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SUMMARY AND CONCLUSIONS 

I. Fura- imaging was used to measure the effects of glutamate 
on caffeine-sensitive Ca2+ stores in neurons of the avian cochlear 
nucleus, n. magnocellularis (NM). 

2. On average, 100-n&I caffeine stimulated a 250-nM increase 
in intracellular calcium ion concentration { [ Ca2+] i > in Ca2+ -free 
media; 1 -mM glutamate significantly attenuated caffeine-stimu- 
lated Ca2+ responses. 

3. The metabotropic glutamate receptor agonist, ACPD, also 
inhibited the caffeine-stimulated rise in [ Ca2’] i. 

4. Glutamate has an important role in regulating Ca2+ stores in 
NM neurons. Glutamate-deprivation (viz. cochlear removal) re- 
sults in a rise in [ Ca2+] i that may, in part, be the result of release 
from Ca2+ stores. We hypothesize that Ca2+-induced Ca2+ release 
stores (CICRs) may be involved in deprivation-induced cell death. 

INTRODUCTION 

Neurons in the avian cochlear nucleus, n. magnocellularis 
(NM), are tonically stimulated by glutamate released from 
auditory nerve axons. In young chicks, removing or pharma- 
cologically silencing this input triggers a series of intracellu- 
lar events, resulting in the death of 30% of the neurons and 
atrophy of the remaining population (Rubel et al. 1990). 
One of the earliest changes is an elevation in intracellular 
calcium ion concentration ( [ Ca2+ ] i) (Zirpel et al. 1995). 
Increases in [ Ca2’] i contribute to cell death in other systems 
(Choi 1995; Trump and Berezesky 1995), and we hypothe- 
size that the changes in [ Ca2+]i observed in afferent-de- 
prived NM neurons are Ca2’ -linked (Lachica et al. 1996). 

How [ Ca2+] i increases in afferent-deprived NM neurons 
is unknown. Presumably, normal regulatory mechanisms be- 
come compromised without orthodromic activation of mem- 
brane receptors. The role of Ca2+ -induced Ca2+ release 
stores (CICRs) (Endo et al. 1970) is of interest because 
these stores augment increases in [Ca2’]i in a variety of 
other systems (Friel and Tsien 1992; Reber et al. 1993; 
Thayer et al. 1988). It is important, therefore, to determine 
if CICRs exist in NM neurons and to ascertain whether 
glutamate modulates CICRs. 

METHODS 

Tissue preparation 

The methods used in the present study have been described in 
detail (Lachica et al. 1995). Coronal brain stem slices (350 PM) 
containing NM were obtained from H-day-old White Leghorn 
chicken embryos. Slices were incubated in oxygenated artificial 

cerebral spinal fluid (aCSF) containing ~-PM fura-2-AM (Molecu- 
lar Probes, Eugene, OR) at 40°C for 25 min, then rinsed with aCSF 
for 10 min before beginning the experiment. 

Microjluorometry 

The [ Ca2’]i of NM cells was measured by using fluorometric 
videomicroscopy. Fluorescent emissions were acquired at 3-s inter- 
vals, ratiometrically compared, and converted to nM [ Ca2+]i by 
using Universal Imaging Corp. (West Chester, PA) software. 
Changes in [Ca”‘]i are reported as the mean t SE. 

Pharmaceuticals 

aCSF and Ca2+ -free aCSF were freshly made each day. aCSF 
was prepared as described previously (Lachica et al. 1995). The 
Ca2’-free aCSF was composed of 125~mM NaCl, 5-mM KCl, 
1.25-n&I KH2P04, 4.4~mM MgC12 26-mM sodium bicarbonate, 
1 0-mM dextrose and 1 -n&I ethylene glycol-bis (P-aminoethyl 
ether) -N,N,N’,N’-tetraacetic acid (EGTA) . The following drugs 
were delivered in Ca2+ -free aCSF: 100-r&t caffeine; lO+M, lOO- 
PM, and l-n&I glutamate; lo-PM, lOO+M, and l-n&l 2 tram 
1 -amino- 1,3 cyclopentanedicarboxylic acid ( ACPD ) ; 1 -n&I ( -‘> - 
a-methyl-4-carboxyphenylglycine (MCPG) ; lOO+M ryanodine; 
50-PM kainic acid (KA). Drugs were purchased from Research 
Biochemicals, (Natick, MA), except glutamate, which was ac- 
quired from Sigma. In every case, neurons were pharmacologically 
depolarized with KC1 to test cell viability. There is a 30-s delay 
between initiation of stimulus delivery and the time the test cham- 
ber was completely saturated with the test solution. This delay is 
not corrected for in the figures. 

RESULTS 

NM neurons possess CICRs 

To determine if CICRs are present in NM neurons, cells 
were superfused with caffeine, which liberates Ca2+ from 
CICRs in other systems (Konishi and Kurihara 1987; Mek- 
hail-Ishak et al. 1987). Figure 1A plots the A[ Ca2+]i of 
seven NM neurons superfused with 60-mM KC1 in Ca2+- 
free aCSF, lOO-mM caffeine in Ca2+-free aCSF, and 60- 
mM KC1 in normal aCSF ( Ca2+-containing). A A[ Ca2+] i 
was not seen in cells pharmacologically depolarized with 
KC1 in Ca2’ -free media. Superfusion with caffeine (65 neu- 
rons, n = 4 slices) caused a mean A[Ca2+]i of 254 t 23 
nM. This rise in [Ca”‘]i was presumably the result of Ca2+ 
efflux from CICRs, because caffeine was delivered in Ca2+- 
free medium, and because the caffeine-stimulated responses 
were eliminated by ryanodine (Fig. 2 B) , a CICR antagonist 
(Feher and Lipford 1985). Finally, KC1 in aCSF evoked a 
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large rise in [Ca2+]i which was largely the result of Ca2+ 
influx through voltage-gated channels (Lachica et al. 1995). 

Caffeine-stimulated Ca2’ responses differ from those 
evoked by pharmacological depolarization with KC1 (Fig. 
1A). They are much smaller in magnitude than the 
A[ Ca2+] i caused by KCl. With our bath application method, 
caffeine-stimulated increases in [ Ca2+] i develop after a la- 
tency of - 1 to 3 min; whereas, KC1 evoked transients consis- 
tently occur within 30 s. In addition, caffeine-stimulated 
release of Ca2+ from CICRs varies in time and amplitude 
between neurons within a slice (Fig. 1 B). After the Ca2+ 
rise evoked by caffeine, [ Ca2+] i falls to less than basal levels 
(the post-caffeine “undershoot”; Usachev et al. 1993). The 
average post-caffeine [ Ca2’] i was 61 t 6 nM (93 neurons, 
n = 7 slices). This value is significantly different (P < 
0.0001) than basal [ Ca2+] i of the same NM neurons bathed 
in aCSF (91 t 4 nM) or Ca2+-free aCSF (92 t 5 nM). 

Ca2+ from CICRs contributes to the [ Ca2+]i with 
membrane depolarization 

CICRs potentiate voltage-dependent changes in [ Ca2+] i 
(Friel and Tsein 1992; Thayer et al. 1988). To determine 
whether or not this occurs in NM neurons, we superfused 
40 neurons (n = 4 slices) with 100~PM ryanodine between 
sequential KC1 stimuli. Ryanodine significantly reduced 
voltage-dependent A[Ca2+]i from an average of 1222 t 
372 nM to 624 t 235 nM, an average of 49% (P < 0.05). 

Glutamate modulates Ca2+ release from CICRs via an 
mGluR 

Figure 2A shows the effect of glutamate, ACPD, and KA 
on the A[ Ca2+] i attributable to CICRs. Slices were depolar- 
ized with KCl, then perfused with one of these agents for 5 
min in Ca2+ -free media, and then stimulated with caffeine. 
1-mM glutamate (67 neurons, n = 6 slices) significantly 
reduced the mean caffeine response from 254 t 23 nM to 
58 t 18 nM (P < 0.001) (Fig. 2, A, C and D). The sup- 
pressive effect of glutamate on caffeine-stimulated increases 
in [ Ca2+] i was dose-dependent (Fig 20) ; 100~PM gluta- 

FIG. 1. Changes in intracellular cal- 
cium ion concentration ( [Ca2+] i) caused 
by KC1 and caffeine. A: responses of 7 n. 
magnocellularis (NM) neurons to 60-n-M 
KC1 applied in Ca2+ free artificial cerebral 
spinal fluid (aCSF, A), 100~mM caffeine, 
and 60-m.M KC1 in normal aCSF (A). Caf- 
feine stimulates a rise in [ Ca2+]i that is 
smaller in magnitude and decreases to sub- 
resting levels after the Ca2+ spike. B: caf- 
feine-stimulated Ca2+ transients of 7 neu- 
rons in the same slice are asynchronous. 
Ca2+-free aCSF superfusion; - - - , dura- 
tion of caffeine stimulus. 

mate (54 neurons, n = 5 slices) significantly attenuated the 
A[Ca2+]i from CICRs to 149 t 34 nM (P = 0.03). 

The mGluR agonist, ACPD, also inhibited CICR re- 
sponses (Figs. 2A and 3B). The mean A[ Ca”‘] i stimulated 
by caffeine after neurons were exposed to lOO+M ACPD 
(41 neurons, n = 4 slices) was 128 t 64 nM (P < 0.05). 
lO+M and 1-mM ACPD in Ca2+ free aCSF did not cause 
a significant change in Ca2+ release from CICRs. As a con- 
trol, 42 neurons (n = 3 slices) were exposed to 50-PM KA, 
an ionotropic glutamate receptor (iGluR) agonist, in Ca2+ 
free aCSF. The mean increase in [ Ca2+]i to caffeine after 
KA treatment (265 t- 102 nM) was not significantly dif- 
ferent from the response to caffeine alone (P = 0.462) 
(Fig. 2A). 

The suppressive effect of glutamate was reversed by the 
mGluR antagonist, MCPG (46 neurons, n = 4 slices). The 
average A[ Ca2+] i evoked by caffeine after the co-applica- 
tion of 1-mM MCPG and 1-mM glutamate was 181 t 30 
nM (Fig 2B). This response was statistically greater than 
the A[ Ca2+] i seen in caffeine-stimulated neurons exposed 
to l-mM glutamate alone 58 t 18 nM (P < 0.01) . 

In our study, glutamate and KA did not stimulate a rise 
in [Ca2’]i as a result of Ca2+ influx through ionotropic 
receptors because they were delivered in Ca2+-free aCSF. 
This finding is consistent with previous studies that have 
examined the effects of glutamate and its agonists in NM 
neurons ( Kato et al. 1996; Laehica et al. 1995). 

DISCUSSION 

Our interest in studying the regulation of Ca2’ stores in 
NM neurons comes as the result of two observations: I) 
there is rapid cell death and atrophy of NM neurons after 
afferent deprivation in neonatal chicks (Rubel et al. 1990) ; 
and 2) [Ca2+]i increases rapidly in NM neurons deprived 
of afferent signals (Zirpel et al. 1995). Changes in [ Ca2+] i 
are believed to play an important role in cell death in neu- 
ronal and non-neuronal systems (Choi 1995; Orrenius and 
Nicotera 1993; Trump and Berezesky 1995). Therefore, it 
is likely that increases in [ Ca2+] i after afferent deprivation 
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FIG. 2. Glutamate modulates Ca2+-in- 
duced Ca2+ release stores (CICRs). A: 
mean t SE A[ Ca 2+] i produced by 1 OO- 
mM caffeine alone or after 5-min superfu- 
sion of 1 -mM glutamate ( GLU) , lOO+M 
metabotropic glutamate receptor agonist 
(ACPD), or 50qM kainic acid (KA). B: 
mean 4 SE A[ Ca2+ ] i produced by lOO- 
,QM ryanodine (Ryn) and l-n&l a-methyl- 
4-carboxyphenylglycine (MCPG) (co-ap- 
plied with 1-mM glutamate) on A[ Ca”’ ] i 
attributable to CICRs. Normal response to 
100~mM caffeine is shown for comparison. 
C: 1 -n&l glutamate suppresses caffeine- 
stimulated A[ Ca2+]i. - - - , Ca2+-free 
aCSF super-fusion; l l l , caffeine stimulus; 
-, glutamate superfusion. D: dose-re- 
sponse effect of glutamate on caffeine- 
stimulated Ca 2+ responses; * represents 
caffeine response in the absence of gluta- 
mate. All drugs were delivered in Ca2+ - 
free aCSF. 

contribute to events resulting in NM neuron atrophy and likely that the rise in [ Ca2+]i is the result of Ca2’ release 
death. from Ca2+ 

[Ca2+] i may increase via influx through plasma mem- 
storing organelles, rather than Ca2+ influx 

through ligand operated channels in the cell membrane. This 
brane channels, efflux from intracellular stores or from inad- 
equate Ca2+ buffering. Because deafferented NM neurons 

idea stimulated our interest in identifying the pharmacologi- 
cal profile of Ca2’ stores and their regulation in NM neurons. 

are no longer electrically active (Born et al. 199 1) , it seems In this study, we demonstrated that CICRs are present in 

B 
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FIG 3. ACPD modulates CICR re- 
sponses. A : CICR responses in control neu- 
rons. B : lOO+M ACPD suppresses CICR 
responses. - - -, Caffeine superfusion; 
-, ACPD superfusion. 
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