeding.
Most published studies have utilized C57Bl6/J mice, in which
consistent lesions have been achieved. However, González-Garrido
et al. [83] noted that full hair cell lesions were not reliably attained
with the standard DT dose (25 ng/g) in adult Pou4f3DTR+/� mice
on a CBA/CaJ background. This same result was experienced by
the University of Washington team, and a single cross of congenic
CBA-CaJ mice to C57Bl6/J mice restored the sensitivity of the
mice to DT (unpublished observations).

6.2 DT

Administration

Diphtheria toxin in unnicked form is injected either intramuscularly
(IM) to juvenile and adult mice or intraperitoneally (IP) to neonatal
mice. While some investigators report intraperitoneal
(IP) injections in neonatal mice, in our hands, both IM and subcu-
taneous injections in neonates can lead to unreliable results likely
due to leakage of the solution from the injection site. With this
approach, we have attained nearly symmetric hair cell lesions in
organs from the left and right sides of the mouse, and we have
achieved similar lesions in all mice from a given cohort.

Monaural DT treatment, causing unilateral hair cell destruc-
tion, would be useful for both inner ear and CNS studies. Pilot
studies were undertaken in the Rubel lab to determine if local
injections of DT into the middle ear of mature mice will produce
single-sided hair cell loss and deafness. The results were promising
but optimal formulations, dosages, and timing need to be resolved.

DT powder is purchased from Sigma-Aldrich #D0564 or List
Biological Labs #150 and can be stored at 2–8 �C. DT powder is
readily dissolved in water. We make 1 μg/100 stock solution dis-
solved in saline (0.9% NaCl sterile) solution and store it in a
non-defrosting (�20 �C) freezer. The drug is most dangerous in
powder form or at high concentrations in solution. People using
the drug should be vaccinated and should consult Material Safety
Datasheets, standard operating procedures, and university
resources (e.g., Occupational Nurse, Environmental Health and
Safety) for instructions and assistance in handling.
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In the first 3–7 days after injection, mice can react to DT by
grouping together and consuming less water and food, but they
usually improve by 1 week. Nutritional supplements such as the
high-calorie gel Nutri-Cal (Tomlyn/Vétoquinol USA) have been
added to cages to keep juvenile or adult mice healthier during the
first week post-DT. If they are sick, we administer subcutaneous
lactated Ringers solution. Supplements are more likely required
when adult mice receive two doses of DT at 25 ng/g or higher.

A higher DT dose is required to achieve full destruction of
vestibular hair cells than to induce complete loss of cochlear hair
cells in adult mice [58, 60]. To reliably kill all vestibular hair cells,
we inject either 25 or 50 ng/g DT (IM), once a day, for 2 days,
skipping 1 day between injections. A single injection at either dose
typically results in loss of most type II hair cells but only half of the
type I hair cell population (J. Stone, unpublished data).

We found that DT’s efficacy in hair cell killing can vary lot-by-
lot, and DT solution loses its efficacy over months when stored in
the freezer. Therefore, we run a dose-response test for each new lot
of DT, measuring hair cell loss at 14 days post-DT, and we test the
DT solution every 4–6 months, discarding it when it no longer
induces a lesion at doses equal or less than 50 ng/g.

Finally, we have observed a small degree of hair cell loss in the
cochleae of WT mice after treatment with high doses of DT
(25–50 ng/g). This loss is usually confined to IHCs and is very
minor when compared to the hair cell death that occurs in
Pou4f3DTR+/� mice after the same DT treatment. Also, this hair
cell loss is not extensive enough to cause elevated ABR thresholds
in DT-injected “control” mice (e.g., see ref. 58). Still, this effect has
the potential to influence the outcomes of certain types of studies
and should be carefully monitored. The reason for this small degree
of DT-induced cell death inWTmice (which do not possess hDTR)
is not clear. However, genomic studies indicate that some mouse
hair cells express HB-EGF (data publicly available at umgear.org).
Furthermore, even though the affinity of DT for human HB-EGF
is significantly greater than its affinity for the mouse form of this
protein, it is still possible that a small number of DT molecules are
transported into hair cells of WT mice. A complete explanation of
this phenomena will require further investigation.
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