
ORIGINAL PAPER

Profiling drug-induced cell death pathways in the zebrafish
lateral line

Allison B. Coffin • Kay L. Williamson •

Anna Mamiya • David W. Raible • Edwin W. Rubel

Published online: 15 February 2013

� Springer Science+Business Media New York 2013

Abstract Programmed cell death (PCD) is an important

process in development and disease, as it allows the body

to rid itself of unwanted or damaged cells. However, PCD

pathways can also be activated in otherwise healthy cells.

One such case occurs in sensory hair cells of the inner ear

following exposure to ototoxic drugs, resulting in hearing

loss and/or balance disorders. The intracellular pathways

that determine if hair cells die or survive following this or

other ototoxic challenges are incompletely understood. We

use the larval zebrafish lateral line, an external hair cell-

bearing sensory system, as a platform for profiling cell

death pathways activated in response to ototoxic stimuli. In

this report the importance of each pathway was assessed by

screening a custom cell death inhibitor library for instances

when pathway inhibition protected hair cells from the

aminoglycosides neomycin or gentamicin, or the chemo-

therapy agent cisplatin. This screen revealed that each ot-

otoxin likely activated a distinct subset of possible cell

death pathways. For example, the proteasome inhibitor

Z-LLF-CHO protected hair cells from either aminoglyco-

side or from cisplatin, while D-methionine, an antioxidant,

protected hair cells from gentamicin or cisplatin but not

from neomycin toxicity. The calpain inhibitor leupeptin

primarily protected hair cells from neomycin, as did a Bax

channel blocker. Neither caspase inhibition nor protein

synthesis inhibition altered the progression of hair cell

death. Taken together, these results suggest that ototoxin-

treated hair cells die via multiple processes that form an

interactive network of cell death signaling cascades.

Keywords Hair cell � Ototoxicity � Neomycin �
Gentamicin � Cisplatin

Introduction

The notion that cells can ‘‘deliberately’’ die via a series of

complex, ordered events is a core concept in cell biology

[1]. Classical programmed cell death, or apoptosis, is

characterized by chromatin condensation and activation of

caspases, a family of cysteine proteases [2–4]. Apoptotic

pathways are critical for normal development and are also

activated in many disease states, including neurodegener-

ative diseases [5, 6]. Furthermore, the dysfunction of

apoptosis is considered a hallmark of cancer [7].

Other forms of cell death such as necrosis were origi-

nally considered independent of cell signaling events [8, 9].

Recent studies have demonstrated that programmed cell

death (PCD) can occur in the absence of caspase activation,

leading to the idea that PCD encompasses a broad range of
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signaling pathways, all of which result in the orderly

demise of the cell [10–13]. However, our understanding of

what pathways are necessary for death due to a specific

toxin or class of related toxins is still incomplete.

One system where the features of multiple cell death

processes are apparent is in toxicity of sensory hair cells of

the inner ear. Aminoglycoside antibiotics, platinum-based

chemotherapy agents such as cisplatin, and numerous other

chemical, biological and environmental challenges can

cause sensory hair cell damage, often resulting in hearing

loss. Mounting evidence suggests that there are multiple

possible mechanisms by which hair cells may be killed,

complicating therapeutic intervention [14–19]. The pre-

dominant view of aminoglycoside-induced hair cell death

is that the build up of oxygen free radicals is a critical early

process that sets in motion a variety of other degradative

events [19, 20]. Studies in avian inner ear epithelia and

zebrafish lateral line show that mitochondrial swelling and

release of cytochrome c into the cytoplasm are early signs

of aminoglycoside ototoxicity [21–25]. Some researchers

have demonstrated that caspase inhibition can protect hair

cells from aminoglycoside or cisplatin ototoxicity, sug-

gesting that caspase activation occurs downstream of

mitochondrial responses [26–29]. However, in vivo studies

in mice suggest that caspase-independent cell death path-

ways may be necessary for kanamycin or cisplatin oto-

toxicity [15, 30].

Interpreting these studies is complicated by the many

different experimental conditions employed in ototoxicity

research, such as in vitro vs. in vivo conditions, choice of

specific aminoglycoside or other ototoxin, and dose-depen-

dent differences in cell death responses. We approach the

problem of cell death signaling in ototoxicity by using the

larval zebrafish (Danio rerio) lateral line, an in vivo model

where quantitative studies are possible across ototoxins and

concentration ranges. This system provides a platform for

screening multiple cell death pathway inhibitors in parallel to

assess pathway activation due to different ototoxic stimuli.

The lateral line is a sensory system comprising clusters of

neuromasts arrayed in stereotyped positions on the head and

body of the fish [31–33]. Each neuromast contains 10–20

mechanosensory hair cells and associated supporting cells.

Fish use this sensory system to detect near-field water

movement (within a few body lengths) associated with prey,

predators, and conspecifics as well as for orientation

behavior in flowing water [34–39].

Hair cells in the zebrafish lateral line are considered

homologous to sensory hair cells in the mammalian inner

ear and have structural and functional similarities, includ-

ing similar responses to ototoxic drugs [40–46]. We have

previously used the lateral line of larval zebrafish for

identifying novel protective compounds by screening

libraries of drugs or drug-like molecules [47–50]. These

screens have uncovered new small molecule protective

compounds as well as identifying potential off-label uses

for existing therapeutics. The current study uses a similar

chemical genetic approach, but here we used a library of

known cell death inhibitors in order to more fully under-

stand the variety of signaling pathways activated by known

ototoxins in this system.

We have recently shown that the closely related amino-

glycoside antibiotics neomycin and gentamicin appear to

elicit distinct, partially overlapping cell death responses in

the zebrafish lateral line [46]. Experiments with protective

mutants and drugs suggest that activation of an ‘‘acute’’ cell

death mechanism is shared by both neomycin and gentami-

cin, while a ‘‘slow’’ mechanism is specific to gentamicin-

induced damage [46, 51]. In contrast, cisplatin-induced hair

cell loss appears to be linear and cumulative in zebrafish. In

addition, pharmacologic and genetic research in zebrafish

and mice suggests that cisplatin and aminoglycosides may

activate different signaling pathways [44, 47, 50, 52], The

present study profiles pathway activation in ototoxin-treated

hair cells by screening a custom cell death inhibitor library.

We show that each toxin activates a distinct subset of the

possible pathway space, suggesting that a rich, intercon-

nected network of cell death signaling cascades contributes

to hair cell death from a single toxin.

Materials and methods

Animals

Wildtype *AB zebrafish were acquired through group

mating and raised at 28.5 �C in Petri dishes containing

embryo medium according to standard protocols [53]. All

experiments described here used 5–6 days post-fertilization

(dpf) larvae. All procedures were approved by the Uni-

versity of Washington Animal Care and Use Committee.

Reagents

Neomycin solution (10 mg/ml) and gentamicin solution

(50 mg/ml) were purchased from Sigma-Aldrich (St.

Louis, MO, USA). Cisplatin solution was acquired from

the University of Washington Medical Center pharmacy.

All inhibitors making up the custom library were purchased

from Calbiochem (now EMD Millipore, Billerica, MA,

USA). Other reagent sources are provided in the text

describing the use of each reagent.

Library composition and screening

A custom library of 61 pharmacological inhibitors was

assembled to encompass known cell death-associated
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molecular targets (e.g., caspases, Bax) as well as a variety

of molecules such as FUT-175 that were reported to

influence cell death in specific tissues or in response to

specific cytotoxic stimuli [54]. Table 1 contains a complete

list of library compounds used in the present study.

Compounds were purchased in powdered form and

dissolved in the appropriate solvent for each compound

based on the manufacturer’s recommendation (water,

DMSO [B1 %], or ethanol [B0.1 %]) as shown in Table 1.

Final concentrations of each compound were determined

based on published literature, and 10 lM was selected as

the screen concentration if the literature was highly vari-

able or if there was little published information for the

compound in question. Several compounds were lethal to

the fish at the initial concentrations tested. For these

compounds, additional toxicity testing was performed to

determine the highest concentration at which no morbidity

was detected, and this concentration was then used for

additional screening. Morbidity was defined as abnormal

swimming or righting behavior or abnormal morphology

such as body curvature. Table 1 shows final screen con-

centrations, with superscript ‘‘a’’ indicating concentrations

that were empirically determined based on toxicity testing.

All experiments were performed at 28.5 �C in defined

E2 embryo medium (EM) (1 mM MgSO4, 120 lM

KH2PO4, 74 lM Na2HPO4, 1 mM CaCl2, 500 lM KCl,

15 mM NaCl, and 500 lM NaHCO3 in dH2O) [53]. Larvae

(n = 7–12 per group) were placed in custom fish transfer

baskets (constructed from modified 50 ml conical tubes

with mesh inserts [40]) and pre-treated in a specific

inhibitor for 1 h. This pre-treatment period is consistent

with similar protective screens [47, 48]. Following inhibi-

tor pretreatment, fish were treated with either 200 lM

neomycin, 50 lM gentamicin, or 500 lM cisplatin. Fish

treated with neomycin were incubated in ototoxin for

30 min, followed by four rinses in fresh EM and a 60 min

recovery period. Fish treated with gentamicin or cisplatin

were incubated continuously in ototoxin for 6 h, followed

by two rinses in fresh EM and immediate hair cell

assessment. The inhibitor was present during the ototoxin

exposure period as well. Concentrations and treatment

lengths of ototoxins were previously determined to reduce

hair cell staining by 80 %, producing comparable degrees

of damage so that the magnitude of protection may be

directly compared among ototoxins [44–46, 51]. Negative

controls were handled identically, including addition of the

appropriate solvent (DMSO or ethanol), but no inhibitor or

ototoxin was present, while positive control animals

received only ototoxin but no inhibitor. Initial screening

was performed ‘‘blind’’ as compounds were numbered and

there were no a priori reasons to associate particular

numbers with hair cell protection.

Hair cell survival was assessed by the relative fluores-

cent intensity of staining with the mitochondrial potential

dye DASPEI (2-(4-(dimethylamino)styryl)-N-Ethylpyridi-

nium Iodide). Following acute or continuous treatment,

free-swimming larvae were immersed for 15 min in

0.005 % DASPEI (Life Technologies, Carlsbad, CA,

USA), rinsed twice in EM, and anesthetized with 0.001 %

MS-222 (Sigma-Aldrich). The same 10 head neuromasts in

Table 1 Cell death inhibitor library components

Compound name Inhibitor family Solvent Stock conc. Screen conc. CAS #

AEBSF, Hydrochloride Protease Water 10 mM 5 lM 30827-99-7

ALLN Calpain DMSO 10 mM 10 lM 110044-82-1

Apoptosis inhibitor Apoptosis DMSO 10 mM 10 lM 54135-60-3

Bax channel blocker Bcl2 proteins DMSO 10 mM 5 lM 54135-60-3

BAY 11-7082 NF-KB DMSO 10 mM 250 nMa 19542-67-7

Bongkrekic acid, triammunium salt Mitochondria Ethanol 1 mM 500 nM 1177154-51-6

Calpain inhibitor III Calpain DMSO 10 mM 10 lM 88191-84-8

17-DMAG Heat shock Water 1 mM 500 nM 467214-21-7

Chymostatin Protease DMSO 2 mg/ml 0.5 ug/ml 9076-44-2

Cyclohexamide Protein synthesis Ethanol 10 mM 5 lM 66-81-9

Cyclosporin A Mitochondria DMSO 10 mM 5 lM 59865-13-3

Dexamethasone Nitric oxide DMSO 10 mM 10 lM 50-02-2

JNK inhibitor II JNK kinase DMSO 10 mM 10 lM 129-56-6

Necrosis inhibitor, IM-54 Necrosis DMSO 10 mM 10 lM 861891-50-1

Necrostatin-1 Necrosis DMSO 10 mM 1 lM 4311-88-0

PARP inhibitor IV, IQD PARP DMSO 10 mM 10 lM 5154-02-9

PARP inhibitor XI, DR2313 PARP Water 10 mM 10 lM 284028-90-6

Pifithrin-alpha p53 DMSO 10 mM 10 lM 63208-82-2
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Table 1 continued

Compound name Inhibitor family Solvent Stock conc. Screen conc. CAS #

PPack, dihydrochloride Protease 10 mM HCl 10 mM 5 lM 142036-63-3

Sulfasalazine NF-KB DMSO 10 mM 10 lM 599-79-1

Antipain, dihydrochloride Protease DMSO 1 mM 10 lM 37682-72-7

Apoptosis inhibitor II, NS3694 Apoptosis DMSO 10 mM 25 lM 426834-38-0

Cathepsin inhibitor III Protease DMSO 1 mM 10 lM NA

Cathepsin G inhibitor I Protease DMSO 1 mM 10 lM 429676-93-7

E-64 protease inhibitor Protease Water 1 mM 10 lM 66701-25-5

Heat shock protein inhibitor I Heat shock DMSO 10 mM 10 lM 218924-25-5

Leupeptin, hemisulfate Protease Water 10 mM 100 lM 103476-89-7

Luteolin Oxidative stress DMSO 10 mM 10 lM 491-70-3

NEMO-binding domain peptide NF-KB DMSO 500 lM 10 lM NA

NF-kB activation inhibitor NF-KB DMSO 1 mM 50 nMa 545380-34-5

nNOS inhibitor I Nitric oxide Water 1 mM 10 lM NA

Omi/HtrA2 protease inhibitor, Ucf-101 Mitochondria DMSO 1 mM 500 nM 313649-08-0

Pepstatin A, synthetic Protease DMSO 5 mM 1 lM 26305-03-3

Proteasome inhibitor I Proteasome DMSO 1 mM 10 lM NA

Proteasome inhibitor II Proteasome DMSO 1 mM 10 lM NA

Ro106-9920 NF-KB DMSO 1 mM 1 lM 62645-28-7

Bax-inhibiting peptide, V5 Bcl2 proteins Water 1 mM 10 lM NA

Fas/FasL antagonist, Kp7-6 Apoptosis Water 500 lM 10 lM NA

FUT-175 Protease Water 5 mg/ml 18.5 lM 82956-11-4

Caspase inhibitor II, cell permeable Caspase DMSO 1 mM 10 lM NA

Caspase inhibitor III Caspase DMSO 1 mM 10 lM 634911-80-1

Ubiquitin aldehyde Proteasome DMSO 100 lM 1 lM NA

CGP-37157 Mitochondria DMSO 10 mM 1 lMa 75450-34-9

Ru360 Mitochondria Water 1 mM 10 lM NA

Protein kinase inhibitor, DMAP JNK kinase Water 10 mM 10 lM 938-55-6

MEG, hydrochloride Nitric oxide Water 10 mM 20 lM 19767-44-3

Granzyme B inhibitor III/caspase 8 II Granzyme DMSO 1 mM 10 lM NA

TNF-alpha inhibitor Inflammatory DMSO 10 mM 100 nMa 1049741-03-8

Rapamycin p70 S6 kinase DMSO 100 lM 100 nM 53123-88-9

Analog of Trichostatin A HDAC DMSO 2 mM 1 lM 58880-19-6

Roscovitine CDK DMSO 10 mM 10 lM 186692-46-6

PD98059 MEK DMSO 10 mM 10 lM 167869-21-8

Caspase1 inhibitor IV Caspase I DMSO 10 mM 10 lM 154674-81-4

Resveratrol Oxidative stress DMSO 20 mM 20 lM 501-36-0

D-methionineb Oxidative stress Water 250 mM 1 mM 348-67-4

Glutathioneb Oxidative stress Water 100 mM 500 lM 70-18-8

AG1478 EGF DMSO 10 mM 10 lM 175178-82-2

Thapsigargin ER calcium release DMSO 5 mM 500 nM 67526-95-8

Bcl-2 inhibitor Bcl2 proteins DMSO 5 mM 50 lM 383860-03-5

U0126 MEK DMSO 10 mM 500 nM 109511-58-2

3-MA Autophagy EM 20 mM 10 mM 5142-23-4

Additional information and original references for these compounds may be found at www.emdmillipore.com

NA not available
a Indicates compounds where the screen concentration was empirically determined based on toxicity assays. All other screen concentrations

were selected based on published literature, or set to 10 lM when insufficient published data were available
b Compound was purchased from Sigma-Aldrich
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each fish were examined in a single field of view using a

Leica MZFLIII fluorescent stereomicroscope and 509

magnification. Each neuromast was given a score of ‘‘2’’ if

the DASPEI label was bright, a ‘‘1’’ if the label was dim,

and a ‘‘0’’ if no label was detected. Zebrafish neuromasts

develop in highly stereotyped positions [33, 40], giving us

confidence that scores of ‘‘0’’ denote neuromasts damaged

due to treatment rather than those missing due to devel-

opmental events. Each fish therefore received a total score

of 0–20. Scores were normalized to controls such that

100 % represents the average score for control animals.

Our previous research demonstrates that this scoring

method is robust and allows quantitative assessment of hair

cell survival, and that DASPEI scores are highly correlated

with direct counts of individual hair cells in the same

neuromast [44, 51]. DASPEI assessment offers the addi-

tional advantage of speed, allowing an experienced

researcher to assay 20–30 fish every 15 min.

Inhibitor ‘‘hits’’ (compounds that protected hair cells

from one or more ototoxins) were then retested twice with

the same concentration of ototoxin and putative protective

compound in order to confirm the protective effect. Hits

were considered significant if the inhibitor-treated group

had at least twice the averaged total DASPEI score of the

group treated with ototoxin only.

Dose–response analyses

Dose–response testing was performed for all confirmed

hits. In these experiments we attempted to define what we

refer to as the ‘‘dose–response matrix’’ for each combina-

tion of ototoxin and putative inhibitor of toxicity. For

gentamicin, both acute and continuous treatment durations

were used as described above because damage caused by

gentamicin exposure is known to vary with treatment

length [46]. All other ototoxin incubation periods were as

described above. First, the concentration of the putative

inhibitor was varied by 1–2 orders of magnitude in order to

identify the optimal protective concentration. Larvae

(10–12 per treatment group) were pretreated for 1 h in one

of four test putative inhibitor concentrations, then co-

treated with inhibitor and either 200 lM neomycin (acute),

200 lM gentamicin (acute), 100 lM gentamicin (continu-

ous), or 500 lM cisplatin (continuous). Positive control

fish were again treated with ototoxin only. Treatment

paradigms and assessment with DASPEI were as described

above. Additional groups of fish were treated with the same

putative inhibitor concentrations alone to determine if the

putative inhibitor alone affected hair cell survival.

Initially, inhibitors were only used in combination with

the ototoxin(s) to which they had demonstrated protection

during the screen. Once the optimal protective concentra-

tion was determined (defined as the concentration that

provided maximum hair cell protection with minimal fish

toxicity), that concentration was used in a second set of

dose–response experiments. Here, a single inhibitor con-

centration was used and the ototoxin concentrations were

varied to encompass a wide range of hair cell damage. For

these second stage experiments, all of our ototoxins were

used at multiple concentrations (50–400 lM neomycin or

gentamicin, 250–1000 lM cisplatin). Again, both acute

and continuous treatment paradigms were used for genta-

micin experiments, while neomycin experiments were

performed only with the acute treatment paradigm, and

cisplatin experiments with the continuous exposure para-

digm. While these experiments were not performed

‘‘blind’’ with regards to inhibitor treatment, we have found

no difference in DASPEI scores in side-by-side compari-

sons of blinded versus unblinded experiments (Coffin,

unpublished data).

Hair cell counts

DASPEI intensity is dependent on mitochondrial membrane

potential and some of the inhibitors used in the present study

could possibly decouple mitochondrial membrane potential

from hair cell survival. To confirm that the DASPEI scoring

was accurately predicting hair cell survival, direct counts of

labeled hair cells were performed using immunofluores-

cence. Larvae (8–10 per group) were treated as described

above for dose–response analyses, but only a single combi-

nation of ototoxin and inhibitor was used. Hair cell counts

were performed for each inhibitor that appeared protective

based on the DASPEI scoring assays.

After treatment, fish were euthanized in an ice-water

bath and fixed in 4 % paraformaldehyde in phosphate-

buffer saline (PBS). Fish were rinsed twice in fresh PBS

and once in distilled H2O to improve antibody penetration,

then blocked in PBS containing 0.1 % Triton-X and 5 %

normal goat serum (both from Sigma-Aldrich). Hair cells

were labeled with mouse anti-parvalbumin (EMD Milli-

pore, diluted 1:500 in PBS with 1 % normal goat serum)

overnight at 4 �C, rinsed in fresh PBS, and visualized with

goat anti-mouse secondary antibody (Alexa Fluor 488 or

568, Life Technologies, diluted 1:500 in PBS). Lateral line

neuromasts were viewed on a Zeiss Axioplan 2ie epifluo-

rescent microscope with a 409 objective (NA = 0.75).

Hair cell counts were performed in seven neuromasts per

fish (SO1, SO2, IO1, IO2, IO3, OP1, and M2; [33]) and

counts were summed to arrive at one value per fish. These

neuromasts were selected because they are readily viewed

when the fish is positioned on bridged glass coverslips, and

because six of these neuromasts are also assessed for

DASPEI scoring. Previous reports suggest that different

neuromasts exhibit identical ototoxic responses at this age

[40]. Images were taken of representative neuromasts using
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Slidebook software v. 4 (Intelligent Imaging Innovations,

Denver, CO, USA), or on an Olympus FV1000 confocal

system with associated Fluoview software.

Gentamicin uptake assay

While each inhibitor in the library was selected because it

had a known mechanism of intracellular action, it is possible

that some inhibitors act on hair cells by attenuating ototoxin

uptake. To test this possibility we performed an uptake assay.

Fish were incubated for 1 h in the optimal inhibitor con-

centration, followed by a 10-minute co-incubation in inhib-

itor and 100 lM gentamicin tagged with the fluorophore

Texas red (GTTR; [55, 56]). Excess fluorophore was

removed with two rinses in fresh EM and fish were anes-

thetized with MS-222 and viewed using either an Olympus

Fluoview FV1000 confocal microscope or a Leica DMRB

fluorescent compound microscope. Neuromast GTTR

intensity was assessed qualitatively [51]. In some cases the

experimenter was blind to the inhibitor used in conjunction

with GTTR.

Caspase inhibition

Multiple caspase inhibitors were included in the initial

inhibitor library (see Table 1). We also conducted additional

experiments with the pan-caspase inhibitor Z-VAD-Fmk

(EMD Millipore). Fish were pre-treated for 1 h in 10–300 lM

Z-VAD, a concentration range shown to prevent caspase

inhibition in previous zebrafish studies [57, 58]. Fish were

then co-treated with Z-VAD and neomycin or gentamicin as

described above and hair cell survival was assessed with

DASPEI scoring.

Protein synthesis inhibition

PCD requires synthesis of new protein in some circum-

stances, although in others translational inhibition can

promote cell death [59–61]. To examine this issue in the

lateral line, we performed additional experiments with the

translation inhibitor cycloheximide (EMD Millipore). Fish

were pre-treated for 1 h in cycloheximide (1–100 lM),

then co-treated with cycloheximide and neomycin, genta-

micin, or cisplatin as described for dose–response analyses.

Hair cell survival was assessed with DASPEI scoring.

Data analysis

The results from dose–response experiments were analyzed

using 1-way or 2-way ANOVA in Prism (v. 5). Bonferroni-

corrected posthoc testing was performed if the ANOVA

was significant (p \ 0.05). All data are presented as

mean ± 1 SD.

Results

Screening of a custom cell death inhibitor library revealed

that different inhibitors protected hair cells from different

ototoxins, suggesting that each ototoxin activates a distinct

set of cell death pathways (Fig. 1). Figure 1a shows initial

screening results using neomycin as the example ototoxin,

with 20 compounds initially yielding hair cell protection

(bars above the red line). Comparison of initial screen ‘‘hits’’

for each of the three ototoxins is shown in Fig. 1b as a heat

map, demonstrating a distinct pattern of red ‘‘hits’’ for each

ototoxin. Upon re-screening and testing of the dose–response

matrix, seven compounds were shown to protect hair cells

from neomycin damage and six from continuous gentamicin

exposure (Fig. 1c; Table 2). Five compounds exhibited at

least partial protection from both aminoglycosides: the p53

inhibitor pifithrin-a (PFTa), the Omi/HtrA2 protease inhib-

itor Ucf-101, the serine protease inhibitor FUT-175, the

proteasome inhibitor Z-LLF-CHO, and the autophagy

inhibitor 3-MA (Table 2). FUT-175, Z-LLF-CHO, and

3-MA also protected hair cells from cisplatin toxicity. The

calpain and cathepsin inhibitor leupeptin significantly pro-

tected hair cells from neomycin damage, and to a lesser

degree cisplatin damage, but leupeptin was toxic to the

animals when combined with continuous gentamicin treat-

ment. D-methionine, an antioxidant, significantly protected

hair cells from gentamicin or cisplatin damage but not from

neomycin toxicity (Table 2). Bax inhibition protected hair

cells from neomycin damage and to a lesser degree from

acute gentamicin toxicity (Table 2). p53 inhibition robustly

protected hair cells from continuous gentamicin damage,

with more limited yet significant protection seen from acute

neomycin or acute gentamicin exposure. These ‘‘hits’’ sug-

gest a complex interplay of related pathways underlie hair

cell responses to ototoxic damage, with each ototoxin acti-

vating a distinct, yet partially overlapping, set of available

cell death pathways. Statistics for each compound/ototoxin

combination are presented in Table 2.

Inhibitors in the initial library were selected partially

because they had known intracellular targets. Nonetheless, it

is possible that protection was conferred by a compound

blocking ototoxin uptake rather than via inhibition of cell

signaling. We assayed uptake using GTTR, a fluorescently

conjugated form of gentamicin [55, 56]. While we did not

quantify GTTR fluorescence, qualitative assessments were

conducted on a minimum of four fish and five neuromasts per

fish for each inhibitor, and fluorescent intensity was qualita-

tively similar across neuromasts and animals. Of the eight

inhibitors that demonstrated confirmed protection, only FUT-

175 attenuated GTTR entry into hair cells, as shown in Fig. 2.

We focus here on examples of inhibitors with different

protection profiles to illustrate the patterns of pathway

activation. As shown in Fig. 3, the proteasome inhibitor
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Z-LLF-CHO offers partial protection against all ototoxins

tested. 10–50 lM Z-LLF-CHO significantly protected hair

cells from 200 lM acute neomycin with 25 lM exhibiting

the desired characteristics of optimal protection and mini-

mal toxicity when no ototoxin was present (Fig. 3a and

data not shown). Protection was also evident when par-

valbumin-labeled hair cells were assessed, demonstrating

that DASPEI scores with Z-LLF-CHO reflect hair cell

preservation (Fig. 3b). In additional dose–response exper-

iments, 25 lM Z-LLF-CHO robustly protected hair cells

from acute neomycin or acute gentamicin toxicity, even at

high ototoxin concentrations (Fig. 3c, d). Significant pro-

tection from continuous gentamicin was also observed,

although this protection was only evident for low concen-

trations of gentamicin (Fig. 3e). In contrast, modest pro-

tection from a relatively high concentration of cisplatin

(750 lM) was observed, with no protection seen at lower

cisplatin doses (Fig. 3f). Z-LLF-CHO appeared mildly

ototoxic during continuous exposure experiments (i.e.,

Fig. 3e, f, dashed line, 0 ototoxin points).

In contrast to the relatively broad protection offered by

Z-LLF-CHO, the antioxidant D-methionine exhibited a

more narrow protection profile. As shown in Fig. 4, 5 mM

D-methionine significantly protected hair cells from either

acute or continuous gentamicin exposure or from cisplatin

toxicity. However, this protection was limited, with

incomplete hair cell survival seen in all cases. No protec-

tion was observed when fish were treated with neomycin in

the presence of D-methionine.

The cell death inhibitor library contained multiple caspase

inhibitors, including Ac-VAD-CHO and Boc-D-Fmk. No

caspase inhibitor manifested as a ‘‘hit’’ during our screen.

While we did not follow up on the negative results for the

majority of library compounds, given the central importance

of caspases in classical PCD we chose to examine putative

caspase involvement more thoroughly. We conducted

additional experiments with variable concentrations of the

pan-caspase inhibitor Z-VAD-Fmk (Z-VAD). As shown in

Fig. 5, no concentration of Z-VAD significantly protected

hair cells from either aminoglycoside. Previous studies of

caspase inhibition by 300 lM Z-VAD report successful

prevention of caspase activation and of programmed cell

death in zebrafish embryos, including chemical toxicity of

neurons and radiation-induced damage [57, 58]. These data

suggest that Z-VAD would confer protection if caspase

activation were necessary for lateral line hair cell death.

We also found that inhibition of protein synthesis failed

to protect lateral line hair cells. As shown in Fig. 6, no

concentration of cycloheximide used here protected hair

cells from any of our selected ototoxins at any

Fig. 1 Screening a cell death inhibitor library for compounds that

modulate ototoxin-induced hair cell death in the zebrafish lateral line.

a Screen results for hair cells treated with inhibitor and neomycin.

Hair cell survival is represented as fold-change relative to neomycin

only, such that zerofold (the red line) denotes the degree of damage

caused by neomycin treatment without an inhibitor present. Inhibitors

that protected hair cells from neomycin toxicity are visible as bars

extending above the red line. Inhibitor identities are given in Table 1.

b Heat map of all screen data. Ototoxins are represented in rows,

inhibitors in columns. Each box denotes a single ototoxin/inhibitor

combination. Black boxes indicate no protection (no change relative

to ototoxin only), red boxes are inhibitors that protected hair cells

from an ototoxin. Gray boxes denote inhibitor/ototoxin combinations

that were toxic to the fish. c Venn diagram describing the number of

inhibitor ‘‘hits’’ that protected hair cells from damage due to each

ototoxin. Some inhibitors protected hair cells from damage due to

multiple ototoxins, as indicated in the overlapping regions. The

numbers represent confirmed hits that were verified in triplicate.

N = 7–12 animals per treatment, data in (a) are presented as

mean ? 1 SD (Color figure online)
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concentration. On the other hand, cycloheximide alone

([1 lM) was sufficient to cause hair cell loss (Fig. 6a).

Concentrations of 50–350 lM cycloheximide have been

previously shown to inhibit protein translation in larval

zebrafish [62, 63]. These results are consistent with the

interpretation that neither aminoglycoside- nor cisplatin-

induced hair cell death in the zebrafish lateral line is

dependent on new protein synthesis; it appears to be solely

controlled by post-translational cell death mechanisms.

Discussion

The pattern of protection seen in this cell death inhibitor

library screen indicates that there is considerable overlap in

the cell death pathways activated by the aminoglycoside

antibiotics neomycin and gentamicin and the anti-neoplastic

agent cisplatin in the zebrafish lateral line. Some inhibitors

such as leupeptin have multiple intracellular targets [64, 65],

so the precise identification of each cell death molecule is not

known in all cases. However, based on the magnitude of

protection seen with each inhibitor/ototoxin combination,

different pathways appear more important for cell death

responses to different ototoxins. For example, the Omi/

HtrA2 serine protease inhibitor Ucf-101 protected hair cells

from damage due to both aminoglycosides, but robust pro-

tection was only evident in combination with continuous

gentamicin exposure. On the other hand, the proteasome

inhibitor Z-LLF-CHO robustly protected hair cells from

acute neomycin or acute gentamicin toxicity, but limited

protection was seen using continuous gentamicin or cis-

platin. Translation inhibition with cycloheximide and cas-

pase inhibition failed to prevent hair cell death due to any

ototoxin examined, suggesting that lateral line hair cell death

is not dependent on these processes.

Cell death profiles in ototoxicity

These data suggest that a complex network of intercon-

nected pathways contributes to drug-induced hair cell death

in the lateral line system. Prominent among these are

protein degradation pathways. Inhibition of the mitochon-

drial-specific protease Omi/HtrA2 protected hair cells from

gentamicin toxicity, and, to a lesser extent neomycin

damage. Omi/HtrA2 has been linked to caspase-indepen-

dent cell death in culture, likely via its serine protease

activity [66]. Leupeptin, a calpain and cathepsin inhibitor,

significantly protected hair cells from neomycin toxicity

and offered slight but significant protection against cis-

platin damage. Aminoglycoside treatment increases calpain

activity in vivo and leupeptin has been previously shown to

protect hair cells from gentamicin toxicity in mammalian

inner ear explants [67–69], although no protection from

gentamicin was noted in the present in vivo study due to

the toxicity of continuous exposure to leupeptin and gen-

tamicin. Bcl2 proteins and p53 are both reported calpain

substrates. Inhibition of the Bcl2 family member Bax

protected hair cells from neomycin damage, suggesting that

calpains and Bax could potentially interact in neomycin-

treated hair cells. p53 inhibition conferred protection from

both aminoglycosides, and p53 can interact both trans-

criptionally and post-translationally with several Bcl2

proteins, including Bax [70–72]. Bcl2 proteins and p53

have previously been implicated in ototoxicity, although

specific roles for Bax and p53 in aminoglycoside-induced

hair cell death have not been reported [73–75]. The role of

Bcl2 proteins and p53 in aminoglycoside ototoxicity is an

area of ongoing research in our group.

In addition to targeted protein cleavage by specific

proteases, the ubiquitin–proteasome system coordinates

both ongoing protein degradation in healthy cells and

during cell death processes [76]. The proteasome inhibitor

Z-LLF-CHO offered robust protection from neomycin and

gentamicin toxicity, and slight protection from cisplatin

exposure. Proteasome inhibition is generally cytotoxic and

targeted proteasome inhibitors are under consideration as

chemotherapy drugs [76–78]. However, proteasome func-

tion promotes cell death in sympathetic neurons and the

proteasome may activate cell death pathways in some

cancer cells by degrading pro-survival Bcl2 family

Fig. 2 100 lM GTTR is readily taken up by a control hair cells, while b 10 lM FUT-175 attenuates GTTR uptake. c 5 mM 3-MA does not

block GTTR uptake. Scale bar in A is 5 lm and applies to all panels (Color figure online)
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members, suggesting that proteasome inhibition may pro-

mote cell survival in certain contexts [79–81].

Reactive oxygen species (ROS) production is correlated

with aminoglycoside and cisplatin ototoxicity and antiox-

idant therapies reduce hair cell death and the associated

hearing loss in animal models [82–86]. In the present

study, D-methionine offered slight but significant protection

from gentamicin or cisplatin damage but not from neo-

mycin toxicity. Ton and Parng [87] also noted a protective

effect of D-methionine on cisplatin-treated zebrafish hair

cells, as well as protection offered by other antioxidants.

Despite these findings, it is unclear whether ROS genera-

tion provides the main avenue for ototoxicity, is indicative

of cell signaling due to altered metabolism, or is a

Fig. 3 The proteasome inhibitor Z-LLF-CHO protects hair cells from

ototoxin exposure. a Z-LLF-CHO provides dose-dependent protection

from 200 lM acute neomycin (1-way ANOVA, F4,48 = 37.59,

p \ 0.001). 25 lM Z-LLF-CHO offered optimal protection without

any ototoxicity, and there was not a significant difference in

protection between 25 and 50 lM Z-LLF-CHO. b Direct counts of

parvalbumin-labeled hair cells confirm that Z-LLF-CHO treatment

protects hair cells from gentamicin toxicity (t test, p \ 0.001). Fish

were treated with 100 lM continuous gentamicin with or without

25 lM Z-LLF-CHO. Images in b show examples of labeled hair cells,

scale bar = 5 lm and applies to both panels. c–f 25 lM Z-LLF-CHO

robustly protects hair cells from c acute neomycin, d acute gentami-

cin, e continuous gentamicin, and f continuous cisplatin. Statistics for

the dose–response analyses shown in (c–f) are given in Table 2.

Significance values for individual comparisons in Bonferroni-cor-

rected posthoc tests are indicated on the figures, where ***p \ 0.001.

Data are presented as mean ± 1 SD (Color figure online)
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side-effect of mitochondrial or other organelle damage

[88–90]. It is also unclear why D-methionine was not pro-

tective against neomycin damage. Most aminoglycoside

antioxidant studies have employed gentamicin as the

damaging agent of choice, although a few studies report

that neomycin can also cause ROS formation [91–95]. The

full effect of antioxidant therapy as a treatment for neo-

mycin toxicity is therefore unknown, and our results sug-

gest that D-methionine is not sufficient to protect zebrafish

lateral line hair cells from neomycin. Other antioxidants

such as lipoic acid or salicylate may be more effective [96].

Conversely, neomycin may activate such a large number of

cell death pathways in parallel in the lateral line that

antioxidant treatment alone is insufficient to prevent hair

cell loss. Additional studies are needed to test amongst

these competing hypotheses.

Both the autophagy inhibitor 3-MA and the general

serine protease inhibitor FUT-175 protected hair cells from

all ototoxins surveyed here. Autophagy can promote either

cell survival or cell death depending on the context and

Fig. 4 a D-methionine significantly protects hair cells from contin-

uous gentamicin damage (1-way ANOVA, F4,55 = 7.74, p \ 0.001),

with 5 mM D-met providing optimal protection without overt

toxicity. b 5 mM D-met does not protect hair cells from neomycin

toxicity, while significant protection is offered across much of the

dose–response function for acute c and continuous d gentamicin.

Slight but significant protection is also seen from continuous cisplatin

exposure e. 2-way ANOVA statistics are given in Table 2, signifi-

cance values from Bonferroni-corrected posthoc analysis are indi-

cated on the figure; *p \ 0.05, **p \ 0.01, ***p \ 0.001. Data are

presented as mean ± 1 SD (Color figure online)
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autophagic pathways intersect with classical mitochondrial

cell death machinery [97–99]. Pro-survival Bcl2 proteins

can inhibit autophagic cell death by associating with

Beclin, an important regulator of autophagy [99, 100].

FUT-175 is of particular interest due to its broad protective

capacity and clinical use as a complement inhibitor,

anti-inflammatory, and anti-coagulant [101–103]. The

intracellular targets of FUT-175 are not well understood

and the mechanism by which this compound protects hair

cells is an area for future investigation. FUT-175 reduced

uptake of fluorescently-tagged gentamicin, suggesting that

protection may result from blocking ototoxin uptake rather

than from intracellular activity. Hair cell entry of amino-

glycosides and cisplatin is dependent on active mechano-

transduction, so FUT-175 may function as a transduction

blocker [55, 104–107]. Alternatively, FUT-175 may pro-

tect hair cells by a combination of extracellular and intra-

cellular mechanisms. One potential FUT-175 target is high

mobility group box 1 (HMGB1) protein, which is associ-

ated with inflammation [108]. HMGB1 can interact with

p53 to regulate both autophagy and cell death, suggesting a

possible connection between FUT-175, 3-MA, p53 and

Bcl2 proteins [109].

How do hair cells die?

Collectively our data are consistent with caspase-indepen-

dent cell death (CICD) via intrinsic mitochondrial path-

way(s). Like apoptosis, CICD is dependent on activation of

pro-cell death Bcl2 family proteins such as Bax and p53

mitochondrial activity [13, 110]. Calpains are reported to

act upstream of Bax activation in CICD and the calpain

inhibitor leupeptin protects hair cells from aminoglycoside-

induced hair cell death [13, 67, 69, present study]. Inhibi-

tion of calpains, Bax, or p53 protected hair cells from

neomycin damage in the present study, suggesting that

neomycin may activate this CICD pathway. In contrast,

gentamicin-induced hair cell death in the zebrafish lateral

line appears to require p53 and the mitochondrial protein

Omi/HtrA2 but not Bax. Collectively, these results impli-

cate intrinsic mitochondrial-associated cell death pathways,

consistent with prior studies [17, 25, 75]. One central

player in many caspase-independent cell death pathways is

apoptosis-inducing factor (AIF), and Bax activity may

promote AIF translocation from the mitochondria to the

nucleus [12, 13, 111]. AIF can also induce Bax-indepen-

dent cell death in cultured neurons, suggesting that mito-

chondrial release of AIF does not absolutely require Bax

[112]. As there is no established pharmacologic inhibitor of

AIF we did not test its function in our current study, but

consider it a prime target of interest for future research.

The possible requirement for caspases in hair cell death

is still unresolved. Previous research suggests that caspase

activation is necessary for aminoglycoside-induced hair

cell death both in vitro in mammalian inner ear cultures

and in vivo in chick [24, 26, 27, 113, 114]. Williams and

Holder showed that Z-VAD reduced hair cell death in the

zebrafish lateral line caused by neomycin treatment [115].

Williams and Holder employed a much lower concentra-

tion of neomycin than was used in the present study

(10 lM, vs. 50–400 lM used here) and they performed

their experiment in low-calcium conditions, which facili-

tates aminoglycoside uptake by hair cells [51, 105, 115].

However, pharmacologic caspase inhibition did not protect

Fig. 5 The general caspase inhibitor Z-VAD does not significantly

protect hair cells from 200 lM acute neomycin (1-way ANOVA,

F5,52 = 0.30, p = 0.91) or 100 lM continuous gentamicin (1-way

ANOVA, F5,56 = 0.20, p = 0.96). Data are presented as mean ± 1

SD (Color figure online)

Fig. 6 The protein synthesis inhibitor cycloheximide does not protect

hair cells from ototoxic damage. Significant hair cell toxicity is

evident following cycloheximide treatment alone (1-way ANOVA,

F3,42 = 104.7, p \ 0.001), and cycloheximide increased hair cell loss

due to cisplatin toxicity (1-way ANOVA, F3,31 = 14.0, p \ 0.001).

Cycloheximide treatment did not influence acute neomycin-induced

hair cell death (1-way ANOVA, F3,40 = 0.40, p = 0.75) nor hair cell

death due to continuous gentamicin exposure (1-way ANOVA,

F3,43 = 1.11, p = 0.35). Asterisks indicate significant pairwise

differences using Bonferroni-corrected posthoc testing (*p \ 0.05,

***p \ 0.001). Data are presented as mean ± SD (Color figure

online)
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hair cells from aminoglycoside damage in the present

study. It is therefore possible that differences in calcium

concentrations or other treatment conditions led to activa-

tion of different cell death pathways. Experimental dis-

crepancies, such as differences in concentrations or dosing

schedules, could similarly account for the variable caspase

dependence or independence reported in other aminogly-

coside-treated vertebrate ears [15, 27, 113]. Consistent with

this hypothesis are reports that caspase inhibition protects

hair cells from a limited dose of neomycin in vitro but that

protection is lost at higher concentrations [69]. Moreover,

some studies report morphological changes consistent with

multiple cell death mechanisms within a single aminogly-

coside-treated epithelium, suggesting activation of classical

apoptotic pathways as well as alternative death pathways

[15, 116, 117]. It is possible that caspase-dependent cell

death accounts for a small fraction of the total cell death

observed in our study and that more sensitive assessment

methods are necessary to detect this contribution.

It is important to note that the cell death profiling

approach used here has several caveats. Given the nature of

the screening process, false negatives are likely, as we

screened a single inhibitor concentration rather than a

range of doses. Given the large number of initial ‘‘hits’’ in

our screen with neomycin (approximately 1/3 of the

library, Fig. 1a), we think that our inhibitor concentration

choices were within the biologically active range for these

compounds. Compounds reported to be cell-permeable by

the manufacturer were selected whenever possible but it is

feasible that some compounds did not enter hair cells and

therefore could not access the appropriate intracellular

targets. In addition, while the library components were

selected to encompass a range of characterized cell death-

associated molecules, at 61 compounds this library is small

and potentially important death pathway molecules were

not included, such as compounds targeting apoptosis

inducing factor (AIF) or inhibitor of apoptosis (IAP). It is

therefore likely that we missed several molecular steps in

the cell death cascade initiated by each ototoxin. The

inhibitor library was carefully selected to include com-

pounds with well-characterized molecular targets. Still,

off-target interactions are possible, as are physical inter-

actions between inhibitor and ototoxin. Future experiments

will use a combination of pharmacology and genetic

manipulation to more thoroughly validate the pathway

profiles generated in the present study and to target the

‘‘missing links’’ in these profiles. Additionally, as this

screen employed an inhibitor approach, complementary

screens using cell death activation assays would offer

additional validation and target pathways not identified in

our study. Finally, additional experiments are required to

compare the pathways identified in the zebrafish lateral line

with those activated in the mammalian inner ear.
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