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Hair cell regeneration: winging our way towards a sound future
Olivia Bermingham-McDonogh* and Edwin W Rubel’

The discovery of hair cell regeneration in the inner ear of birds
provides new optimism that there may be a treatment for hearing
and balance disorders. In this review we describe the process of
hair cell regeneration in birds; including restoration of function,
recovery of perception and what is currently known about
molecular events, such as growth factors and signalling systems.
We examine some of the key recent findings in both birds and
mammals.
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Abbreviations

FGFR3 fibroblast growth factor receptor 3
Hes hairy and enhancer of split

MAPK mitogen-activated protein kinase
Math1 mammalian atonal homolog 1
TGFa  transforming growth factor o

VOR vestibulo-ocular reflex

Introduction

"The discovery of hair cell regeneration in the inner ear of
birds following exposure to ototoxic drugs or intense
acoustic stimulation forever changed our views on how
hearing and balance disorders may someday be treated
(Figure 1). The majority of disorders causing permanent
hearing impairment and many balance disorders are
thought to be due to degeneration of the hair cells — the
mechanosensory receptor cells — of the inner ear sensory
epithelia. In mammals, when these cells are lost due to
genetic mutation, disease, exposure to environmental
toxins or aging, hearing and/or vestibular impairments
are permanent. In 1987—88, five seminal papers [1-5] on
hair cell regeneration were published, establishing: first,
that experimental destruction of hair cells in the mature
avian cochlea (basilar papilla) stimulates the proliferation
of support cells and new hair cell production; second, in
the undamaged avian cochlea, there is virtually no mitotic
activity; third, in the mature avian vestibular epithelium,

there is a low rate of cell cycle activity and ongoing
production of new hair cells. These papers stimulated
a new wave of research, the goals of which were, and still
are: first, to understand hair cell regeneration in the inner
ear of birds and other non-mammalian vertebrates; sec-
ond, to examine the functional capabilities of the inner ear
and neural pathways following regeneration; third, to
stimulate replacement of lost or injured hair cells in the
inner ear of mammals. In this review, we comment on
recent progress in each of these areas.

Restoration of auditory and vestibular
function

Once regeneration of hair cells in the inner ear of birds
was confirmed, the question that immediately arose was:
do the regenerated cells restore hearing and balance? To
do this, new hair cells must develop appropriate ion
channels for transduction and be re-innervated by the
VIII™ nerve fibers that make appropriate connections in
the CNS. Additionally, the animal must be able to access
this information to make behaviorally meaningful
responses. A thorough review of the literature up until
1999 on the recovery of auditory processing is available
[6]. Table 1 categorizes this literature and provides addi-
tional references.

Recovery of sensory function: new cells or old cells
with new life?

The earliest attempts to determine whether regenerated
hair cells restore auditory function produced equivocal
results. Studies from several laboratories showed recovery
of electrical responses in the brain in response to acoustic
stimulation and recovery of behavior following noise
damage or aminoglycoside toxicity [7-10]. The problem
was one of interpretation: is recovery of function
mediated by the newly produced hair cells, or by recovery
of hair cells and their associated structures that were
injured, but not fatally so, by the intervention? When
the time course of functional recovery precedes matura-
tion of the new hair cells, interpretation leans toward
recovery of damaged cells [11-14]. When functional
recovery corresponds with the time course of new hair
cell differentiation, or with the particular functional attri-
butes of an area in which all the original hair cells were
destroyed, interpretation favors regenerated hair cells as
the transducers. It appears that both processes can med-
iate recovery under different circumstances.

Direct evidence for recovery mediated by the regen-
erated hair cells requires that all of the hair cells respon-
sive to a particular sound attribute are destroyed, leading
to a failure of the response (either physiological or
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Figure 1

(a) Control

(b) Damaged

(c) Recovery
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Scanning electron micrographs showing hair cell regeneration in the starling basilar papilla (BP) after aminoglycoside treatment. Each panel shows a
low power scanning electron microscope image of the basal half of the BP, and two high power photomicrographs from the positions indicated. (a)
shows the control untreated case; (b) shows a BP after drug treatment; and (c) shows a BP 20 weeks after drug treatment. Note that immediately after
aminoglycoside treatment, almost all hair cells disappear from the basal end; apically, there is also a significant loss of hair cells. After 142 days (c), a
normal complement of hair cells returns, but the mosaic is somewhat abnormal. The asterisks indicate the approximate location along the BP of the
high power images shown below. These images came from the work of Marean et al. [18°°].

behavioral), and that this is followed by recovery of the
response with a time course consistent with the produc-
tion and differentiation of new hair cells. This scenario
was partially achieved by some early studies using record-

ings of responses to pure tone stimuli [9,15], and has been
more definitively shown by several studies examining the
responses of single VIII™ nerve axons [6,16,17°°]. For-
mally, however, one could still argue that the response

Current Opinion in Neurobiology 2003, 13:119-126

www.current-opinion.com



Hair cell regeneration: winging our way towards a sound future Bermingham-McDonogh and Rubel

Table 1

121

Studies evaluating the functional properties of regenerated hair cells

Level of analysis Dependent variable Type of damage Recovery period studied References
Inner ear Ototacoustic emissions Intense sound exposure 1 wk - 8 wks [62-54]
Aminoglycosides 1 wk - 22 wks+
Endocochlear potential Aminoglycosides 1 day - 4 wks [65-57]
Intense sound exposure 0 day - 12 day
Vestibular hair cell physiology Aminoglycosides [58,59]
Eighth nerve Compound evoked responses  Intense sound exposure 0 days - 30 days [7,60-68]
Aminoglycosides 2 days - 20 weeks [9,10,69-72]
Single unit responses Intense sound exposure 0 days - 4 mo [66,73-77]
Aminoglycosides 2 days - 20 wks [6,14,16,17°°,21]
CNS Single unit responses Intense sound exposure 0 days & 12 days [11,12]
Metabolic influences Intense sound exposure 2 days - 43 days [78-81]

Aminoglycosides

Behavioral studies Basic psychoacoustics

Intense sound exposure

1 day - 4 mo [8,18°,23,24,26,82,83]

Aminoglycosides

Complex behaviors
Vestibular reflexes

Aminoglycosides
Aminoglycosides

[25°°,84]
[20,29,85]

5 days - 23 wks

properties of the cochlea change following damage to a
subset of hair cells, allowing a different subset to restore
the response properties initially lost. Such changes are not
unprecedented. For example, the frequency/place repre-
sentation in the cochlea of birds and mammals changes
dramatically during the early stages of hearing develop-
ment, and small reversible changes in the tonotopic
representation in the brainstem auditory nuclei of chicks
are reported after hair cell damage [12].

One way to conduct a definitive test of the involvement of
regenerated hair cells in recovery of function is to remove
the regenerated cells after restoration of function and
observe the specificity of the changes. This was achieved
by behavioral studies examining the loss and recovery of
high frequency sensitivity in starlings after aminoglyco-
side treatment. After recovery stabilized, a second ami-
noglycoside treatment, designed to kill hair cells only in
the area of regeneration, reversed the recovery of high
frequency sensitivity [18°°]. This result argues strongly
for the involvement of the regenerated hair cells in
recovery of auditory function in birds. Although evidence
for the participation of regenerated hair cells in functional
recovery is now convincing, the recovery is not perfect.
Most studies have reported residual long-term deficits,
such as mild sensitivity impairments and mild to mod-
erate tuning impairments (e.g. see [17°°]).

In summary, both behavioral and physiological studies
provide convincing evidence that regeneration of hair
cells restores near normal vestibular reflexes and response
properties in the vestibular afferents to the brain [19-21].
Does this same process occur in mammals to a limited
extent, and has gone unnoticed? Alternatively, is the
process started and then aborted before the differentia-
tion of new hair cells? One report [22] suggests that
extensive regeneration of mammalian vestibular hair cells

can be induced by local application of growth factors and
leads to recovery of vestibular reflexes. However, the lack
of direct evidence for mitotic regeneration casts doubts on
these claims.

Recovery of perceptual processing and behavioral
plasticity

Although many reports have examined the role of hair cell
regeneration in the recovery of sensory information pro-
cessing, few have examined more complex properties of
perceptual processing and behavioral plasticity. In gen-
eral, studies have found that temporal and frequency
resolution gradually return to normal or near normal in
conjunction with the return of sensitivity [23,24,25°%,26].
But what about the recognition and production of vocal
signals that depend on hearing and are necessary for
communication? And what about the stability of behavior,
or its plasticity, as the receptor system and central path-
ways are experiencing such profound alterations in infor-
mation flow? A few recent studies have examined these
questions and provided new insights into, as well as new
tools to investigate, old questions.

Dooling ez al. [25°°] used budgerigars (domesticated para-
keets) to examine the perception of vocalizations. These
birds are classical mimics who readily learn new vocaliza-
tions throughout life. Birds were trained to match their
vocalizations to specific acoustic templates, and then sub-
jected to a profound high frequency hearing loss by ami-
noglycoside injections. As their hearing recovered, the
birds were retested with the same acoustic templates.
The vocal mimicry initially declined, but was restored to
pre-injection levels quite rapidly, before the full recovery of
thresholds or discrimination abilities. This result suggests
that relatively little acoustic feedback is necessary to guide
previously learned vocal abilities, and that regeneration of
only a few hair cells is sufficient to restore that feedback.
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A second study examining complex communication beha-
vior following hair cell regeneration was recently com-
pleted in our laboratory [27°°]. Male Bengalese finches
(Lonchura striata domestica) are songbirds that learn a
single sequence of ‘syllables’ early in life from their father
and reliably produce the same song throughout life,
provided that hearing is normal. After recording each
animal’s song and verifying its stability, the birds were
treated with a combination of low frequency noise expo-
sure and aminoglycosides to cause a severe hearing loss
that included both high and low frequencies. The songs
rapidly deteriorated after the treatments, just as they do
following surgical deafening [28]. As hearing was restored
by hair cell regeneration, the song returned to its pre-
exposure structure. Thus, restoration of hearing allows
each bird to access a stored ‘template’ of its own learned
vocalization and gradually match its new vocalizations to
this stored memory. Remarkably, this period of hearing
recovery also appeared to reinstate or unmask a capacity
for behavioral plasticity not usually apparent in adult
songbirds of this type. After the recovery of their normal
(pre-deafening) song, some birds altered individual sylla-
bles so as to ‘copy’ portions of their cagemate’s song. That
is, as adults, they incorporated new elements from their
acoustic environment into their otherwise stable song.

Hair cell regeneration in the avian vestibular system can
also be used to study behavioral plasticity [29]. The
vestibulo-ocular reflex (VOR) and the vestibulo-colic
reflex normally disappear after hair cells in the crista of
the semicircular canals are killed; these reflexes reappear
as the hair cells regenerate (These reflexes involving the
vestibular organs in the inner ear and the extraocular eye
muscles (VOR) or the neck musculature (VCR) are
essential for maintaining a steady gaze while the body
is in motion) [19,20]. However, when an animal is sub-

Figure 2

jected to an environment devoid of smoothly changing
visual stimuli, by maintaining it in stroboscopic illumina-
tion, normal VOR recovery fails to occur. Apparently, by
depriving the animal of retinal slip information, the
central gain control system cannot be calibrated. Remark-
ably, however, just 48 h (and maybe even less) of normal
visual environment is long enough to reinstate a normal
VOR. This study and the one by Woolley and Rubel
[27°°] discussed above suggest that hair cell regeneration
in birds may be a very useful new way to study how
sensory information shapes neural structure and function.

Molecular events leading to hair cell
regeneration

The events leading up to the regeneration of the auditory
and vestibular epithelia after damage in chicks have been
the focus of much study; hopefully, understanding these
phenomena will point the way to regeneration in the
mammalian inner ear. To understand the molecular
mechanisms of hair cell regeneration, three general
approaches have been taken: the first looks at which
proteins might be expressed or repressed during the
regeneration process; the second examines the effects
of exogenous signals such as growth factors on the regen-
eration process; and the third studies the intracellular
signals that play a role in the progression of quiescent
support cells into the G and S phases of the cell cycle.
Figure 2 provides a schematic of the steps involved in the
regeneration of hair cells.

Proteins expressed during hair cell regeneration

Following the first approach, Lomax ez /. [30] recently
used differential display of expressed genes to show that a
novel member of the ubiquitin ligase gene family is
upregulated in response to noise-induced damage in
the chick basilar papilla. In a directed screen for receptor
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Schematic representation of hair cell regeneration after damage. Blue cells represent hair cells and yellow cells denote supporting cells. After
damage, the hair cells are extruded to the lumen and some of the support cells are triggered to divide. The M phase of the cell cycle takes place at the
lumenal surface of the sensory epithelium. After division, the new cells, shown in white, go on to differentiate into hair cells and supporting cells.
SE, sensory epithelium composed of hair cells and support cells; BM, basement membrane; TBC, tympanic border cells. Drawing courtesy of

Dr Jennifer S Stone.
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tyrosine kinase genes expressed in support cells, we [31]
found that the growth factor receptor fibroblast growth
factor receptor 3 (FGFR3), which is highly expressed in
the support cells of the auditory sensory epithelium, is
rapidly downregulated after damage, and begins to be
expressed again after the cells exit the cell cycle. These
results suggest that FGFR3 plays a role in maintaining
support cells in their quiescent state. Interestingly, this
same gene is found to be upregulated after noise damage
in the rat; thus, a system that does not regenerate appears
to regulate this gene in the opposite direction [32]. An
actin-interacting protein, WD40 repeat protein (WDR1),
is also upregulated in the supporting cells of the chick
basilar papilla after noise damage [33]. The expression of
this gene is likely involved in actin turnover; the inves-
tigators propose that it might be important in the restora-
tion of cytoskeletal integrity after damage. Many other
developmentally important genes are likely to be upre-
gulated in the regenerating regions of the basilar papilla.
For example, Deltal and Notch1 expression are upregu-
lated during the process of regeneration, when new hair
cell genesis is at its peak [34].

The role of signaling molecules and growth factors in
hair cell regeneration

To identify factors that might promote regeneration,
several investigators have tested defined signaling mole-
cules and growth factors in assays of hair cell regeneration.
Insulin-like growth factor 1 stimulates DNA synthesis in
the chick vestibular sensory epithelium in a dose-depen-
dent manner [35]. This factor has also been shown by
PCR analysis to be upregulated after damage [36]. By
contrast, FGF2 inhibits DNA synthesis in avian vestib-
ular and auditory sensory epithelia [37]. IGFs and FGFs
are important regulators of progenitor cell mitotic activity
in other regions of the nervous system; thus, these results
again demonstrate that regeneration is likely to be regu-
lated by the same factors normally involved in embryonic
development.

It has been known for some time that transforming growth
factor o ('GFo) and epidermal growth factor in the
presence of insulin stimulate cell proliferation in the
cultured mature mammal vestibular epithelium [38,39].
Recent studies show that infusion of TGFao and insulin
directly into the inner ear of adult rats stimulated DNA
synthesis in the vestibular sensory receptor epithelium
[40]. Corwin and colleagues [41-43] investigated various
intracellular signal transduction pathways using iz vitro
cultures of utricular sensory epithelial sheets derived
from both mature avian and neonatal mammalian inner
ears. Although cell proliferation in both the avian and
mammalian sensory epithelia was reduced by inhibitors of
several key signaling intermediates, including phospha-
tidyl inositol 3’ kinase (PI3K), target of rapamycin (TOR),
mitogen-activated protein kinase (MAPK), and protein
kinase C [41-43], these investigators found that the

MAPK pathway plays a more significant role in the avian
cultures than in similar mammalian cultures.

Cell cycle regulation in hair cell regeneration

Once support cells in the sensory epithelia are enticed to
enter and progress through the cell cycle, it is necessary
for one or both daughter cells to receive the correct signals
to differentiate into hair cells. Recently, mammalian
atonal homolog 1 (Mathl), a basic helix—loop—helix
transcription factor, has been shown to be necessary for
hair cell differentiation; mice deficient in this gene fail to
develop hair cells in either the auditory or vestibular
epithelia [44°°]. Another class of related molecules, mam-
malian hairy and enhancer of split homologs (Hes1 and
Hes5), act as negative regulators of hair cell differentia-
tion, and deletion of Hesl and Hes5 in mice leads to an
overproduction of hair cells [45°°]. The precise control of
these activators and suppressors of hair cell fate leads to
the patterned array of hair cells that is critical to the
proper functioning of this system. The experimental
manipulation of this system has led to a potential strategy
for hair cell replacement. Results from two groups show
that overexpression of Mathl in cultures of neonatal
mouse inner ear leads to the production of extranumerary
hair cells from the greater epithelia ridge in the case of the
cochlea, and from the support cells in the case of utricles
[46°,47]. This is an exciting finding because it suggests
the potential of replacing lost hair cells using endogenous
tissue. It is not clear, however, whether these new hair
cells would make the correct functional connections with
the spiral ganglion.

Another strategy for hair cell replacement in mammals
has emerged from recent studies of cell cycle regulators in
the inner ear [48,49]. The numbers and timing of hair cell
and support cell production in the auditory and vestibular
epithelium is highly regulated. For example, in mice
deficient for the cell cycle inhibitor p27 (Kip1), hair cells
are initially overproduced; later, a massive degeneration
of hair cells occurs, particularly in the basal region of the
organ of Corti, leading to hearing impairment. This study
[49] does, however, demonstrate that production of hair
cells can be extended into the postnatal period under the
right conditions.

The finding that stem cells can be isolated from the CNS
has lead to widespread speculation that they will lead to
cures for many neurodegenerative diseases. Limited suc-
cess has been achieved to date, but research in this arena
is still in its formative stages. Recently Ito e /. trans-
planted neural stem cells into the mammalian inner ear
[50°°]. They showed that these cells survive and appear to
integrate into various structures up to four weeks after
transplant. They even saw some cells that appeared to
take on the morphology of hair cells. Although these
findings are encouraging, the extent to which such cells
can develop into specialized sensory cells is unclear. For
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example, stem cells transplanted into the eye integrated
and took on the morphology of retinal neurons but failed
to express any retinal-specific markers [51].

Conclusion and future directions

In summary, over 15 years of studies on hair cell regen-
eration in the inner ear of birds has taught us that a quick
and easy ‘cure’ for sensory neural hearing loss is unrea-
listic. It is impossible to predict when these efforts will
lead to a therapy for the hearing impaired. However, 15
years is but a short time in the history of science and great
progress has been achieved in these years. The phenom-
enology of hair cell loss and regeneration has been well
described in birds; new /z vitro and in vivo preparations
have been developed and cell lines are beginning to
become available. Functional recovery due to regener-
ated hair cells has been confirmed and we are beginning
to unravel some of the molecular signals that stimulate
and inhibit regeneration in birds. Limited postnatal pro-
liferation and ectopic hair cell expression has been
achieved in mammals. Of most importance, hair cell
regeneration has become a legitimate and exciting field
of interest and exploration. That is the major change in
the field that will someday lead to therapeutic interven-
tions for the hearing impaired. The discovery of the
structure of DNA was only half a century ago, yet we
seem on the verge of promised cures for various conditions.
It is exciting to speculate on the impact the next half-
century of research will have on hair cell regeneration.
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