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Neurobiology of Disease

Disruption of Intracellular Calcium Regulation Is Integral to
Aminoglycoside-Induced Hair Cell Death
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Intracellular Ca™ is a key regulator of life or death decisions in cultured neurons and sensory cells. The role of Ca*>* in these processes
is less clear in vivo, as the location of these cells often impedes visualization of intracellular Ca*" dynamics. We generated transgenic
zebrafish lines that express the genetically encoded Ca** indicator GCaMP in mechanosensory hair cells of the lateral line. These lines
allow us to monitor intracellular Ca>* dynamics in real time during aminoglycoside-induced hair cell death. After exposure oflive larvae
to aminoglycosides, dying hair cells undergo a transient increase in intracellular Ca*>* that occurs shortly after mitochondrial membrane
potential collapse. Inhibition of intracellular Ca>* elevation through either caged chelators or pharmacological inhibitors of Ca**
effectors mitigates toxic effects of aminoglycoside exposure. Conversely, artificial elevation of intracellular Ca*" by caged Ca*™ release
agents sensitizes hair cells to the toxic effects of aminoglycosides. These data suggest that alterations in intracellular Ca** homeostasis
play an essential role in aminoglycoside-induced hair cell death, and indicate several potential therapeutic targets to stem ototoxicity.

Introduction

Ca** is a ubiquitous, highly versatile second messenger, respon-
sible for a broad range of physiological responses. The diversity of
its roles is exemplified in the seemingly contradictory role of
intracellular Ca* ([Ca®"],) in response to cell stressors, where it
can act as an initiator and effector of both prosurvival and procell
death responses (Orrenius et al., 2003; Harr and Distelhorst,
2010). Ca*" homeostasis in the cytosol is particularly critical,
where Ca®* concentration ([Ca“]cyt) is orders of magnitude
lower than in the extracellular environment (Clapham, 2007).
Elevated [Ca*"] oyt has been observed in vitro in a number of cell
types exposed to apoptogenic agents (Kaiser and Edelman, 1977;
Schanne et al., 1979; Orrenius et al., 2003), implicating [Ca**]
overload in cell death processes.

Despite the breadth of in vitro studies on the topic, little is
known about [Ca*"]; dynamics during cell death in vivo, partic-
ularly as they relate to cytotoxic side effects associated with clin-
ical therapeutics. Hair cells are ideal for studying in vivo [Ca®"];
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dynamics because their function and survival depend on proper
titration of [Ca®™], during detection and transmission of acous-
tic information. Hair cells contain a number of mobile Ca**
buffers and extrusion mechanisms to deal with these demands
(Rabie et al., 1983; Baird et al., 1997; Steyger et al., 1997; Hackney
et al., 2003; Hackney et al., 2005). Disruption of [Ca*"]; balance
impairs hair cell function (LeMasurier and Gillespie, 2005; Voll-
rath et al., 2007; Gillespie and Muller, 2009; Jaalouk and Lam-
merding, 2009), and is implicated in several types of familial
nonsyndromic hearing loss (Cryns et al., 2003; Osman et al.,
2003; Schultz et al., 2005; Amr et al., 2007; Eisen and Ryugo, 2007;
Giacomello et al., 2012). Elevated [Ca*®"]; has been observed in
chick and mouse cochlear explants after exposure to ototoxic
agents (Hirose et al., 1999; Matsui et al., 2004). Support cells also
release waves of extracellular Ca*™ after hair cell damage (Piazza
et al., 2007; Lahne and Gale, 2008; Mann et al., 2009; Lahne and
Gale, 2010), implicating Ca*" signaling in clearing damaged hair
cells. However, the location of inner ear hair cells unfortunately
obscures study of [Ca”*]; dynamics surrounding manipulations
in vivo.

We have taken advantage of the surface location of hair cells in
the zebrafish lateral line system to study [Ca*" |; dynamics during
ototoxin exposure in vivo. Lateral line hair cells, like those in
mammalian inner ear, undergo dose-dependent degeneration
when exposed to aminoglycoside antibiotics (Harris et al., 2003;
Coffin et al., 2010). We generated transgenic zebrafish lines con-
taining the genetically encoded Ca** indicator GCaMP3.0 (Tian
et al., 2009) targeted to hair cells to quantitatively study [Ca**];
dynamics in both surviving and dying hair cells in the same
neuromasts after aminoglycoside exposure. Dying hair cells dem-
onstrate dramatic elevation in [Ca**]; immediately after mito-
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chondrial membrane potential collapse.

A

[Ca**]; remains stable in surviving hair 2.5
cells. In addition, pharmacological mod-

ulation of [Ca’"]; dynamics modifies 2.0
aminoglycoside-induced hair cell death in 15

a manner consistent with the conclusion
that the events leading to elevation of
[Ca*™]; are necessary and sufficient for
aminoglycoside toxicity.
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Vital dyes. To monitor changes in mito-  Figure1. (alibration of cytoGCaMP within lateral line hair cells. A, Change in fluorescence (AF/baseline) of living Tg(myo6b:

chondrial membrane potential, larvae were
incubated in 20 nM tetramethylrhodamine
ethyl ester (TMRE; Invitrogen) in E3 for 20
min and were washed 3X in embryo media
before imaging. For hair cell survival
analyses, 2-[4-(dimethylamino)styryl]-N-
ethylpyridinium iodide (DASPEI) was used
to stain hair cells within neuromasts. Larvae
were incubated in embryo medium contain-
ing 0.005% DASPEI for 15 min. The ze-
brafish were then rinsed 3X in embryo
medium, anesthetized in MESAB (MS-222; ethyl-m-aminobenzoate
methanesulphonate), and analyzed under an epifluorescence dissect-
ing microscope equipped with a DASPEI filter set (excitation 450—
490 nm and barrier 515 nm).

Drug treatment. Neomycin and gentamicin (Sigma-Aldrich) were used
at indicated concentrations in embryo media. For all experiments, larvae
were exposed to aminoglycoside for either 30 or 60 min.

Leupeptin (Calbiochem) and the CaM inhibitors A7 and W7 (Tocris
Bioscience) were dissolved in DMSO. Optimal concentrations were de-
termined by the concentrations found to confer maximal protection in
the presence of 200 M neomycin (see Figs. 10A and 11A). These were as
follows: leupeptin, 500 um; A7, 30 um; W7, 20 um. Controls were treated
identically with 0.5% DMSO.

Hair cell survival. Larvae were pretreated in Ca®" modulators for 60
min, followed by coadministration with the specified concentration of
neomycin for either 30 or 60 min. They were then washed 3X in E3 and

GCaMP3) lateral line hair cells during exposure to 5 . ionomycin and 70 nu, 270 nu, or 610 nw extracellular Ca ™. Baseline is
takenin 1nmCa”* /5 mmEGTAand 5 wumionomycin. Gray lines indicate data from individual cells, and red lines indicate the mean
response; n = 10 cells from one neuromast. B, Mean responses of living Tg(myo6b:GCaMP3) lateral line hair cells during exposure
to 5 umionomycin and varying levels of extracellular Ca® " Baseline is taken in 1nm Ca2* /5 mm EGTA and 5 um ionomycin, and
values are expressed as SDs around baseline (signal-to-noise ratio [SNR]). €, Frequency of SDs around baseline (expressed as
maximum SNR) of the mean cytoGCaMP response after addition of indicated extracellular [Ca®*] and EGTA in the presence of
ionomycin. D, Plot of maximal fluorescence [(AF/baseline),,,,,] and extracellular Ca*". Error bars indicate SEM; n = 7—40 cells
from =3 neuromasts. E, Hair cell survival after 30 min exposure to extracellular Ca 2* Errorbars indicate SEM; n >7 neuromasts.
Dying cells were not used in data acquired in A to D.

allowed to recover for 30 min. Hair cell survival was assayed either with
DASPEI (Harris et al., 2003) or with anti-parvalbumin antisera (Steyger
et al., 1997). For DASPEI assessment, relative fluorescent intensity was
examined for 10 neuromasts per fish and 12 animals per treatment group
(Harris etal., 2003), whereas for anti-parvalbumin labeling the mean hair
cell counts across five neuromasts (104, M2, MI1, O1, and O,) (Raible
and Kruse, 2000) were calculated across at least five larvae. All survival
measures are reported as percentage survival after normalization to con-
trols. Controls for each experiment were treated identically, except for
the compound of interest.

Imaging. A total of 5 dpf larvae were immersed in E3-containing
0.2% MESAB (MS-222; ethyl-m-aminobenzoate methanesulpho-
nate) and stabilized using nylon mesh and a brain slice anchor harp
(Harvard Instruments) as a stabilizing weight so that neuromasts on
immobilized larvae had free access to surrounding media. Baseline
fluorescence readings were taken before aminoglycoside exposure in
30 s intervals for 5 min (a total of 10 readings). For images presented
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Figure 2.

CytoplasmicCa®™" transients precede cell death in lateral line hair cells exposed to aminoglycoside antibiotics. Heat-mapped, time-lapse image of a Tg(myo6b:GCaMP3) anterior lateral

line neuromast exposed to 50 um neomycin. Time (min:sec) after neomycin administration is indicated. Cells that die and are extruded from the neuromast are highlighted with dashed lines. Note
that cytoGCaMP fluorescence in living cells remains largely static, whereas that of dying cells peaks shortly before clearance from the neuromast.

here, baseline readings were shortened to five readings. Aminoglyco-
side was added as a 4X concentrated stock to achieve the indicated
final concentration, and additional fluorescence intensity readings
were acquired in 30 s intervals for 60 min. Images were taken using a
Marianas spinning disk system (Intelligent Imaging Innovations)
equipped with an Evolve 10 MHz EMCCD camera (Photometrics)
and a C-Apochromat 63 X/1.2 NA Water Objective (Carl Zeiss). Cam-
era intensification was set to keep exposure times <50 ms for GCaMP
and 250 ms for TMRE; pixel intensities were <25% of saturation.
Z-sections were taken at 2 uMm intervals through the depth of the
neuromast, typically over a total of 12 um. GCaMP fluorescence was
acquired with a 488 nm laser and 535/30 emission filter. TMRE
fluorescence was acquired with a 561 nm laser and 617/73 emission
filter.

cytoGCaMP calibration. Ca*" responsiveness of GCaMP in cytoG-
CaMP transgenic animals was determined by first exposing larvae to
E3-containing 0 mm Ca®" and 5 mm EGTA in the presence of 5 um
ionomycin (in 0.1% DMSO; Sigma-Aldrich) for 30 min. This led to a
reduction in [Ca®*]; and subsequent stabilization in GCaMP fluores-
cence, confirmed through imaging and analysis (data not shown). The
40, 70, 540, 610, 700, 1.1, and 1.2 um Ca** was then added back (as 0.14,
0.22, 0.9, 1.76, 1.96, 2.2, 3.28, 3.6, 3.8, 3.95, 4.1, and 4.5 mm E3 stocks,
with 5 mmM EGTA), and images were taken as described above for 30 min,
with baseline imaging for 5 frames (2.5 min) before extracellular Ca**
application. Additional neuromast imaging was performed for 1 h with 0
mu Ca’*/EGTA in the presence of 5 um ionomycin to confirm that
Ca?" -free conditions were nontoxic to hair cells. After addition of Ca>¥,
hair cell number at the end of imaging was compared with hair cell
number present during baseline imaging. Dying cells were not used in
cytoGCaMP response analyses.

Fluorescence image analysis. Each neuromast was imaged for a total of
=65 min. Images were collected at 30 s intervals. Unless otherwise indi-
cated, aminoglycoside (neomycin or gentamicin) was added after a base-
line imaging period of 5 min. This yielded 10 baseline images and =120
images with the drug or drugs present.

The 4-D stacks were converted to projection images for analysis of
fluorescence intensity. Average and maximum intensity projections of
the same regions of interest were evaluated, both displaying similar
trends and a good linear fit between maximal fluorescence of projection
types when graphed against one another (% = 0.94; data not shown). We
opted to analyze maximum intensity projections to minimize small (<2
um) variances in Z drift across neuromasts. The cytoplasm of each hair
cell contained ~160 pixels within each Z plane, minimizing concerns of
possible undersampling with this projection method.

Each individual hair cell was categorized as living or dying based on its
survival or clearance from the neuromast during the 60 min aminogly-
coside exposure. Previous studies indicate that hair cell loss resulting
from neomycin exposure in the concentration range used here is com-
plete by this time (Owens et al., 2007). cytoGCaMP and TMRE fluores-

cence intensity were calculated relative to the mean baseline intensity of
each individual hair cell before aminoglycoside exposure. For each treat-
ment condition, at least three experiments were performed on different
days. Unless otherwise noted, fluorescence intensity of no more than
three cells per neuromast and two neuromasts per larvae from the 104,
M2, MI1, O1, or O2 neuromasts were used in the analyses. Dying cells
were randomly chosen independent of their position, starting intensity,
or time of clearance.

Typically, there was <50 pixel (at 0.207 wm/pixel under our imag-
ing conditions) XY drift and <2 um Z drift of image field in raw
time-lapse movies. Images with =2 um Z drift were discarded. Image
auto-alignment was performed with SlideBook software (Intelligent
Imaging Innovations). After alignment, there was typically <5 pixel
XY drift. ROIs outlining the cell of interest were drawn by hand,
enabling us to correct for individual cell movement when necessary.
In some cases, a sudden increase in pixel intensity confused the align-
ment algorithm, resulting in XY jitter. In these instances, ROIs were
redrawn frame-by-frame to encompass the same cell throughout the
interval of analysis.

Photolysis of caged diazo2 and EGTA. Embryos were injected at the one
cell stage with either ~1 nl of 25 mm NP-EGTA (dissolved in 100 mm
KCI, 40 mm HEPES, pH 7.2) or ~1 nl of 25 mm diazo-2 (dissolved in 100
mM KCl, 10 mm EGTA, 10 mm MOPS, pH 7.2) as previously described
(Leung et al., 2009). At 5 dpf, compounds were activated via photolysis.
For hair cell counts, larvae were exposed to UV light from a transillumi-
nator for 30 s, where they were then allowed to rest for 5 min and subse-
quently exposed to the indicated concentration of neomycin for 60 min.
To measure the effectiveness of uncaging, caged compounds were coin-
jected with cytoGCaMP transgenesis constructs. Larvae were mounted
for imaging, and baseline fluorescence readings were taken as described
above, after which they were exposed to a 1-3 ms pulse from a 405 nm
photoactivation laser. Although not directly comparable to our more
global method of uncaging via transilluminator, we were nonetheless
able to confirm the activity of our caged compounds in this manner (see
Fig. 8).

Hair cell position and initial cytoGCaMP intensity. Hair cell positions
were defined as central or peripheral based on the distance of their nuclei
from the center of the clustered hair cell stereocilia bundles. Central hair
cells were defined as containing nuclei within a 5 wm radius from the
center of the stereocilia bundle cluster, and peripheral hair cells contain-
ing nuclei 5-10 wm away. For comparison of initial intensities, mean
baseline intensities of the first 10 frames were compared either between
central and peripheral cells or living and dying cells. For this analysis, all
hair cells within a neuromast were included.

Statistics. Graphpad Prism Software (version 5.0) was used for the
statistical analyses indicated. Error bars indicate either SEM or SD, as
indicated.
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Results

Elevated [Ca®*],,, occurs during aminoglycoside-induced
hair cell death

Previous studies of [Ca®"]; regulation in hair cells in response to
aminoglycoside exposure have used inner ear sensory epithelium
explants. These studies were limited to cross-sectional analyses
(Hirose et al., 1999; Matsui et al., 2004). To determine whether
aminoglycoside-induced hair cell death triggers elevated [Ca*"];
in zebrafish hair cells in vivo, we generated a transgenic zebrafish
line driving GCaMP3.0 under the control of the hair cell-specific
myosin 6b (myo6b) promoter [ Tg(myo6b:GCaMP3), hereafter re-
ferred to as cytoGCaMP] to monitor changes in [Ca®*].,, after
aminoglycoside exposure.

We initially attempted to translate the in vitro biophysical
characterization of GCaMP3 (Tian et al., 2009; Akerboom et al.,
2012) into a meaningful physiological context within hair cells.
We first depleted free Ca** within hair cells by exposing trans-
genic cytoGCaMP larvae to embryo medium containing 0 mm
Ca*" and 5 mm EGTA in the presence of 5 M ionomycin. Under
these conditions, cytoGCaMP fluorescence dropped significantly
below baseline levels and reached a steady state within 30 min
after exposure (data not shown). We then added extracellular
Ca’™" at increasing concentrations to determine the minimum
changes in [Ca**] that cytoGCaMP was capable of detecting un-
der our imaging conditions (Fig. 1). Representative and mean
changes in fluorescence after addition of 70 nm, 270 nm, and
610nM Ca** are shown in Figure 1A. cytoGCaMP of most hair
cells within a neuromast responded quickly to addition of
[Ca*"] >40 nm, although the strength and timing of the initial
response depended on [Ca®"] added. In all cases, fluorescence
increased and plateaued, reaching maximal fluorescence
[(AF/background),,,,] within 3 min after Ca’™" addition. Av-
erage changes in fluorescence over time after 1-270 nm Ca>*
addition, represented as the ratio to SD of control data, are
illustrated in Figure 1B, C. These measurements show the ap-
proximate threshold of detectable response to exogenous
Ca’": 40 nm Ca’™ elicited a slight cytoGCaMP response 2-3
SDs above baseline, whereas 70 nm Ca** elicited a more sub-
stantial response of 4—8 SDs above baseline (Fig. 1B, C). Over-
all, maximal cytoGCaMP fluorescence responded to 40 nM to
2.1 um Ca®" in a dose-dependent manner (r = 0.93, p <
0.001; Fig. 1D). At 540 nm Ca’>™, slightly above the 400 nm K,
of GCaMP3 (Akerboom et al., 2012), we detected maximal
fluorescence of 0.5-fold above baseline levels. At 1.2 um Ca>™,
above the saturation point of purified GCaMP3 in vitro (Tian
et al., 2009), we detected maximal fluorescence of 0.8-fold
above baseline levels (Fig. 1D). Between 1.2 and 2.1 um Ca**,
we observed the sharpest rise in maximal fluorescence to 3.3-
fold above baseline levels. Maximal fluorescence of fivefold
above baseline did not increase at concentrations >2.5 uM
Ca’", indicating saturation of the sensor. Together, these data
indicate that we are capable of detecting [Ca>"] oyt fluctuations
as low as 70 nM with cytoGCaMP and that the maximal fluo-
rescent GCaMP response of 6 is not achieved until saturation
occurs at >2.1 uM extracellular Ca*™.

Exposure to 0 mm Ca>" in the presence of ionomycin was not
toxic to hair cells over the time assayed. Addition of [Ca*"] >70
nM induced hair cell death in ~25% of hair cells within a neuro-
mast over the course of imaging (Fig. 1E). Dying cells were not
used in the evaluation of cytoGCaMP responsiveness. However,
these observations begin to implicate increased [Ca”]Cyt and
altered [Ca®"], homeostasis in hair cell death.

cyt
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Figure 3.  Cytoplasmic Ca®™ dynamics in lateral line hair cells after aminoglycoside expo-
sure.A, B, E, F, Transformed (AF/baseline) fluorescence intensity data of individual dying (A, E)
or living (B, F) Tg(myo6b:G(aMP3) hair cells exposed to 50 um neomycin (4, B) or 50 um
gentamicin (E, F). Three cells each from three neuromasts are depicted; traces are color-coded
toillustrate neuromast of origin. Dying cells were chosen to highlight variability in the timing of
celldeath. €, 6, Mean intensity data of living (green) or dying (red) Tg(myo6b:GCaMP3) hair cells
exposed to 50 wmneomycin (€) or 50 pm gentamicin (G) aligned to the time point at which they
are cleared from the neuromast. Because living cells are not cleared, they are aligned to the end
of imaging (i.e., the last 60 min). D, H, Plot of the time at which half-maximal [(AF/
baseline), ,is.maxl T9(My06b:GCaMP3) intensity ratios or cell clearance occur in response to in-
creasing neomycin (D) or gentamicin (H) concentrations. p value indicates significance of the
correlation coefficient. In all grouped data, error bars indicate SEM; n = 15 from =5 neuro-
masts and experimental runs.

To evaluate [Ca”]Cyt within individual hair cells of a mixed
population of living and dying cells uniformly exposed to amino-
glycoside, we administered 50 uMm neomycin, a concentration
that induces hair cell death in 20—40% of the lateral line hair cells
within a neuromast (Harris et al., 2003). Figure 2 shows a repre-
sentative example over the period where three hair cells that will
die and be extruded show a marked increase in [Ca”]cyt We
found that all dying hair cells exposed to neomycin or gentamicin
exhibited sharp peaks in cytoGCaMP fluorescence shortly before
neuromast clearance. Typical fluorescence measurements of nine
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neomycin () or 50 M gentamicin (B) exposure. ¢, Cumulative cytoGCaMP fluorescence (expressed as cumulative AF/baseline) of
aminoglycoside resistant (gray) or susceptible (black) cells. Error bars indicate SEM; n = 18 and 20 neomycin-treated resistant and
susceptible cells, respectively, from =6 neuromasts, and 15 each of gentamicin-treated resistant or susceptible cells from 5
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Figure5. Initial cytoplasmic Ca® ™ levels are not indicative of cell position within a neuromast or aminoglycoside susceptibility.
A, Percentage of dying hair cells within a neuromast exposed to 50 um neomycin. Central hair cells were defined as containing
nuclei withina 5 wm radius from the center of the stereocilia bundle cluster, and peripheral hair cells containing nuclei 5-10 wm
away. Error bars indicate SEM; n = 7 neuromasts. B, Mean (inner bar) and range (outer bars) of mean baseline intensity of all
centrally and peripherally located hair cells of 5 neuromasts. ¢, Mean (inner bar) and range (outer bars) of mean baseline intensity
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3C,G) aligned in this way resembled traces
from individual cells, suggesting that
changes in [Ca’"]., are stereotyped
among dying hair cells. Moreover, cyto-
GCaMP behaviors in hair cells exposed to
either neomycin or gentamicin are mark-
edly similar. The initial cytoGCaMP fluo-
rescence increase in dying hair cells
exposed to either aminoglycoside begins
~8 min before cell clearance. The half-
maximal change in cytoGCaMP fluores-
cence [(AF/background),  irma] OcCcurs
~4 min before cell clearance. Increasing
aminoglycoside concentration decreases
the latency at which half-maximal change
occurs after exposure but has little effect
on the behavior of the cytoplasmic peak or
its timing relative to cell clearance (Fig.
3D,H). This observation indicates that
aminoglycoside concentration directly af-
fects the timing of large-scale [Ca*"]; dys-
regulation observed within dying cells.
That the peak occurs before clearance and
independent of aminoglycoside concen-
tration suggests that such dysregulation
may be instrumental in the cell death
process.

Early [Ca®"],, is not predictive of
aminoglycoside susceptibility

The reasons for incomplete aminoglycoside
toxicity are poorly understood and perplex-
ing because all hair cells within a neuromast

of all dying and living hair cells of 5 neuromasts exposed to 50 um neomycin.

dying hair cells from three neuromasts are shown in Figure 3A, E.
Note that sharp peaks in cytoGCaMP fluorescence 2- to 4-fold
above baseline are seen just before clearance. In contrast, the
typical behaviors of nine living cells from three neuromasts are
shown in Figure 3B, F; as illustrated here, cytoGCaMP fluores-
cence typically fluctuated *=0.2-fold within hair cells that did not
die. Neither dying nor living cells from within the same neuro-
mast appeared to undergo coordinated [Ca**]; changes during
our imaging period.

To determine whether we could detect a response to amino-
glycoside exposure in surviving hair cells, we computed the fluo-
rescent intensity mean and SD during the 5 min baseline period
for each of 15 surviving hair cells that were exposed to 50 um
neomycin and 10 control hair cells exposed to embryo medium
alone. For each hair cell, we then counted the number of times
fluorescence increased >2 SD above baseline during the ensuing
60 min. We observed no significant differences in the number of
peaks oscillating > 2 SDs around baseline compared with hair
cells not exposed to aminoglycoside (23.5 = 4.3 for controls vs
29.9 * 5.4 for living cells, mean + SEM).

As illustrated in Figure 3A, E, the death and extrusion of indi-
vidual hair cells in a neuromast happen quickly and are not syn-
chronized with other overt events. Aligning fluorescence
intensity data to the time point at which hair cells were cleared
from the neuromast allowed grouped comparisons of [Ca”]cyt
dynamics of dying hair cells within and across neuromasts ex-
posed to either neomycin or gentamicin. Grouped data (Fig.

are presumably exposed to nearly identical

aminoglycoside concentrations. We ana-

lyzed grouped data aligned at the onset of
imaging to determine whether aminoglycosides initiate early
[CaH]CYt responses that influence cell death or survival (Fig. 4). We
observed no significant difference in cytoGCaMP response between
cells that would eventually die and their living counterparts after
exposure to either 50 uM neomycin (Fig. 4A) or 50 uM gentamicin
(Fig. 4B). No differences were observed when cumulative AF/base-
line ratios were compared (Fig. 4C).

We next examined whether hair cell location or initial
[Ca®"],,, had any bearing on aminoglycoside susceptibility.
We divided hair cells within a neuromast into central or pe-
ripheral categories based on the distance of hair cell nuclei
from center of the stereocilia bundles. No significant relation-
ship between toxicity and hair cell location could be discerned
after exposure to 50 uM neomycin (Fig. 5A). Range of baseline
cytoGCaMP intensities between central and peripheral loca-
tion overlapped when all hair cells within a neuromast were
compared (Fig. 5B). Moreover, we were unable to detect a
difference in baseline cytoGCaMP intensity between dying
hair cells hair cells in neuromasts exposed to 50 uM neomycin
(Fig. 5C). We conclude that neither cytoGCaMP fluorescence
before or after initial aminoglycoside addition nor hair cell
position is predictive of whether a cell lives or dies.

[Ca®*] oy increases during hair cell death independent of
aminoglycoside concentration

We next sought to determine how [Ca** ], varies with the degree
of aminoglycoside exposure (Fig. 6). We first compared changes
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Figure 6.  Dose-independent response of cytoplasmic Ca®" within dying lateral line hair

cells to aminoglycoside exposure. A, Maximal intensity ratios of Tg(myo6b:G(aMP3) compared
between living and dying cells exposed to increasing concentrations of neomycin and gentami-
cin. Corresponding signal-to-noise ratios (SNR) are indicated on the right axis. Data are mean ==
SEM indicated for each group. Cells expressing cpGFP die after exposure to 50 M neomycin.
Note that there is little variability in [Ca*]; response in hair cells that live (or in cpGFP-
expressing cells that die) regardless of condition, whereas the variability of the GCaMP3.0 re-
sponse is much greater, although the level of the response does not depend on neomycin
concentration. ***p < 0.0001 (one-way ANOVA, Dunnett post-test). B, Linear regression anal-
ysis of maximal intensity ratios in response to increasing neomycin concentrations. Error bars
indicate SEM; n = 15 from =5 experimental runs.

in cytoGCaMP fluorescence between hair cells from the same
neuromasts that were destined to live or die from exposure to
intermediate concentrations of either neomycin or gentamicin.
Maximum fluorescence of living cells exposed to either neomycin
or gentamicin was similar and not significantly different from
controls (Fig. 6A). As expected, dying cells exposed to either 50
uM neomycin or 50 uM gentamicin exhibited significant eleva-
tions in fluorescence intensity compared with living counterparts
or to controls (all p < 0.0001; Fig. 6A). Maximal cytoGCaMP
intensities among dying cells were on average approximately
threefold above baseline, regardless of the concentration of neo-
mycin or gentamicin exposure (Fig. 6A). Maximal cytoGCaMP
values of dying hair cells did not show dose-dependent behavior
with respect to increasing concentrations of neomycin (r =
—0.08; Fig. 6B). This is unlikely to be the result of saturation of
the Ca®" sensor as we were able to achieve AF/baseline as high as
8 in other contexts (data not shown).
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To address whether the microenvironment of dying cells
might influence GCaMP fluorescence regardless of Ca*", and
therefore complicate the interpretation of the GCaMP signal, we
engineered fluorophores that lack the Ca** binding domain of
GCaMP (cpGFP). Fluorescence of these targeted cpGFP con-
structs did not change in dying cells exposed to 50 um neomycin
(Fig. 6A), demonstrating that cellular events that occur during
death (e.g., acidification, proteolysis, membrane permeabiliza-
tion) do not affect Ca>* measurements by altering GCaMP flu-
orescence in a non-Ca”*-dependent manner.

Elevated [Ca®™]; occurs after mitochondrial

potential collapse

Aminoglycosides are capable of direct interaction with mito-
chondrial translation machinery (Wirmer and Westhof, 2006;
Hobbie et al., 2008). In addition, changes in mitochondrial pro-
ton gradient and morphology accompany aminoglycoside expo-
sure in zebrafish and mammalian hair cells (Dehne et al., 2002;
Owens et al., 2007; Tiede et al., 2009; Jensen-Smith et al., 2012),
supporting the hypothesis that such interactions may underlie
aminoglycoside toxicity in sensitive cells. To visualize changes in
Ca** compared with dynamic behaviors of mitochondria after
aminoglycoside exposure, we monitored cytoGCaMP fluores-
cence in hair cells colabeled with the potentiometric mitochon-
drial dye, TMRE. Increased TMRE loading is indicative of
increased mitochondrial membrane potential, whereas its redis-
tribution into cytoplasm indicates opening of mitochondrial
transition pore and loss of membrane potential (Pinton et al.,
2008; Giorgi et al., 2012).

We measured TMRE and [Ca** ], responses in hair cells after
exposure to 400 uM neomycin, a concentration that results in
death of all hair cells in neuromasts (Harris et al., 2003). After
neomycin exposure, mitochondrial TMRE labeling remained
stable for a brief time. Approximately 15 min before cell clear-
ance, labeling increased ~0.5-fold to onefold above baseline.
TMRE label then redistributed to the cytoplasm before cell clear-
ance, and cytoGCaMP peaks were consistently observed after TMRE
redistribution (Fig. 7A, B). When group data were aligned to TMRE
redistribution [(AF/background), iz min]> half-maximal cyto-
GCaMP levels were reached ~1 min later (Fig. 7C,D). Cell clear-
ance occurred ~5 min after TMRE redistribution (Fig. 7C,D).
These data demonstrate that the increase in [Ca**]_, directly
follows mitochondrial potential collapse.

cyt

Modulation of [Ca’*]; alters aminoglycoside toxicity

We next sought to determine how directly modulating [Ca®"];
affects aminoglycoside-induced toxicity. To do so without dis-
rupting hair cell development or function, we injected caged
modulators of [Ca®"];. These modulators remain inactive until
exposed to UV light. Caged compounds were injected at the one
cell stage; at 5 dpf, we confirmed that they modulate [Ca*™];
within hair cells. Caged EGTA preloaded with Ca** was used as a
Ca?" release agent (Ellis-Davies et al., 1996; Ellis-Davies and
Barsotti, 2006) to artificially elevate [Ca**]; within hair cells.
Conversely, the caged Ca®" chelator diazo2 (Zucker, 1994) was
used to artificially depress [Ca®"]; within hair cells. Ultraviolet
exposure of hair cells containing caged EGTA caused cyto-
GCaMP fluorescence to increase ~30% above baseline within 1
min (Fig. 8A, B). Introduction of inactive caged compound or
exposure to UV light alone had no effect on cytoGCaMP fluores-
cence (Fig. 8A) or susceptibility to neomycin (Fig. 94). Activa-
tion of caged EGTA had two important results, also shown in
Figure 9A. First, as expected, elevation of [Ca**], even in the
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Figure 7.

Timing of cytoplasmic Ca** peaks relative to loss of mitochondrial membrane potential. A, Heat-mapped, time-lapse image of Tg(myo6b:GCaMP3) anterior lateral line neuromasts

colabeled with the potentiometric vital dye TMRE and exposed to 400 um neomycin. Time indicates seconds relative to TMRE, .., 0f the outlined cell, corresponding with TMRE redistribution from
mitochondria into cytoplasm. Note that TMRE redistribution occurs before elevated cytoGCaMP fluorescence. B, Transformed (AF/baseline) fluorescence intensity data of individual dying Tg(myo6b:
GCaMP3) hair cells (solid lines) labeled with TMRE (dashed lines) and exposed to 400 v neomycin. Cells were chosen to highlight variability in both TMRE response and cell death. Note the reduction
in TMRE fluorescence, corresponding with cytoplasmic TMRE redistribution, before cytoGCaMP peaks. €, Mean fluorescent intensity data of Tg(myo6b:GCaMP3) in dying anterior lateral line hair cells
colabeled with TMRE and exposed to 400 pm neomycin. Data are aligned to TMRE, ,j¢_,ins COrresponding with TMRE redistribution from mitochondria into cytoplasm. D, Comparison of the timing

at which cytoGCaMP reaches half-maximal intensity relative to TMRE

half-min

absence of neomycin, was moderately toxic to hair cells, resulting
in the death of ~25% of the hair cells in each neuromast. Second,
activation of caged EGTA before neomycin treatment resulted in
~30% increased hair cell death across all neomycin concentra-
tions assayed (p < 0.0001; two-way ANOVA). These data indi-
cate that relatively moderate increases in [Ca*"]; can be toxic to
hair cells and that elevated [Ca*" ], sensitizes hair cells to the toxic
effects of aminoglycoside exposure.

In contrast, artificially depressing [Ca*"]; protected hair cells
from damage by aminoglycosides. Exposure of hair cells with
caged diazo2 to UV light decreased cytoGCaMP fluorescence 0.3-
fold below baseline within 1 min after UV exposure (Fig. 8B),
confirming that activation chelates Ca*". Activation of caged
diazo2 before neomycin exposure reduced neomycin-induced
hair cell death across all concentrations assayed (Fig. 9B, C). The
most robust protection occurred at neomycin concentrations
>100 uM (p < 0.0001; two-way ANOVA). Neither UV light
alone nor caged (inactive) compound had an effect on cytoG-
CaMP fluorescence (Fig. 8B) or hair cell number, either alone or
in the presence of neomycin (Fig. 9B,C). Although we cannot
directly compare cytoGCaMP fluorescence after uncaging with

as they occur within the same cells. Error bars indicate SEM; n = 10 from >3 experimental runs.

hair cell survival, they confirm that these caged modulators are
capable of altering [Ca*"]; after UV exposure.

Ca’™ proteins promote aminoglycoside-induced hair

cell death

Initiation of Ca”"-dependent responses frequently relies upon
the activation of Ca*" effectors within a cell. Of these, calmodu-
lin is perhaps the most common and well characterized. Because
it can mount both pro-survival and pro-cell death responses dur-
ing Ca**-induced cytotoxicity (Clapham, 2007), we sought to
determine whether calmodulin inhibition influenced aminogly-
coside toxicity in a manner consistent with that seen by diazo2
activation. Coadministration of neomycin with A-7 or W-7, spe-
cific pharmacological inhibitors of calmodulin (Hidaka and
Tanaka, 1983; Itoh and Hidaka, 1984), reduced hair cell death
across all concentrations of neomycin exposure (p < 0.0001;
two-way ANOVA; Fig. 10B). A-7 and W-7 afforded the most
protection against hair cell death at neomycin concentrations
>100 uM, where hair cell numbers were ~60% greater than in
the presence of neomycin alone. Together, these data suggest that
calmodulin does not activate pro-cell survival responses in re-
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Figure 8.  Effectiveness of caged Ca2* modulators at altering intracellular Ca** within

lateral line hair cells. 4, AF/baseline of Tg(myo6b:GCaMP3) 1 min after exposure to UV light.
Where indicated, larvae were injected with caged diazo2 or caged EGTA at the one cell stage,
and then uncaged at 5 dpf. ***p < 0.0001 between uncaged cells and controls (one-way
ANOVA, Bonferroni post-tests). UV/diazo-2 cells are also as expected significantly different from
UV/EGTA cells (p << 0.00071). Error bars indicate SEM. B, Heat-mapped, time-lapse images of
the lateral line neuromast of a Tg(myo6b:GCaMP3) larvae injected with caged EGTA at one cell
stage and exposed at 5 dpf to UV light. cytoGCaMP fluorescence increases after UV exposure
(uncaging). Time indicates seconds elapsed in relation to UV exposure.

sponse to elevated [Ca**]; instead, they are consistent with a
pro-cell death role of [Ca*"]; during aminoglycoside-induced
hair cell death.

In its role as an orchestrator of cell death, Ca?™" also activates
a number of proteins involved in cellular degradation. These in-
clude calpains, a family of cysteine proteases that are nonlyso-
somal in origin (Goll et al., 2003). The rise in [Ca®"]; observed
during hair cell death raised the possibility that aminoglycoside
exposure promotes the activity of Ca®"-activated proteases. To
evaluate this possibility, we examined aminoglycoside toxicity in
the presence of leupeptin, a broad-spectrum cysteine protease
inhibitor (Wang, 1990). Coadministration of neomycin with leu-
peptin abrogated hair cell death by ~40% across multiple con-
centrations of neomycin (p < 0.0001; two-way ANOVA; Fig. 11),
resembling the protection observed in mammalian hair cells in
vitro with gentamicin treatment (Ding et al., 2002; Shimizu et al.,
2003; Momiyama et al., 2006). Together, these results suggest that
Ca*™ effectors act downstream of the [Ca>™]; elevation we ob-
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served in dying hair cells exposed to aminoglycosides to promote
cell death progression.

Discussion

Ca’"regulation is a key process in the life and death of a cell.
Mechanisms involved in the control of [Ca*" ], homeostasis have
been extensively studied, but longstanding challenges persist,
particularly in validating in vitro studies in in vivo systems. Al-
though transient changes in [Ca®"],,, have been observed when
in vitro cochlear hair cell preparations are exposed to aminogly-
cosides (Hirose et al., 1999; Matsui et al., 2004 ), technical limita-
tions have prevented the precise establishment of the roles for
[Ca**];in hair cell death. We generated transgenic zebrafish lines
expressing hair cell-specific Ca®* indicators that enable us to
visualize [Ca®"]., dynamics during aminoglycoside-induced
hair cell death in vivo. The highly reliable nature of the dose—
response relationship between aminoglycoside exposure and de-
gree of cell death in larval zebrafish neuromasts has allowed direct
comparisons of [Ca*" |; homeostasis in cells destined to live and
those destined to die within the same neuromast. Cytoplasmic
GCaMP fluorescence in these conditions increases approxi-
mately threefold above baseline levels in dying cells. The activa-
tion of caged Ca®" modulators within hair cells alters both
[Ca”]Cyt and susceptibility to aminoglycoside toxicity, and we
conclude that [Ca®"]; is important for both the initiation and
progression of hair cell death induced by aminoglycosides.

Although our evidence appears to establish a role of [Ca*" |;in
the death process, [Ca®"],, involvement in hair cell survival is
far less clear. Low-level [Ca“]Cyt oscillations, such as the ones
described here, are capable of encoding survival responses in
other contexts (Rong and Distelhorst, 2008) and raise the possi-
bility that a similar mechanism is instrumental here. Under the
appropriate conditions, [Ca®"]_, oscillations can initiate tran-
scriptional activation of stress response genes (Miyawaki et al.,
1996; Oukka et al., 1998; Randriamampita et al., 2003; White et
al., 2005; Zhong et al., 2006), inhibition of membrane channels
(Umemiya etal., 2001; Reidl et al., 2006), and inhibit Ca** move-
ment within the cell (Politi et al., 2006; Matsu-ura et al., 2006). All
of these responses seem a plausible strategy for mounting ami-
noglycoside resistance within hair cells. However, the oscilla-
tions we describe here were not distinguishable in frequency
or magnitude from those in untreated hair cells, which pre-
vents us from attributing protective effects to low-level
[Ca”]Cyt fluctuations. Although we were capable of detecting
[Ca®"]., as low as 70 nM, more sensitive genetically encoded
Ca’" indicators may be necessary to delve further into this
issue. It is possible that future members of the GCaMP family
will prove useful in this regard.

Analysis of GCaMP fluorescence in hair cells treated with
ionomycin demonstrates that cytoGCaMP in vivo is responsive in
range from ~100 nM to 2 uM extracellular [Ca*™] after initial
ionomycin exposure in 1 nM extracellular Ca®*/EGTA. Sensitiv-
ity ranges presented here differ from those observed with purified
GCaMP3, with detection limits at ~160 nM and saturation at 1
M free Ca>™ (Tian et al., 2009). Similarly, maximal fluorescence
changes of cytoGCaMP were half those of purified GCaMP3
(Tian et al., 2009). Such differences may be attributable to those
inherent in an intact biological organism. Multiple factors are
likely to alter the intracellular exposure of cytoGCaMP within
hair cells to our calibration media, including the gelatinous cup-
ula on the apical surface of lateral line hair cells that is thought to
regulate external [Ca*"] (Russell and Sellick, 1976). For these
reasons, we are cautious about estimating the absolute levels of
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[Ca**]; changes after ionomycin treatment as we do not know
the actual extracellular [Ca®"] to which hair cells are exposed.
Similarly, we are not able to accurately estimate the absolute lev-
els of [Ca®"]; changes after aminoglycoside exposure.

Contribution of extracellular Ca** during hair cell death
Ca”"-mediated signal transduction is a common means of initiating
cellular processes in response to stimuli. This has been observed in

many systems, where transient extracellular and intercellular Ca**
waves spread quickly over a short distance to surrounding cells
(Hofer and Lefkimmiatis, 2007; Decrock et al., 2011). Both mechan-
ical and drug-induced stimuli elicit intercellular Ca** waves from
cochlear support cells in vitro and activate stress pathways in a man-
ner dependent upon stimulus amplitude and [Ca*"]; handling ca-
pabilities of the insulted cell (Piazza et al., 2007; Lahne and Gale,
2008; Mann et al., 2009; Lahne and Gale, 2010).
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Figure 11.  Pharmacological inhibitors of Ca2*-activated serine proteases protect lateral
line hair cells from aminoglycoside-induced hair cell death. A, Optimal doses of leupeptin de-
termined by pretreatment of inhibitor followed by coadministration with 200 um neomycin. B,
Lateral line hair cell survival after pretreatment of leupeptin (500 ) and subsequent coad-
ministration with increasing doses of neomycin. Hair cell survival was assessed with DASPEI
scoring (Harris et al., 2003). Error bars indicate SD; n = 10 neuromasts from each of 12 treated
larvae. ***p < 0.0001 (two-way ANOVA, Tukey post-test).

Although there exists no direct evidence of extracellular Ca**
release by support cells, one intriguing possibility to explain the
Ca’" spikes we observe during hair cell death is that they origi-
nate within support cells and enter hair cells upon channel acti-
vation. Voltage-gated Ca>" channels are primarily responsible
for Ca®" influx across the plasma membrane. Because of their
slow inactivation kinetics and [Ca**]; regulation during neuro-
nal excitotoxicity, L-type (Cavl) voltage-gated Ca** channels are
often regarded as the best candidates for regulating Ca** influx
during aminoglycoside-induced hair cell death (Lipscombe et al.,
2004; Ali et al., 2011). Inhibition of Ca*" influx/efflux machinery
brings with it an additional level of complexity. L-type Ca**
channel blockers, such as nifedipine and verapamil, also inhibit
mechanotransduction (Jorgensen, 1983; Baumann and Roth,
1986; Jorgensen and Kroese, 1995) and therefore aminoglyco-
side uptake and toxicity (Alharazneh et al., 2011), making it dif-
ficult to efficiently separate Ca®" entry in this manner from
aminoglycoside-induced hair cell death.

In the kidney, another aminoglycoside-sensitive tissue, phar-
macological inhibitors of L-type Ca®" channels have yielded
mixed results in protection against aminoglycoside exposure.
Modest protection against nephrotoxicity is afforded in the pres-
ence of some blockers, whereas others potentiate toxicity (Li et
al., 2009). The protective effects of these drugs have largely been
attributed to antioxidant properties unrelated to their role in
Ca** regulation (Berkels et al., 2005; Al et al., 2011). The con-
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tribution of extracellular Ca** to cell death after aminoglycoside
exposure remains unclear.

Disruption of [Ca**] ,, homeostasis during hair cell death
There is ample evidence linking disruptions in [Ca?*], homeo-
stasis with hair cell death. For example, the plasma membrane
Ca?" ATPase isoform 2 (PMCA?2) is defective is some cases of
human or murine sensorineural hearing loss (Street et al., 1998;
Penheiter et al., 2001; McCullough and Tempel, 2004; Schultz et
al., 2005; Carafoli, 2011; Giacomello et al., 2011; Mammano,
2011; Giacomello et al., 2012). Extensive hair cell death is ob-
served in mice carrying mutant alleles of PMCA2, which lack the
ability to efficiently extrude Ca*™ from the cytoplasm of hair cells
(Dumont et al., 2001; Penheiter et al., 2001; Spiden et al., 2008;
Bortolozzi et al., 2010). These data are consistent with our obser-
vations that elevated [Ca*"]; alone is sufficient to induce hair cell
death.

Dysregulation of [Ca®"]; homeostasis has been implicated in
cell death in a large number of neural conditions, including neu-
rotrophin withdrawal (Franklin and Johnson, 1992; De Bernardi
et al., 1996; Soler et al., 1998; Perez-Garcia et al., 2004; Perez-
Garcia et al., 2008), excitotoxicity (Bading et al., 1993; Lerea and
McNamara, 1993; Sattler et al., 1998; Szydlowska and Tymianski,
2010), and afferent deprivation during development (Zirpel et
al., 1995, 1998; Zirpel and Rubel, 1996). The occurrence of a
short, high intensity peak of [Ca®"]_, in dying hair cells is also
observed in neurons shortly after mitochondrial potential col-
lapse (Nicholls et al., 1999; Nicholls and Budd, 2000). This sub-
cellular Ca** increase is termed delayed Ca’* deregulation
(Nicholls and Budd, 2000), and such [Ca”]Cyt changes are capa-
ble of activating serine proteases, such as calpain (Moldoveanu et
al., 2002), resulting in the degredation of dying cells. Calpains can
be activated through other means, and some of these, such as
phospholipid binding (Leloup et al., 2010), are also known tar-
gets of aminoglycoside interaction (Orsulakova et al., 1976;
Schacht et al., 1977; Wang et al., 1984a, 1984b; Goodyear et al.,
2008). Elevated [Ca? +]Cyt within dying cells would, however, ar-
gue that delayed Ca** deregulation is at least a partial mechanism
for their activation.

Despite the reduction of aminoglycoside-induced hair cell
toxicity when [Ca® "], is artificially reduced or Ca*™ effectors are
compromised, such protection is incomplete. Although the dis-
ruption of [Ca’ +]Cyt appears to be one causative factor underly-
ing aminoglycoside cytotoxicity, there are undoubtedly other
subcellular events occurring during hair cell death that contrib-
ute to this process. Other events that promote cell death, such as
ROS production, have been observed in inner ear hair cell ex-
plants after aminoglycoside exposure (Conlon and Smith, 1998;
Hirose et al., 1999; Wei et al., 2005). It is tempting to speculate
that ROS and elevated [Ca”]Cyt are combinatorial in nature and
converge upon a common mechanism of cell death progression.
If so, such events would lend in vivo support to the two-hit model
of [Ca**];-induced cell death originally proposed by Hajnoczky
and colleagues (Szalai et al., 1999), whereby elevated [Ca*"];
sensitizes the cell to other damaging events that, when combined,
trigger death.

Ototoxicity is a side effect associated with many therapeutic
agents (Ou et al., 2010; Warchol, 2010; Cianfrone et al., 2011;
Audo and Warchol, 2012; Ou et al., 2012). It will be interesting to
determine whether [Ca*"]; responses to these ototoxic agents are
conserved. Understanding the details of [Ca®"]; regulation and
mobilization may help in the design of drugs that avoid the oto-
toxicity seen in clinical uses of therapeutics.
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