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Abstract

Inner ear sensory hair cell death is observed in the majority of hearing and balance disorders, affecting the health of more
than 600 million people worldwide. While normal aging is the single greatest contributor, exposure to environmental toxins
and therapeutic drugs such as aminoglycoside antibiotics and antineoplastic agents are significant contributors. Genetic
variation contributes markedly to differences in normal disease progression during aging and in susceptibility to ototoxic
agents. Using the lateral line system of larval zebrafish, we developed an in vivo drug toxicity interaction screen to uncover
genetic modulators of antibiotic-induced hair cell death and to identify compounds that confer protection. We have
identified 5 mutations that modulate aminoglycoside susceptibility. Further characterization and identification of one
protective mutant, sentinel (snl), revealed a novel conserved vertebrate gene. A similar screen identified a new class of drug-
like small molecules, benzothiophene carboxamides, that prevent aminoglycoside-induced hair cell death in zebrafish and
in mammals. Testing for interaction with the sentinel mutation suggests that the gene and compounds may operate in
different pathways. The combination of chemical screening with traditional genetic approaches is a new strategy for
identifying drugs and drug targets to attenuate hearing and balance disorders.
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Introduction

Hearing loss and vestibular dysfunction are among the most

common disorders requiring medical attention. Globally, over a

third of older adults suffer from these conditions. Studies of both

laboratory animals and humans reveal tremendous variation in

hearing loss due to ageing as well as exogenous challenges such as

ototoxic drugs and noise exposure, and show that this variability can

be at least partially understood using genetic methods [1–5]. Rapid

progress has been made using genetics to understand the molecular

basis for congenital deafness [6], but adult-onset hearing loss is

poorly understood despite its overwhelming prevalence. There are

several examples where genes underlying familial adult-onset

hearing loss have been identified [7–9], but these are rare diseases

that account for a very small fraction of the enormous variation of

acquired or age-related hearing and balance problems. Understand-

ing how hair cell death is genetically modified by intrinsic and

extrinsic challenges should lead to identification of new therapeutic

targets for prevention of inner ear damage.

The initial cellular basis for most hearing loss and a significant

proportion of balance problems is injury and loss of the

mechanosensory hair cells that reside in the inner ear and transduce

mechanical signals into electrical signals that are sent to the brain via

the VIIIth cranial nerve. Treatments with aminoglycoside antibiotics

or the cancer chemotherapeutics, cisplatin and carboplatin, often

cause irreversible hearing loss [10–12] by killing hair cells. As with

other forms of hearing loss, the effects of aminoglycoside exposure in

humans and other outbred mammalian populations are widely

variable and influenced by genetic factors [13]. For example,

patients with mutations in mitochondrial genes, including mito-

chondrial 12S ribosomal RNA, show greatly enhanced sensitivity to

aminoglycoside exposure [14]. However, these mutations also have

variable penetrance, and are influenced by nuclear genes [15].

Mutations in mitochondrial rRNA are consistent with a model that

aminoglycoside ototoxicity is the result of effects on mitochondrial

translation similar to the antibiotic effects of prokaryotic translation

inhibition [16].

Pharmacological approaches toward the prevention of hearing

loss due to therapeutic drugs or chronic exposure to noise have

centered primarily on antioxidants and cJUN kinase (JunK)

inhibitors. While several studies support the idea that antioxidants

or JunK inhibitors can limit aminoglycoside toxicity and cisplatin

ototoxicity, the literature is complex and often the protection is dose

dependent [11,17]. Target based drug discovery is limited, however,
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by our understanding of the cellular pathways contributing to the

inner ear pathology, and by the lack of methods to do broad

screening of potential candidates.

The lateral line system of aquatic vertebrates is composed of

mechanosensory organs on the surface of the head and body, and

is used to detect variations in water pressure. Lateral line hair cells

and their underlying support cells are organized into rosette-like

clusters called neuromasts [18]. Zebrafish lateral line hair cells

show structural, functional and molecular similarities to the

mammalian inner ear hair cells (reviewed in [19,20]). Like

mammalian inner ear hair cells, the lateral line hair cells of

zebrafish are killed by exposure to chemicals including aminogly-

cosides and cisplatin in a dose-dependent manner [21–25]. The

accessibility of lateral line hair cells to visualization and

manipulation, along with the cellular and molecular properties

shared with inner ear hair cells, makes this system a good model

for investigating genetic and pharmacological modulation of hair

cell sensitivity to potentially ototoxic agents [26].

In this report, we describe a new approach for the identification

of genes and pharmacological agents that modulate the sensitivity

of hair cells to ototoxic agents such as aminoglycosides. We use this

approach to identify 2 new pharmacological agents and 5 new

mutations that protect against aminoglycoside-induced hair cell

death. We describe a screen for small drug-like molecules that

protect zebrafish lateral line hair cells and validate effectiveness of

these newly discovered protective compounds in the mammalian

inner ear. We report the initial results of an in vivo genetic screen

for modulators of hair cell susceptibility to ototoxic drug exposure,

including the identification of one such gene. These mutations

provide an entry point for determining which molecular pathways

can be modulated to alter drug response in the hair cells. Variation

in these molecules may underlie differential susceptibility to drugs

clinically and suggest likely points of regulation for prophylactic

treatments in the future.

Results

Hair cells of the lateral line neuromasts in larval zebrafish form

an easily identifiable rosette-like cluster that can be labeled with a

variety of vital dyes and assessed in vivo (Figure 1A). The hair cells

rapidly fragment and die upon treatment with 200 mM neomycin

(Figure 1B). We have developed methods to systematically identify

modulatory pathways altering hair cell response to aminoglycoside

antibiotic exposure by taking advantage of in vivo labeling of

lateral line hair cells with vital dyes. Figure 1C exemplifies this,

showing that lateral line hair cells have a robust, highly

reproducible response to different doses of aminoglycoside

antibiotics [21,23]. We reasoned that by examining animals

treated with concentrations of neomycin at low or high ends of the

dose-response curve, we should be able to identify modifiers that

alter susceptibility to neomycin-induced hair cell death (Figure 1C).

Small Molecule Screening for Protecting Compounds
To screen for small molecule modifiers, we pretreated 5 day

post-fertilization (dpf) larvae with a chemically diverse library of

10,960 compounds before exposing them to 200 mM neomycin.

Screening was initially carried out by labeling hair cells of 5 dpf

larvae with a combination of a nuclear dye and a cytoplasmic dye

(Yo-Pro-1 and FM 1-43, respectively), then pretreating larvae in

96-well tissue culture plates for 1 hour to a cocktail of five

compounds and then exposing them to 200 mM neomycin. When

protection was observed, the 5 potential contributors were

Figure 1. Screening for modifiers of aminoglycoside toxicity.
(A) Neuromast from a control animal pretreated with 0.5% DMSO and
stained with rapidly with FM 1-43FX (red) and the nuclear label Yo-Pro-1
(green). (B) Negative control pretreated with 0.05% DMSO for 1 hour
followed by 200 mM neomycin treatment for 30 min. Hair cells are
stained with FM 1-43FX (red) and Yo-Pro-1 (green). Hair cell loss, nuclear
condensation and cytoplasmic shrinking are observed. (C) Dose-
response function showing decreased hair cell labeling with DASPEI, a
mitochondrial potentiometric dye, as a function of increasing neomycin
concentration for wildtype zebrafish (N = 25–37 total fish per group,
from triplicate experiments). Bars are SEM. Screens for increased or
decreased susceptibility to hair cell loss were performed by treatment
with either low, 25 mM, or high, 200 mM, neomycin doses, respectively,
as highlighted by the orange arrows. (D) Neuromast pretreated with
PROTO-2, a compound identified to provide protection against 200 mM
neomycin exposure. (E,F) Show the structure for the identified
compounds, PROTO-1 (E) and PROTO-2 (F), respectively.
doi:10.1371/journal.pgen.1000020.g001

Author Summary

Loss of sensory hair cells in the inner ear is observed in the
majority of hearing and balance disorders, affecting the
health of more than 600 million people worldwide.
Exposure to environmental toxins and certain pharmaceu-
tical drugs such as aminoglycoside antibiotics and some
cancer chemotherapy agents account for many of these
hearing and balance problems. Variation in the genetic
makeup between individuals plays a major role in
establishing differences in susceptibility to environmental
agents that damage the inner ear. Using zebrafish larvae,
we developed a screen to uncover genes leading to
differences in antibiotic-induced death of hair cells and to
identify compounds that protect hair cells from damage.
The combination of chemical screening with traditional
genetic approaches offers a new strategy for identifying
drugs and drug targets to attenuate hearing and balance
disorders.

Modulators of Mechanosensory Hair Cell Death
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evaluated singly to determine the active compound. Two

compounds exhibited reliable and robust protection of hair cells

from neomycin. An example of this protection is shown in

Figure 1D, compared to treatment with neomycin alone

(Figure 1B). Both compounds were benzothiophene carboxamides

(Figure 1E and 1F), suggesting specific selection from the diverse

library. We have named these compounds PROTO-1 and

PROTO-2. We next compared the neomycin dose-response

relationship in larvae pretreated with the compounds and controls

(Figure 2). Figure 2A and 2B show that at a concentration of

10 mM both compounds show significant protection of hair cells

over a broad range of neomycin concentrations, from 25 mM to

400 mM (p,0.0001 by two-factorial ANOVA). We also deter-

mined the dose-dependent effects of PROTO-1 and PROTO-2 to

a fixed (200 mM) level of neomycin (Figure 2C and 2D).

Pretreatment with 1 and 10 mM PROTO-1 resulted in significant

protection of hair cells exposed to 200 mM neomycin compared to

neomycin alone (p,0.0001, unpaired t-test). There was no

significant difference in the protection provided by 1 and 10 mM

PROTO-1 (p.0.10). Although exposure to 50 mM and 100 mM

PROTO-1 alone did not alter viability, in combination with

200 mM neomycin these doses were lethal to larvae. Pretreatment

with PROTO-2 provided significant protection of hair cells at all

doses (p,0.0001, unpaired t-tests) with no dose-dependent

difference (p.0.20). PROTO-2 was not lethal at any of the tested

doses with or without neomycin.

Aminoglycosides are used clinically, despite their known

ototoxicity, because of their broad spectrum of antibacterial

actions. Compounds that could be used to limit their ototoxicity

must not limit the intended therapeutic functions. We therefore

had the University of Washington Clinical Microbiology Labora-

tory test the bacteriostatic and bactericidal activity of neomycin in

the presence of PROTO-1 and PROTO-2. The minimum

inhibitory concentration (3.25 mM) and minimum bactericidal

concentration (6.5 mM) for E. coli ATCC 25922 was unchanged

with or without 10 mM of either compound. This indicates that at

Figure 2. Ranges of protection for PROTO-1 and PROTO-2. Hair cells were vitally stained with FM1-43 and Yo-Pro-1, treated with PROTO-1 or
PROT0-2 for 1 hour at various concentrations of compounds, then exposed to neomycin for 30 minutes, allowed 1 hr recovery in normal media.
Graphs show mean hair cell counts for the SO1, SO2, OC1, and O1 neuromasts (+SEM) as percent of control (mock-treated, no neomycin exposure).
Missing error bars indicate that was less than symbol size. (A,B) Neomycin dose-response curve showing effects of 10 mM PROTO-1 ((A), closed
squares) and PROTO-2 ((B), closed squares) pretreatment in comparison to controls (without PROTO-1 or –2). (C,D) Profile of each compound at
increasing doses without aminoglycoside and after 200 mM neomycin exposure. N = 10–20 fish per group.
doi:10.1371/journal.pgen.1000020.g002
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least under standard in vitro assay conditions benzothiophene

carboxamides do not inhibit aminoglycoside antibacterial activity.

Screening for Genetic Modifiers
To identify genetic modifiers of aminoglycoside-induced hair cell

death, a standard F3 screening paradigm was used. Males were

mutagenized with ethylnitrosourea following standard protocols

[27], then crossed to wildtype females to produce F1 progeny.

Mutagenesis was assessed by specific locus testing against unpig-

mented mitfa mutant animals [28], with a rate of about 1:300. F2

families were produced from F1 individuals, and F3 larvae produced

by pairwise intercrosses within each family. F3 larvae were treated at

5 dpf with either high (200 mM) or low (25 mM) concentrations of

neomycin for 30 minutes to identify mutants that exhibit protection

or heightened susceptibility of hair cells, respectively. Hair cells were

then assessed with the vital dye DASPEI, which is differentially taken

up by neuromast hair cells [29,30]. Figure 3 shows untreated and

neomycin-exposed wildtype animals, and two mutants with altered

susceptibility. In contrast to the wildtype subject (Figure 3B),

persephone mutants (Figure 3C) show robust staining indistinguishable

from an untreated animal (Figure 3A). Animals homozygous for the

sentinel mutation also retain robust staining; in addition they display a

linked morphological phenotype, a variable sinusoidal morphology

that begins to be apparent by 3 dpf (Figure 3D). While persephone

mutants are homozygous viable, the sentinel mutation is lethal at

approximately 10–12 dpf.

To date, we have identified 5 mutations that confer resistance and

behave as simple recessive alleles. Complementation testing

demonstrated that they affect different genes. We identified 5

additional mutations that confer resistance with more complex

genetics, showing semi-dominant effects and/or interactions with

modifying background loci. All mutations were transmitted to the

next generation. We were surprised that all loci identified to date

confer resistance, suggesting that affected genes normally act to

promote cell death. The 5 simple recessive loci can be separated into

two classes, mutations that have no apparent secondary phenotype

(persephone, trainman, bane) and those with additional phenotypes

(sentinel, merovingian). Animals homozygous for the merovingian

mutation show reduced ear size and small otoliths (not shown).

We have found that mutations differ dramatically in the relative

resistance they confer against neomycin exposure (Figure 4). In

wildtype animals, 200 mM neomycin exposure reliably reduces

DASPEI staining to less than 10% of control untreated animals

(Figure 4A). To examine the variability in phenotypes, we crossed

heterozygous parents to produce offspring in typical Mendelian

ratios (75% wildtype: 25% mutant progeny). Distributions show

bimodality with robust DASPEI staining in 1/4 of the neomycin-

treated progeny from crosses of heterozygous individuals for all 5

simple recessive mutations, as expected (Figure 4B–4F). Linked

phenotypes cosegregate with resistance as shown for snl mutations

(Figure 4D). Examples of mutations that confer near total resistance

are shown in Figure 4B and 4C, and examples that confer only

partial effects are shown in Figure 4D–4F. Partial protection may

indicate that affected genes alter only one of several mechanisms

involved in neomycin-induced cell death or that identified alleles

may be hypomorphic and display only partial loss-of-function.

The linked morphological features associated with sentinel

mutants have allowed us to more fully characterize mutant

phenotypes, since homozygous affected animals could be prospec-

tively identified before directly testing the response to neomycin.

We next tested whether sentinel mutants show altered response over

the range of the aminoglycoside dose-response function (Figure 5).

Animals were sorted by body phenotype as either wildtype or

sinusoidal, and then exposed to different doses of neomycin.

Animals homozygous for the sentinel mutation show robust, but

partial, protection at all doses tested. Animals with wildtype body

shape, including heterozygous mutants, are no different than the

background *AB strain, demonstrating there are no effects of gene

dosage. We also determined whether sentinel mutants show

protection at later stages of development, since there are age-

dependent differences in the dose-response to neomycin [22].

There is no change in the relative levels of protection by sentinel at

8–9 dpf (Figure S1), demonstrating that the mutation does not

specifically confer protection by a general developmental delay.

Molecular Identification of sentinel Mutation
To determine the genetic location of the sentinel gene, we

isolated 694 snl mutants and 234 snl+ siblings based on the

neomycin response phenotype of their hair cells. We detected

cosegregation of the sentinel phenotype with markers [31] on

chromosome 23 of zebrafish. Analysis of recombinant chromo-

somes revealed a 41 kb linked genomic region containing one

candidate gene (Figure 6A) predicted to encode a 1541 aa protein

with 38 exons. The predicted exon and intron boundaries are

shown in Figure 6B. The boundaries of the linked region are

positioned within the coding region (within introns 8 and 33) of

this novel gene. Sequence of the coding regions and exon-intron

junctions in sentinel cDNAs revealed a stop codon in exon 14

(Figure 6B, red asterisk, and Figure 6D) in place of a tryptophan.

This alteration is predicted to truncate the protein at amino acid

491 with loss of 68% of the protein and is likely to lead to loss of

function. The sentinel transcript is expressed ubiquitously in

wildtype zebrafish (Figure S2). We observed attenuated expression

in sentinel mutants, perhaps indicating that nonsense-mediated

decay of the transcript occurs (Figure S2C).

Figure 3. Mutations that confer protection against neomycin
exposure. Larvae are labeled with DASPEI after 30 min exposure to
200 mM neomycin and 1 hr recovery in normal media. (A) Wildtype
animal shows retention of hair cells in neuromasts after mock-
treatment. (B) Wildtype animal shows loss of hair cells after
aminoglycoside treatment. (C) persephone mutant animal shows robust
protection of neuromasts against neomycin treatment. No morpholog-
ical defects are observed. (D) sentinel mutant animal shows protection,
along with sinusoidal body curvature. Bar = 200 mm.
doi:10.1371/journal.pgen.1000020.g003
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Figure 4. Hair cell retention after neomycin treatment in wildtype and mutant animals. Histograms show the fraction of animals with
different levels of DASPEI staining. For each animal, 10 specific neuromasts are evaluated and assigned a score of 2 (normal staining), 1 (reduced
staining), or 0 (no staining) for a maximum total score of 0–20. For each group, the distribution of animals given each DASPEI staining score is
displayed as a percentage of the total number of animals to illustrate the phenotypic variation within the group; 40–80 animals were tested for each
group. (A) Distribution of wildtype fish after mock treatment without neomycin (green bars) or after exposure to 200 mM neomycin (blue bars). (B–F)
Distribution of progeny from crosses between heterozygous mutant carriers treated with 200 mM neomycin, showing both wildtype and mutant
phenotypes. (B) persephone. (C) merovingian. (D) sentinel. Animals with sinusoidal bodies (later shown to be homozygous mutants) are represented by
orange bars, and animals with wildtype body shape (wildtype or heterozygous siblings) are represented by blue bars. (E) bane. (F) trainman.
doi:10.1371/journal.pgen.1000020.g004
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Alignment of the zebrafish genomic region reveals homology to

human (KIAA1345, 56% identity, 73% similarity) and mouse

(RIKEN 5730509K17, 59% identity, 76% similarity) as well as to

other vertebrates (Figure S3). The intron-exon structure between

the zebrafish and mammalian orthologs is conserved with a few

minor exceptions. We note looser homology to loci in Drosophila

melanogaster, Aedes aegpytii, Caenorhabditis elegans, Trichomo-

nas vaginalis and Paramecium tetraurelia genomes, suggesting that

this is an ancient gene. The phylogenetic relationship between the

predicted proteins is shown in Figure 6C. The Drosophila ortholog

is annotated as two loci (CG18432 and CG18631) corresponding

to the predicted N-terminal and C-terminal end of the zebrafish

protein, indicating that they may encode a single transcript or be

derived from a single ancestral locus. The predicted Sentinel

protein contains a putative C2 domain [32] in the C-terminus

(Figure 6E). The N-terminal third of the Sentinel protein is highly

charged with two glutamine-rich acidic clusters flanking a lysine-

rich basic cluster (Figure 6E). There is a notable absence of other

recognizable domains.

Genetic/Chemical Epistasis
To begin elucidating possible molecular pathways regulating

susceptibility, we tested for an interaction between sentinel mutants

and PROTO-1. Both PROTO-1 treatment and snl loss of function

result in substantial but incomplete protection against neomycin

exposure. We tested whether exposure of PROTO-1 conferred

any additional protection to snl mutants when exposed to 100 mM

or 200 mM neomycin. Figure 7 provides these results for siblings

(left) and sentinel mutants (right), comparing hair cell counts in

control animals and fish exposed to neomycin with or without

pretreatment for 1 hr in 10 mM PROTO-1. At both doses of

neomycin, treatment with PROTO-1 provides a small amount of

additional protection, over and above that provided by the sentinel

mutation. Analyses by one-way ANOVA followed by pair-wise

comparisons (Fisher’s PLSD test) revealed that at both doses the

additional protection provided by PROTO-1 was statistically

reliable (p,0.01), but that even the combined effect did not

provide complete protection (p,0.01).

Determining Cellular Steps in Toxicity Altered by
Modifiers

Attenuation of drug-induced hair cell death could result from a

number of causes that are not directly linked to the activation of

cell death or cell survival pathways. Some examples include the

well-established link between mechanotransduction-dependent

activity and aminoglycoside uptake and susceptibility [33–35],

the relative resistance seen in young animals [23], and abnormal-

ities of aminoglycoside uptake.

Rapid uptake of the vital dye FM 1–43 is commonly used as an

indicator of sensory hair cell mechanotransduction [36–38]. We

compared the uptake of FM1-43FX in control (wild-type) fish, in

sentinel mutants and in wild-type fish treated with PROTO-1 and

PROTO-2 (Figure 8; Figure S4). Rapid entry of FM1-43FX into

the hair cells of sentinel mutants (Figure 8B and 8D) is comparable

to that of wildtype hair cells (Figure 8A and 8C). Similarly,

PROTO-1 and PROTO-2 did not alter FM1-43FX uptake

(Figure S4A, Figure S4B, Figure S4C), indicating that mechan-

otransduction-associated events appear intact with these modula-

tors. In addition, examination of the neuromasts in sentinel mutants

by light microscopy (compare Figure 8A and 8C to Figure 8B and

8D) reveals that hair cells are organized in the stereotypical rosette

pattern found in wildtype animals. Together these results suggest

that these modifiers do not act by blocking hair cell transduction or

slowing development.

To test whether these modifiers alter drug entry, we evaluated

whether fluorescently-tagged aminoglycosides [39] enter hair cells

in the presence of modifiers. Both the aminoglycosides gentamicin

(Figure 8E and 8F) and neomycin (not shown) tagged with Texas

Red fluorophore enter sentinel hair cells with a rapid, 45-second,

exposure. Similarly, PROTO-1 and PROTO-2 did not alter

labeled gentamicin uptake (Figure S4D, Figure S4E, and Figure

S4F). While these results do not rule out subtle changes in

aminoglycoside uptake, they do show that there are no dramatic

differences that might account for the broad range of protection

seen. Hence, it appears most likely that modifiers affect steps in

toxicity that occur after aminoglycoside entry.

Although the initial mechanism of hair cell death induced by

aminoglycosides and cisplatin may be quite different, the later

general cell death events are thought to be similar. To test whether

these modulators alter cisplatin toxicity, we tested the effects of a

range of cisplatin doses on sentinel mutants and on animals treated

with PROTO-1. The response of sinusoidal sentinel mutants to

cisplatin mirrored wildtype strains and siblings with wildtype body

shape (Figure 9A). Thus, sentinel mutants are not protected against

cisplatin-induced hair cell toxicity. Similarly, PROTO-1 did not

protect against cisplatin-induced cell death (Figure 9B). The

observation that sentinel mutants and fish exposed to PROTO-1

are relatively resistant to aminoglycoside-induced cell death but

remain normally sensitive to cisplatin-induced cell death suggests

that general cell death mechanisms are intact. We hypothesize that

the sentinel mutation and PROTO-1 may abrogate aminoglycoside

targets or early events in aminoglycoside-induced cell death that

are not shared by cisplatin-induced cell death.

Modifier Test in Adult Mammalian Utricles
Finally, we sought to determine whether modifiers we

discovered in the zebrafish lateral line hair cell assay also confer

protection to hair cells in the murine inner ear. While mutants for

Figure 5. Dose dependent protection of sentinel mutants to
neomycin. Hair cell loss as determined by DASPEI staining of progeny
of sentinel heterozygous parents with wildtype body shape (blue) or
sinusoidal body shape (red) are compared to wildtype *AB fish (green).
Error bars are 61 S.D. Mutants show robust, but partial, protection
following 30 min neomycin exposure and one hour recovery.
doi:10.1371/journal.pgen.1000020.g005
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Figure 6. The sentinel mutation creates a stop codon in a novel vertebrate gene. (A) A schematic of chromosome 23 region illustrates fraction of
recombinant chromosomes among informative meioses for genetic markers defining the sentinel linked region (orange box). (B) Colored bars represent
the genomic structures of the snl orthologs from zebrafish (green), mouse (red), and human (blue). Black boxes denote exons, with dotted lines
connecting orthologous regions between species, and colored bars represent introns. Divergent exons encoding 59 UTR are shown as colored boxes.
Three coding exons present only in the mammalian orthologs are noted with black arrows. Red rings highlight exons absent in human ortholog. The black
arrowhead indicates the seven amino acids within exon 8 of zebrafish absent in the mammalian orthologs. A red asterisk marks the stop codon present in
the sentinel allele within exon 14. (C), Phylogenetic tree of predicted proteins from sentinel orthologs. (D) cDNA sequence of wildtype zebrafish encoding
tryptophan at amino acid 491 and of sentinel mutant bearing a stop codon. (E) Schematic of the predicted Sentinel protein including a C2 domain (yellow
box) and a highly charged region (green box) with glutamine-rich basic clusters (blue boxes) flanking a lysine-rich acidic cluster (pink).
doi:10.1371/journal.pgen.1000020.g006
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the mouse ortholog of sentinel are not yet available, a validated in

vitro mammalian preparation of the mature mouse utricle has

been used extensively to test protection of chemical modifiers [40-

42]. We used the mouse utricle preparation to compare hair cell

loss due to neomycin exposure between control utricles and

utricles pretreated with PROTO-1 or PROTO-2. Figure 10 shows

the neomycin dose-response relationship of striolar and extra-

striolar hair cells in control utricles and utricles pretreated with

PROTO-2. A two-factorial ANOVA (compound pretreatment6
neomycin) showed significant protection using PROTO-2

(p,0.0001) in both the striolar and extrastriolar hair cell

populations. PROTO-1 protection against neomycin was tested

at 4 mM neomycin and showed significant striolar (p,0.0001),

but not significant extrastriolar, protection. These results suggest

that modifiers that can be rapidly identified and validated in the

zebrafish lateral line system can have application in understanding

ototoxicity in the mammalian inner ear.

Discussion

Mechanosensory hair cells in the inner ear are susceptible to a

wide variety of environmental insults. However, the large amount of

variation in hearing and balance problems resulting from environ-

mental or age-related challenges among normal individuals is neither

well documented nor well understood. There is even large variance

among individuals with the A1555G mutation in the mitochondrial

12S rRNA that increases susceptibility to neomycin toxicity [15]. We

hypothesize that alterations in unidentified components of the

network of cellular pathways involved in cell death and cell survival

would confer resistance to ototoxic compounds. The absence of

secondary phenotypes in some of our mutants supports the idea that

variation affecting drug response can exist without other outward

manifestation. Identification of the human orthologs of these genes

may provide candidates involved in the variability underlying

human hearing and balance disorders.

Our data suggest that hair cell death after neomycin treatment can

involve multiple signaling pathways. Several mutations confer only

partial protection against neomycin exposure. Although in some

cases this might result from mutations that cause only partial loss of

function, in the case of sentinel we suspect that the mutation is a

functional null. The mutation introduces a stop codon early in the

coding sequence and before the highly conserved regions. In

addition, mRNA levels are reduced in sentinel mutants, suggesting

nonsense-mediated decay. Together these observations suggest that

gene function is completely lost, while protection against hair cell loss

is only partial. Similarly, only partial protection is observed after

treatment with maximal doses of PROTO-1 or PROTO-2. The

idea that there are several possible responses to aminoglycosides is

consistent with our previous observed variations in ultrastructural

changes after aminoglycoside exposure [43].

The sentinel mutation also genetically distinguishes between

aminoglycoside-induced and cisplatin-induced death; mutant

animals are resistant to neomycin but still sensitive to cisplatin.

Both aminoglycoside and cisplatin exposure have been proposed

to result in oxidative stress [11,44], raising the possibility that

ototoxic compounds share similar mechanisms. If such shared

mechanisms occur, the sentinel gene product must act upstream of

these events. Treatment with PROTO-1 also offered no protection

against cisplatin, suggesting that its cellular target acts specifically

during aminoglycoside toxicity.

Figure 7. Epistasis analysis of sentinel and protective compounds. Neomycin dose-response relationship showing effects of 10 mM PROTO-1
against 100 mM or 200 mM neomycin exposure in wildtype and sentinel larvae. For each group, hair cells were pre-labeled with FM1-43FX. Animals
were pretreated with PROTO-1 for 1 hour (or mock-treated), treated with neomycin and PROTO-1 for 1 hour, euthanized, and fixed. Hair cells of four
neuromasts (left and right) were counted and the average number of hair cells per neuromast was determined. Number of hair cells in control
animals (no PROTO-1, no neomycin) are shown with black bars, animals treated with only 100 mM or 200 mM neomycin are shown by solid colored
bars, and animals treated with PROTO-1 and neomycin are shown by hatched colored bars. Error bars show 1 S.E.M. PROTO-1 and sentinel mutants
show similar protection, and there is a small, statistically significant effect of the combined treatment of the mutation plus PROTO-1.
doi:10.1371/journal.pgen.1000020.g007
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Inactivation of sentinel and treatment with PROTO-1 similarly

alter the response of hair cells to neomycin treatment. Both

modulators offer only partial protection against neomycin, offer no

protection against cisplatin, and do not affect entry of FM1-43 or

labeled aminoglycoside. Together these results suggest they work

in common pathways. To test this idea, we performed epistasis

experiments treating wildtype and mutant animals. While the

effects of sentinel and PROTO-1 are not additive, there is a small

but significant increase in protection when combined, suggesting

that they may be accessing different cellular pathways to promote

cell survival. Understanding similarities and differences among

possible pathways will await the identification of the cellular

targets of PROTO-1.

The identification of the sentinel gene highlights one strength of

forward genetic screening, as it would be difficult or impossible to

choose this gene a priori as a candidate regulator of mechanosen-

sory hair cell death. No functional information is known about any

of the sentinel orthologs. The only functional domain of note, the

C2 domain, has been associated with calcium regulation and

interaction with phospholipid membranes in signaling proteins

such as protein kinase C or membrane trafficking proteins like

Synaptotagmin [32]. However, the function of this domain has

been demonstrated in only a few of the many proteins that contain

it. Intriguingly, the D. melanogaster ortholog CG18631 was

identified in a comparative bioinformatics screen as being

associated with compartmentalized cilia-bearing organisms sug-

gesting it may have a role in regulation of cilia [45]. Other

members of this group include molecules related to intraflagellar

Figure 8. sentinel mutation does not affect transduction-
dependent dye or aminoglycoside uptake. (A–D) Uptake of
FM1-43FX after 45 sec exposure in wildtype (A,C) and sentinel mutants
(B,D). Nuclei are labeled with Yo-Pro-1 (A-D). Confocal images of apical
(A,B) and basal (C,D) optical sections through the hair cells. (E,F)
Gentamicin-conjugated Texas Red uptake in wildtype (E) and sentinel
mutant (F) animals after rapid 45 sec exposure.
doi:10.1371/journal.pgen.1000020.g008

Figure 9. sentinel mutation and PROTO-1 do not protect
against cisplatin. Hair cell survival was quantified using the vital
dye DASPEI, and in each case DASPEI scores were normalized to those
from wildtype, untreated fish. Fish (n$12 fish per treatment group)
were treated in cisplatin for 4 hours, then allowed to recover for
3 hours prior to DASPEI assessment. (A) Hair cell responses in wild-type
versus sentinel mutants. No difference in the dose-response relationship
was observed between wildtype fish (green), homozygous sentinel
mutants (red, sinusoidal body), and sentinel siblings (blue, including
heterozygous and homozygous wildtype sibling, straight body). (B)
Response of cisplatin-treated hair cells from wildtype fish in the
presence of the potentially protective compound PROTO-1. There is no
difference between dose-response curves with (red) and without
(green) PROTO-1. Error bars represent 61 S.D.
doi:10.1371/journal.pgen.1000020.g009
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transport (IFT) proteins and Bardet-Biedl syndrome (BBS)-related

proteins associated with auditory function. In addition, the C.

elegans K07G5.3 ortholog is enriched in ciliated neurons by

SAGE analysis and localizes to ciliated sensory neurons [46]. Hair

cells of the zebrafish lateral line and inner ear are also ciliated,

bearing a microtubule-based kinocilium in addition to the actin-

based stereocilia either throughout life (lateral line and vestibular

epithelia) or during development (auditory epithelia/cochlea).

However, the broad distribution of sentinel mRNA and lack of hair

cell functional defects in mutants suggest that the gene product

does not have a role specific to hair cells.

In addition to identifying possible therapeutic approaches,

unbiased small molecule screening may reveal new molecular

pathways that regulate hair cell death. This approach has been

taken previously in a small molecule screen for compounds

affecting zebrafish blood development; by identifying several

compounds that affected prostaglandin metabolism, PGE2 was

revealed as a regulator of haematopoiesis [47]. PROTO-1 and

PROTO-2 are related benzothiophene carboxamides, suggesting

that they may have the same molecular targets. Other benzothio-

phene carboxamides have previously been identified as HIV

inhibitors, having effects on casein kinase, calcineurin and p53

[48–50]. Further work will be needed to determine whether any of

these pathways modulate hair cell death.

Perhaps the most important contribution here is the suggestion

that our screens can serve as templates for other research

programs to identify other gene-drug interactions. Individuals

respond remarkably differently to environmental exposures and

drug treatment in most disease conditions. Efforts to understand

population variation have centered on epidemiological and

pharmacogenomic approaches [51]. However there are only a

few cases in which the genes responsible for this phenotypic

Figure 10. Protective compounds reduce neomycin toxicity in adult mouse utricle cultures. (A,B) Extrastriolar utricular hair cells stained
with antibodies against calmodulin and calbindin after 4 mM neomycin exposure. An increased number of hair cells remain after PROTO-2
pretreatment (B) compared to control (A). (C,D) Neomycin dose-response curve showing effect of 10 mM PROTO-2 pretreatment on striolar (C) and
extrastriolar (D) utricular hair cells. Counts were made at high magnification in areas of 900 mM2, converted to density, and averaged over the three
sampled areas of each region for each utricle. Ten utricles were analyzed for each treatment group. Data were normalized relative to mock-treated
controls (no PROTO drug, no neomycin).
doi:10.1371/journal.pgen.1000020.g010

Modulators of Mechanosensory Hair Cell Death

PLoS Genetics | www.plosgenetics.org 10 2008 | Volume 4 | Issue 2 | e1000020



variability have been identified, such as for VKORC1-warfarin

response or PON1-organophosphate toxicity [52,53]. Genetic

analysis may provide a systematic method to identify new

molecules involved in cellular responses to drugs or disease.

Materials and Methods

Animals
Zebrafish embryos (Danio rerio) were produced by paired matings

of adult fish in the University of Washington zebrafish facility by

standard methods [54]. The *AB and WIK wildtype strains are

maintained individually as inbred lines. Three to six-week-old

CBA/CaJ mice were obtained from the Jackson Laboratory (Bar

Harbor, ME) and maintained in the University of Washington

Animal Care facility. All animal protocols were approved by the

University of Washington Animal Care Committee.

Vital Dye Staining
Larvae were transferred manually to baskets in 6-well culture

plates containing defined E2 embryo medium. Baskets were

constructed from the tops of 50 ml Falcon tubes in which the center

of the lids were replaced with meshing. All treatment and wash

volumes are 6 ml unless otherwise indicated. Hair cells of larvae

were labeled with the following dyes: 1) FM 1-43FX (n-(3,3-

ammoniumpropyl-dimethyl)ammoniumpropyl)-4-(4-(dibutylamino)-

styryl) pyridinium trichloride), an aminated derivative of FM1-43 (n-

(3-triethylyammoniumpropyl)-4-(4-(dibutylamino)-styryl) pyridinium

dibromide Invitrogen Molecular Probes, Eugene , OR) by

immersing free swimming larvae in 3 mM FM 1-43FX in embryo

medium for 30 or 45 s, followed by three successive rinses in embryo

medium; 2) Yo-Pro-1 (Invitrogen Molecular Probes) at 3 mM for 1

hour followed by 3 rinses to selectively stain hair cell nuclei; or 3)

DASPEI (0.005% final concentration, (2-{4-(dimethylamino)styryl}-

N-ethylpyridinium iodide, Invitrogen Molecular Probes) in the final

15 minutes of the recovery period, and rinsed twice to brightly label

mitochondria-rich hair cell cytoplasm. Larvae were anesthetized

with MS222 (3-aminobenzoic acid ethyl ester, methansulfoneate salt,

Sigma-Aldrich, St. Louis, Missouri) at a final concentration of 0.02%

prior to imaging.

Neomycin Treatment
Neomycin (Sigma-Aldrich, catalog no. N1142) was diluted in

defined E2 embryo medium. Animals were treated with drug or

embryo media (mock-treated controls) for times indicated,

subsequently washed rapidly three times in fresh embryo medium

and allowed to recover for one hour.

Cisplatin Treatment
For cisplatin treatment, zebrafish larvae were exposed to 0–

400 mM cisplatin (Sigma-Aldrich, catalog no. P4394) for 4 hours,

rinsed several times in embryo medium and held 3 hours in the

same media prior to DASPEI staining and visualization.

Compound Screening
Larvae were stained with Yo-Pro-1 and FM 1–43 and then

dispensed into 96-well glass bottom plates (Nunc, Rochester, New

York) containing embryo medium (1–2 fish per well). Drug-like

compounds from the Diverset E library (ChemBridge,San Diego,

California), dissolved in 0.05% DMSO to a final concentration of

10 mM, were aliquoted into each well. Fish were incubated at

28.5uC for 1 hour. Neomycin was then introduced into each well

at a final concentration of 200 mM and fish were incubated for an

additional hour. Larvae were anesthetized with MS222 for

immobilization. Visual assessment of hair cell integrity was

performed in vivo using an inverted epifluorescent microscope.

This allowed examination of the whole animal on the side of its

body facing the objective and thus rapid evaluation of many

neuromasts (,20). In each row of the 96-well plate both positive

(neomycin treated only) and negative (no neomycin) control

animals were used for comparison to compound treatment. The

entire plate of 96-well plate with 80 test wells and 16 positive or

negative control wells was evaluated within one hour. Although

intermediate responses were observed for some drugs, only those

exhibiting robust protection were pursued for continued evalua-

tion at this time.

To quantify changes in the hair cell response, hair cell survival

was determined by counting the surviving hair cells from four

neuromast, SO1, SO2, OC1 and O1 for 10–20 fish (i.e. 40–80

neuromasts). The percentage of surviving hair cells following

treatment was calculated relative to mock-treated controls (no

drugs or neomycin exposure).

Minimum Inhibitory and Bactericidal Concentration
Assays

Determination of the minimum inhibitory concentration (MIC)

and the minimal bactericidal concentration (MBC) of neomycin

alone and in the presence of 10 mM PROTO-1 or PROTO-2

were performed at the Clinical Laboratory of Microbiology at the

University of Washington Medical Center as described by the

National Clinical and Laboratory Standards Institute [55,56].

ENU Mutagenesis
Adult males from the *AB wildtype strain were mutagenized

with 3 mM ethylnitrosourea (ENU) using standard procedures

[27]). To assess the effectiveness of the mutagenesis, we performed

a specific locus test of mutagenized males with homozygous nacre

females; mutation of the nacre (mitfa) gene results in lack of pigment,

which is readily apparent [28]. The ratio of progeny with a nacre-

like pigment phenotype to total progeny was 1/300. Mutagenized

males were then crossed to wildtype *AB females to produce F1

progeny. F2 families were derived from pairwise matings of F1

progeny of different mutagenized males.

Genetic Screen
For each family screened, three to twelve F2 pairs were crossed

and their progeny were examined for altered aminoglycoside

response. Neomycin doses of 25 mM or 200 mM were used to

screen for heightened susceptibility or protection, respectively. Ten

neuromasts were evaluated on each fish for DASPEI staining and

each neuromast was assigned a score of 0 for no/little staining, 1 for

reduced staining, 2 for full staining [21], resulting in a final score of

0–20 for each fish. Scores were averaged and normalized to mock-

treated controls. For initial analysis, 12–50 fish were assessed for

typical and atypical responders (i.e. 120–500 neuromasts). Results

were tabulated and chi-squared analysis was done to identify

potential mutant strains of interest. Putative mutants were retested to

confirm phenotype, outcrossed to *AB fish and tested again in the

next generation to confirm transmission.

Genetic Mapping
Heterozygous mutant carriers were outcrossed to the wildtype

zebrafish from the polymorphic WIK strain for mapping. Hybrid

*AB/WIK carriers of the hair cell modulator were then identified

and crossed to produce progeny for marker analysis. At 5 dpf

larvae were exposed to neomycin as described for the initial

screen. To ensure accurate phenotyping, only individuals with the

highest and lowest DASPEI staining scores after 200 mM
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neomycin treatment were retained as mutant and wildtype,

respectively. For bulk segregant analysis, DNA was pooled from

20 wildtype or mutant individuals. Distribution of markers was

compared to DNA from fin clips of *AB/WIK parents and

founder grandparents. Microsatellite markers for each chromo-

some [31] were amplified by PCR and evaluated for cosegregation

with mutant phenotypes. Linked markers were further evaluated

with individual DNAs from 694 mutant fish and 234 wildtype fish

(including both heterozygous and homozygous wildtype siblings).

After determining initial linkage to chromosome 23, fine mapping

identified Z3794 and Z44679 as flanking markers. A contiguous

genomic sequence was then assembled using whole genome shotgun

trace sequences produced by the Zebrafish Sequencing Group at the

Sanger Institute (http://www.sanger.ac.uk/Projects/D_rerio/). Ad-

ditional markers were developed to better define the linked region in

sentinel mutants based on genomic sequence. snp3 amplifies a single

nucleotide polymorphism and sat3334 is a sequence length

polymorphism. They are amplified by the primers:

snp3_forward: GGGTGTCGAACTTGCACCTTTAAT

snp3_reverse: GTTGCTTAATTAGGCCTACAGCACT

sat3334_forward: CTTCATTCGCCCTCTGAACC

sat3334_reverse: GTGCACACTGTGATGTCGATAA

cDNA Isolation and Sequencing/Molecular Biology
RNA was isolated from whole embryos at 62 hpf using Trizol

according to manufacturer’s specifications (Invitrogen, Carlsbad,

California). Oligonucleotide primers were designed based on in

silico genomic sequence. cDNA was synthesized using First Strand

cDNA synthesis kit (Invitrogen) using oligo DT primers. The

following primer pairs were used to amplify portion of cDNA

spanning the recombination breakpoints:

pair 1 forward: AGGTTGAGGCTGGTTTGCCGA

pair 1 reverse: CTCTCAGTGCTTTCAGCTCCTTCCA

pair 2 forward: TTGTCAGACACACTCGACAGTTGCG

pair 2 reverse: TTGGGGTCGAGGCGAGATTCTG

pair 3 forward: AGATGGACGCCATCGCTTGCAT

pair 3 reverse: TCGTTCCAGCAGGGGTTTGGAC

Amplified products were cloned into pCR4 vectors using Topo

TA cloning kit (Invitrogen). cDNA and genomic regions were

sequenced from the vector T3 or T7 sites using Big Dye

terminator v3.1 cycle sequencing chemistry (Applied Biosystems,

Foster City, California).

Comparative Genomics
Zebrafish cDNAs were aligned to known ESTs, cDNAs and

genomic sequence from this region using Sequencher software (Gene

Codes, Ann Arbor, Michigan). BLAST alignments of our cDNA

sequences align with predicted cDNA (Genbank XM_693709/

gi:125851476) amino acids 75-1040. Orthologs were identified from

Genbank using BLAST and the corresponding predicted protein

sequences were aligned with the Danio rerio predicted protein

(XP_698801/gi:125851477): Mus musculus (NP_758478.1/

gi:26986583), Homo sapiens (NP_001073991/gi:122937494), Pan

troglodytes (XP_001159814 /gi:114593231), Canis familiaris

(XP_536233/gi:73951827), Bos taurus (XP_595408/gi:119894226),

Monodelphis domestica (XP_001369774/gi:126331991), Gallus

gallus (XP_420777/gi:118090694), Caenorhabditis elegans

(NP_492026/gi:U17508151), Drosophila melanogaster (NP_611229

and NP_611230/gi:24654454/28573534), Aedes aegyptii

(EAT41051/gi:108876826), Trichomonas vaginalis (XP_001323414/

gi:123480792), Paramecium tetraurelia (CAK70738/gi:124405296).

ClustalW multiple sequence alignment software was used to align

predicted proteins of orthologous genes using the Gonnet 250 matrix

[57]. We used the Phylip 3.66 phylogeny software [58] to create a

bootstrapped data set from the original alignment using Seqboot,

then Protml to evaluate these datasets using the maximum likelihood

method with a Jones-Taylor-Thorton model of amino acid

substitution. A consensus tree was determined with Consense

software by extended majority rule. Phylogenetic trees were draw

with TreeView software [59]. Protein motif searching was performed

using the Eukaryotic Linear Motif server (elm.eu.org).

Gentamicin–Texas Red Conjugation
4.4 ml of gentamicin sulfate (Sigma-Aldrich, 50 mg/ml) and

0.6 ml succinimidyl esters of Texas Red (Molecular Probes, Eugene,

Oregon; 2 mg/ml in dimethyl formamide) were agitated overnight

to produce the conjugate solution [39]. The conjugated solution was

diluted in embryo media to a final concentration of 200 mM

gentamicin. Because neomycin contains six amino side groups,

neomycin conjugation was performed similarly except that the ratio

of neomycin to Texas Red was adjusted to 3:1 to ensure that on

average one molecule of dye or less labeled each aminoglycoside

molecule. To assess aminoglycoside entry, 5 dpf larvae were

immersed in aminoglycoside-Texas Red conjugate for 45 seconds

and rinsed in embryo medium four times before immediate imaging.

Images were collected using Zeiss LSM5 Pascal confocal microscope.

Z-stack images of neuromasts were collected.

Utricle Preparation
Utricles were dissected and cultured in basal medium EAGLE

supplemented with Earle’s balanced salt solution and 5% fetal

bovine serum following established procedures [40]. Neomycin

sulfate stock solution (Sigma-Aldrich) prepared in sterile water was

added directly to culture wells at the desired concentrations. The

utricles were incubated for 4 hours in the compounds diluted with

0.05% DMSO or 0.05% DMSO alone for controls followed by a

24 hour incubation with neomycin.

Utricle Immunohistochemistry
Utricles were fixed for 1 hour at 4uC in 4% paraformaldehyde

in phosphate buffer. Following fixation, otoconia were removed by

gently ‘‘washing’’ the surface with buffer through a 26 gauge

syringe needle. Utricles were then incubated in blocking solution

(2% bovine serum albumin, 0.4% normal goat serum, 0.4%

normal horse serum and 0.4% Triton-X in PBS) for 3 hours at

room temperature. Hair cells were double labeled in whole-mount

preparations with a monoclonal antibody against calmodulin

(Sigma-Aldrich) and polyclonal antibody against calbindin (Che-

micon, Temecula, California) at 4uC diluted in blocking solution,

1:250. The utricles were then rinsed and incubated for 2 hours at

room temperature in secondary antibody diluted in blocking

solution with biotinylated horse anti-mouse IgG (1:200) and Alexa

594-conjugated goat anti-rabbit IgG. Utricles were mounted with

Fluoromount-G (EMS, Hatfield, Pennsylvania) and coverslipped.

The density of mouse utricular hair cells was determined by

counting the number of hair cells in three randomly chosen

nonstriolar regions and the number of striolar hair cells in three

randomly chosen striolar regions from each utricle. Counts were

made at high magnification in areas of 900 mM2, converted to

density, and averaged over the three sampled areas of each region

for each utricle. Ten utricles were analyzed in this way for each

treatment group. Data were normalized relative to mock-treated

controls (no PROTO drug, no neomycin).
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Supporting Information

Figure S1 Comparison of the dose response curve of 5 dpf

versus 8–9 dpf sentinel mutants. Hair cell staining by DASPEI was

assessed after neomycin exposure among progeny of sentinel

heterozygous parents with wildtype body shape (blue) or sinusoidal

body shape (red). The dose response curves of wildtype *AB

control fish are shown (green). (A) Dose-response at 5 dpf. (B)

Dose-response at 8–9 dpf. Error bars are {plus minus}1 S.D.

Found at: doi:10.1371/journal.pgen.1000020.s001 (0.26 MB AI)

Figure S2 Figure S2. In situ hybridization of biotinylated probes

to the sentinel locus reveals ubiquitous expression. (A) Wildtype *AB

larvae 64 hpf, antisense probe. (B) *AB larvae 64 hpf, sense probe.

(C) sentinel mutants 64 hpf, antisense probe.

Found at: doi:10.1371/journal.pgen.1000020.s002 (1.69 MB AI)

Figure S3 Aligned sequence of Sentinel-related proteins. Danio

rerio (XM_693709/gi:125851477), Mus musculus (NP_758478/

gi:26986583), and Homo sapiens (NP_001073991/gi:122937494).

Found at: doi:10.1371/journal.pgen.1000020.s003 (0.03 MB

DOC)

Figure S4 Protective compounds do not affect transduction-

dependent dye or aminoglycoside uptake. (A-C) Rapid entry

(45 sec) of 3 mM FM 1–43 (red) into untreated (A), PROTO-1 (B),

or PROTO-2 (C) treated hair cells. Nuclei are labeled with Yo-

Pro-1 (green). (D-F) Exposure to gentamicin-conjugated Texas

Red results in rapid labeling of untreated (D), 10 mM PROTO-1

(E), or PROTO-2 (F) pretreated hair cells.

Found at: doi:10.1371/journal.pgen.1000020.s004 (5.40 MB AI)
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