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Abstract

This Handbook is an overview of the sequentially adaptive Bayesian learning
(SABL) algorithm and a reference for users of SABL 2015a. Detailed aspects of
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1 Introduction

This Handbook is an introduction to the Matlab toolbox SABL, an implementation of
the sequentially adaptive Bayesian learning algorithm; for brevity, the SABL toolbox
and the SABL algorithm.

The SABL algorithm is a generalization of adaptive posterior simulators for Bayesian
inference described in Durham and Geweke (2015). That work is motivated by the pleas-
ingly parallel structure of sequential Monte Carlo algorithms, explained at the start of
Section 2, in conjunction with the power of graphics processing unit (GPU) hardware
and software that together provide inexpensive, massively parallel desktop scientific com-
puting detailed in Section 3.2.2. The SABL algorithm builds on a substantial literature
in particle filtering, as discussed in Durham and Geweke (2015).

The generalizations incorporated in the SABL toolbox include quite a few variants
of the algorithm, and the toolbox readily accommodates the incorporation of more.
The variants include the extension of sequential Monte Carlo to optimization problems
(Sections 2.7 and 4.1.1), producing algorithms that can also be viewed as extensions
of simulated annealing algorithms; see Geweke and Frischknecht (2014) and references
there.

The SABL toolbox augments core Matlab functions as do all Matlab toolboxes, for
example the Matlab Statistics and Matlab Parallel Computing Toolboxes. More impor-
tant, the SABL toolbox exploits the modular structure of the algorithm. Incorporating
new variants of the algorithm amounts to providing Matlab (or C) code that respects
a simple interface. The same is true of new models and new prior distributions, which
amount to code for prior densities and likelihood functions in the case of Bayesian infer-
ence and code for objective functions in the case of optimization. SABL is specifically
designed to facilitate incorporation of new models by third parties referred to as modelers
in this Handbook. SABL is also designed as a vehicle for applied scientific work drawing
on models already incorporated in SABL. Going forward we refer to such applications
as projects and to those who do this work as users.

SABL source code is open. It is freely available and may be used subject to the
terms of the BSD license of the Open Software Initiative that protects it. The terms of
this license are provided in the file /Copyright_license/Copyright_software.

2 The SABL algorithm

The SABL algorithm is a procedure for the controlled introduction of new information.
It pertains to situations in which information can be represented as the probability dis-
tribution of a finite dimensional vector. SABL approximates this distribution by means
of many (typically on the order of 10* to 10°) alternative versions of the vector. These
versions are called particles, reflecting some of SABL’s connections to the particle filter-
ing literature. In the SABL algorithm particles undergo a sequence of transformations
as information is introduced. With minor exceptions accounting for a negligible frac-



tion of computing time in typical research applications, these transformations amount
to identical instructions that operate on each particle in isolation. SABL is therefore
a pleasingly parallel algorithm. This property is responsible for dramatic decreases in
computing time for many research applications with GPU execution of SABL.

At its highest level the SABL algorithm looks like this:

e Represent initial information

e While information not entirely incorporated

— Determine information increment and incorporate by weighting particles
— Remove the weights by resampling

— Modify the particles to represent the information more efficiently
e End

In the sequential Monte Carlo literature each pass through the loop While ... End
is known as a cycle, and we will use ¢ to index cycles. The three steps in each cycle are
phases. The first step is the correction phase, the second the selection phase, and the
third is the mutation phase; for short, C' phase, S phase and M phase.

Let # € © C R? denote the vector whose probability distribution represents informa-
tion. The notation reflects SABL’s roots in Bayesian inference for a parameter vector.
We develop the main ideas in this context and subsequently treat optimization as a
variant, in Section 2.7. Denote the particles by 0;,, the double subscripts indicating
the J groups of N particles each employed by SABL. Initially 6 has probability density
p° (0); extension beyond absolutely continuous distributions is easy, and this streamlines
the notation. In SABL the particles initially are

00X pO @) (j=1,...,Jsn=1,...,N). (1)

In Bayesian inference p(®) () is a proper prior density and in optimization it is the
probability density of an instrumental distribution (see Section 2.7). It must be practical
to sample from the initial distribution (1) and to evaluate p® (6).

Denote the density incorporating all the information by p* (6). SABL requires that
it be possible to evaluate a kernel k (6) with the properties

E@)>0V0co, / k(0)do < oo, p*(0) o k*(0) = p® () k(6). (2)
e
In Bayesian inference the kernel & (#) is the likelihood function,
k(0)=pyrr|0), (3)
where T' denotes sample size and y1.7 = {y1,...,yr} denotes the data. In the optimiza-
tion problem maxgcg h (0),
k(0) =exp[r-h(0)], (4)
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where r > 0 and typically r is large.
Cycle ¢ begins with the kernel k=1 and ends with the kernel k). In the first and
last cycles,
9 =1 and &P (0)=k(9),

respectively. Correspondingly define
FO0) = p® )k (0), (5)

implying
O =p®@(0) and &H(0) =k (0). (6)

The particles change in each cycle, and reﬂectmg this let 9 denote the particles at
the end of cycle £. The initial particles «9 have the common distribution (1) and are

independent. In succeeding cycles the partlcles i n continue to be identically distributed
but they are not independent. The theory underlying SABL, discussed further in this
section and developed in detail by Durham and Geweke (2015) drawing on sequential

Monte Carlo theory, assures that the final particles §;, = 0 — p* (#). This conver-
gence in distribution takes place in N, the number of partlcles per group. The result is

actually stronger the particles are ergodic in /N, meaning that for any function g for
which E'[g(0)] = [5 ¢ 0) db exists,

lim N7UY g (0;0) = Eg(0)] (7)

with probability 1 in each group j =1,...,J.

A leading technical challenge in practical sequential Monte Carlo algorithms, which
of course work with finite N, is to limit the dependence amongst particles, and in
particular to keep dependence from increasing from one cycle to the next to the point
that the final distribution of particles is an unreliable representation of any distribution
at all. A further technical challenge is to provide a measure of the accuracy of the
approximation implicit in the left side of (7) for finite N that is itself reliable. The
SABL algorithm and toolbox do both in a way that makes minimal demands on users.
The remainder of this section, and Section 3 that follows, provide the details.

2.1 ( phase

For each cycle ¢ define the weight function

w (0) = K9 (8) /K1 (6) .
The theory underlying the SABL algorithm requires that there exist an upper bound
w", that is,

w? (0) < T <00V heo.
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The C phase determines w® (0) explicitly and thereby defines
KO0) = w® (0) - k1 () (8)

and

p® () = kO (0) do/ / kO (9) do.

Thus (5) and (8) imply &*© (0) = w® (0) - k=1 () as well. In SABL the weight
functions w® (A) are designed so that there exists L < oo for which k() (6) = k(6),
although the value of L is in general not known at the outset.

One approach in designing the weight function is to use the functional form w® (§) =
k (6)* and determine a sequence of positive increments {A,} with S Ay =1. Thus
at the end of cycle ¢, k¥ (§) = k(0)" where r, = Z§:1 A. This variant of the C
phase is known as power tempering or simply tempering. The term originates in the
simulated annealing literature in which 7, = 7, ' is known as temperature and {T}}
as the cooling schedule. Another approach originates in particle filtering and Bayesian
inference: k) (0) = p (y1.4, | ), where 0 < t;... < t;, = T for a sample of size T. The
increments are therefore w (6) = p (vs,_, 111, | Y14, ,,0). This variant of the C' phase
is known as data tempering.

The C phase can be motivated informally by analogy to importance sampling, a
long-established Monte Carlo simulation method, interpreting £*“~) (9) as the kernel of
the source density and k*(“) (9) as the kernel of the target density. (Recall the definition
of k* (#) in (5).) If it were the case that the particles 955:1) were independent and had
common distribution indicated by the kernel density k*~1) (9), then

- o
Sl w (050 0) 0 (6070) o ok 9) g (6) do
—
Z;']:I 27]:[:1 w <9§K—1)> f@ k*© (6) do

- / P (6) g (6) d6 = EO g (9) (9)

so long as B [g (#)] exists. The convergence is in IV, the number of particles per group.
The core of the argument for importance sampling is
[ 500 a0 = BEOOE 00D _ [yl 0 g0
o Jow@ O RED @) ds fou (6)p D ()b

This result does not apply strictly, here, because while the particles Qg.i_l) are identically
distributed, they are not independent and k*~V (f) is at best an approximation of

the kernel density of the true common distribution of the particles 9%_1) so long as
N < oo (as it must be in practice). But many of the practical concerns in importance
sampling carry over. In particular, success lies in w (0) being “well-conditioned” — loosely
speaking, variation in w (6;,,) must not be too great. For example, difficulties arise when
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just a few weights w (6;,) account for most of the sum. In this case the target density
kernel k*) (9) is represented almost entirely by a small number of particles and the
approximation of E¥) [g(#)] implicit in the left side of (9) is poor.

The C phase directly confronts the key question of how much information to introduce
in cycle ¢: too little and L will be larger than it need be; too much, and it becomes
difficult for the other phases to convert ill-weighted particles from cycle /—1 into particles
from cycle ¢ sufficiently independent that the representation of the distribution does not
deteriorate from one cycle to the next into a state of gross unreliability. A conventional
and effective way to monitor the quality of the weight function is by means of relative
effective sample size

ESS© _ Zjﬂ 25:1 w® (9%%1))}2

§
N NEL s (847)

RESSY = (10)

The effective sample size ESSY is an adjustment to the sample size (number of particles,
JN) that accounts for lack of balance in the weights, and relative effective size is its
ratio to sample size. Notice that if all weights are the same then FSS® = JN and
RESS® = 1, whereas if only one weight is positive then ESS® =1 and RESS® =
1/JN.

In general RESS® is lower the more information is introduced in the C' phase. This
is always true for power tempering and as a practical matter is nearly always the case
for data tempering. It suggests a strategy of introducing no further information after
RESS® has attained or fallen below a target value RESS*. The target RESS* = 0.5 is
usually reasonable, and it is the default value in the SABL toolbox. Practical experience
shows that somewhat higher RESS* leads to more cycles but faster execution in the M
phase, lower RESS* to fewer cycles but slower M phase execution, and as a result there
is not much difference in execution time over the interval (0.1,0.9) for RESS*.

Before any new information is introduced in the C' phase w®) (§) = 1. Data tempering
entails iterations s = 1,2, ... in which iteration s introduces y, , s, updates

- -1 -1
U)(é) (an )) = w(f) <6§n )) D (ytl,ﬁs | Yt 14+s—1, 6§n )) ’

and computes the corresponding RESS®. ITterations terminate the first time RESS® <
RESS*. This procedure has been well established in the sequential Monte Carlo particle
filtering literature for years.

Such strategies have not been employed previously for power tempering. The first
instance appears to be Geweke and Frischknecht (2014). Substituting w® (0) = k (6)
in (10),

_\ A
Sk ()

2A,°

VT Tk (07)
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Setting RESSY = RESS* in (11) produces a nonlinear equation in the single vari-
able A, that has a unique and easily computed solution so long as RESS* € (0,1). If
the solution implies ¥ > 1 then A® = 1 — 7~ instead and the cycle £ = L is the
last one.

2.2 S phase

The rest of cycle ¢ starts with the weighted particles 9%_1) from the end of the C phase

and produces unweighted particles 05? that that meet or exceed a mixing condition —
a measure of lack of dependence described in the next section — at the end of the M
phase. The S phase begins this process, removing weights by means of resampling.
The principle behind resampling is to regard the weight function as the kernel of a
discrete probability function defined over the particles and draw from this distribution
with replacement. Hence the name selection phase. SABL performs this operation on
each group of particles separately — that is, particles are always selected within groups
and never across groups. This independence between the groups j = 1,...,J is essential
in (1) proving the convergence of the algorithm, (2) assessing the mixing condition in
the M phase, and (3) providing a numerical standard error for the approximation as
discussed in Section 2.4.2. Resampling produces unweighted particles denoted 9%0).
The most elementary resampling method is to make N independent and identically
distributed draws from the multinomial distribution with argument N and probabilities

N
Pjn = w (9%[1)) /Zw(z) (9%71)) (n=1,...,N).
=1

This method is known as multinomial resampling. An alternative method, known as
residual resampling, is to compute the same probabilities and collect an initial subsample
of size N* < N consisting of [N - p;,| copies of each particle 6;,,, where the function [-]
is standard notation for what is variously known as the greatest whole integer, greatest
integer not greater than, or floor function. Then draw the remaining N — N* particles
by means of multinomial resampling with probabilities py o< Np;, — [N - pj,]. Residual
resampling results in lower dependence amongst the particles 6’%’0) (n=1,...,N) than
does multinomial resampling. For both methods there are central limit theorems that
are essential to demonstrating convergence and interpreting numerical standard errors.
There are other resampling methods that lead to even less dependence amongst the
particles, but for these methods central limit theorems do not apply. These methods are
all described in Douc et al. (2005).

The S phase is a simple but key part of the SABL algorithm. Resampling is also
a key part of evolutionary (or, genetic) algorithms where it plays much the same role.
The particles 9%{0) (n=1,...,N) are for this reason sometimes called the children of the

parent particles {Qgi_l)} (n=1,...,N), and also to emphasize the fact that for each

child 495-2’0) there is a parent «9%71). Parents with larger weights are likely to have more
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children — it is not hard to work out the exact distribution of the number of children
of a given parent for any one parent for multinomial resampling and then again for
residual resampling. With both, the expected number of children, or fertility, of the

parent Qgi_l)is proportional to w <9§i_1)), a measure of the parent’s “success” in the

environment of the information introduced in cycle /.

2.3 M phase

If the algorithm were to continue in this way, the number of unique children would never
increase and in general would decrease from cycle to cycle. Indeed, in the context of
Bayesian inference it can be shown under mild regularity conditions that the number of
unique particles converges almost surely to 1 as the number of observations increases.
The same can be demonstrated in the context of optimization for a sufficiently large
value of 7 in (4).

The M phase addresses this problem by creating diversity amongst sibling particles
in a way that is faithful to the information kernel £*) (). It does so using the same
principle of invariance that is central to Markov chain Monte Carlo (MCMC) algorithms,
drawing particles from a transition density dQ¥) (6 | 6*) with the property

/ O (0%)dQ® (6| %) do* = k*D () ¥V 6 € ©. (12)
e

The transition density dQ® is invariant with respect to the kernel k*(¥) (0), which pre-
serves the original distribution of the children but introduces the prospect that they will
be different. Notice that (12) implies that the successive application, or convolution, of
a series of invariant transitions defines a transition that is itself invariant. The universe
of invariant transition densities is large and manifest in the MCMC literature. Many of
these transitions are model-specific, for example Gibbs sampling variants of MCMC. On
the other hand a number of families of Metropolis-Hastings transitions apply quite gen-
erally and with problem-specific tuning of parameters can be computationally efficient.
SABL 2015a incorporates one of these variants, the Metropolis Gaussian random
walk, and the structure of SABL accommodates addition of others in the future. The
M phase applies the Metropolis random walk repeatedly in steps s = 1,2,..., each
step generating a new set of particles 9%;5) from the previous set 9%571). Following the
familiar arithmetic, candidate new particles are generated 9;7(1&5) ~ N <€§ff_1), E(‘)’s’l)>
and accepted with probability
10 (gﬂ&s))

m

_— 1
L+(0) (9(&5—1)>

min

in

In SABL X(4%) is proportional to the sample variance of 9%{0) computed using all the
particles. The factor of proportionality increases when the rate of candidate acceptance

10



in the previous step exceeds a specified threshold and is decreased otherwise. This draws
on established practice in MCMC and works well in this context. Section 4.3 provides
more detail about this threshold, as well as the initial value and increments of the scaling
factor.

In some applications, especially those with a long parameter vector #, the multivariate
normal distribution is a sufficiently poor approximation of the local behavior of k*() (#)
that the Metropolis Gaussian random walk can be quite inefficient. A straightforward
way to address this contingency is the blocked Metropolis Gaussian random walk variant
of the M phase. In this variant 6 is partitioned into subvectors and the Gaussian random
walk Metropolis algorithm is applied to the subvectors in turn. Section 4.3.2 provides
more detail.

The objective of the M phase is to attain a degree of independence of the particles
Qgi) at the end of each cycle sufficient to render the final set of particles 6;, = 9%) a
reliable representation of the distribution implied by the probability density function
p* (#). The idea behind M phase termination in SABL is to measure the degree of
mixing (lack of dependence) amongst the particles at the end of each Metropolis step s
of cycle ¢, and terminate when this measure meets or exceeds a certain threshold.

In SABL mixing is measured by the average relative numerical efficiency (RNE) of
a group of functions chosen specifically for this purpose in each model. The RNE of the
SABL approximation of a posterior moment E [g ()] = [ g () p* () df is a measure of

its numerical accuracy relative to that achieved by a hypothetical simulation 0;; w p* (0).
Section 2.4.2 explains how this measure is constructed. In the M phase the RNE of the

particles {9(6’3)} tends to increase with the number of steps s, though not monotonically.

A simple stopping rule for the M phase is to terminate the iterations of the Metropolis
random walk when the average RNE of a group of functions first exceeds a stated
threshold. In any application there are practical limits to the average RNE that can
be achieved through these iterations, and so it is also desirable to impose a limit on
their number. Achieving greater independence of particles is especially important in the
last cycle, because at the end of the M phase in that cycle the particles constitute the
representation of p* (¢). There are quite a few options for M phase termination, detailed
in Section 4.3. The SABL core default criterion is average RNE 0.4 with 100 maximum
iterations in cycles 1,..., L — 1 and average RNE 0.9 with 300 maximum iterations in
the final cycle L.

Mixing thoroughly is not the objective of the M phase. In MCMC that is essential
in providing a workable representation of the distribution with kernel £* (). In SABL
the C' and S phases take on this important task, whereas the function of the M phase
is to place a lower bound on the dependence amongst particles.
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2.4 Convergence, the two-pass variant of SABL and accuracy

Durham and Geweke (2015) shows that bounded likelihood
max p (yr.r | 0) < o0 (13)

and existence of the prior moment

/e 19(0)] ) (6) dB < oo (14)

respectively are sufficient for the essential condition (7) (page 7). (Weaker conditions
exist but are more difficult to verify: see Durham and Geweke (2015) and references
cited there.) In all posterior simulators the assessment of numerical accuracy is based
on a central limit theorem, which in this context takes the form

— _ d
N2 (gVN) —g) - N (0,02) (15)
where
N
7= / g(©)p*(0)dd and M =N"TN g (6;).
(C) n=1

2

, as well.

By itself (15) is not enough: it is essential to compute or approximation o
Section 2.4.2 explains how SABL does this.

2.4.1 Convergence and the two-pass variant

The theory developed in the sequential Monte Carlo literature provides a start. It posits
a fixed pre-specified sequence of kernels kM), ... k(F) (see (8)) and a fixed pre-specified
sequence of M phase transition densities dQ¥) (see (12)), together with side conditions
(implied by conditions (13) and (14)), and proves (15). But in any practical application
the kernels k) and transition densities dQ\) are adaptive, relying on information in the
particles 9%71) or 9%’371), rather than fixed. The theory does not apply then because
the kernels and transitions depend on the random particles, and the structure of this
dependence is so complex as to preclude extension of the existing theory to this case
— especially for the transition kernels dQ®. Thus, this literature provides a theory of
sequential Bayesian learning but not a theory of sequentially adaptive Bayesian learning.
It is universally recognized that some form of adaptation is required, for it is impossible to
pre-specify kernels k() and transition densities dQ® that provide reliable approximations
in tolerable time without knowing a great deal about the posterior distribution — which,
of course, is the goal and not the starting point.

Durham and Geweke (2015) deals with this issue by creating the two-pass variant of
the algorithm. The first pass is exactly as described in this section, with the addition
that the kernels k() and transitions dQ) are saved. For the specific variants described
in Sections 2.1 and 2.3, this amounts to saving the sequence {r,} or {t,} from the C
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phase and the doubly-indexed sequence of variance matrices £(*~1 from the M phase,
but the idea generalizes to other variants of the C' and M phases. The second pass
re-executes the algorithm (with different seeds for the random number generator) and
uses the kernels k() and transitions dQ¥) computed in the first pass, skipping the work
required to compute these objects from the particles. The theory developed in the
sequential Monte Carlo literature then applies directly to the second pass, because the
kernels £® and transitions dQ® are in fact fixed in the second pass. The role of the
first pass is to provide the knowledge of the posterior distribution required for sensible
pre-specification of these objects.

Experience thus far is that substantial differences between the first and second passes
do not arise, and can only be made to do so by specifying imprudently small values of
N. Thus in practice it suffices to use the two-pass algorithm only occasionally — perhaps
at the inception of a research project when the general character of the model(s), data
and sample size are known, and then again prior to communicating findings.

2.4.2 Numerical accuracy

The sequential Monte Carlo literature provides abstract expressions for O’ in (15) but
no means of evaluating or approximating 0 . SABL provides the approx1mat10n using
the particle groups. Consider the second pass of the two-pass algorithm where the con-
vergence theory fully applies. In this setting there is no dependence of particles across
groups. The M phase and the C' phase are perfectly parallel: exactly the same opera-
tions applied to all the particles with no communication between particles. Resampling
in the S phase, which introduces dependence amongst particles, takes place entirely
within groups so as not to compromise independence across groups. Therefore the ap-
proximations g,y = N 7! SV 9(8;,) of g = E[g(8)] are independent across the groups
j=1,...,J. A central limit theorem (15) applies within each group so long as g ()
has finite second moment. Computing the cross-group mean g,y = J -1 Z;.legj Ny &
conventional estimate of o2 in (15) is

J
~ 2
03 = IZ QJN gJN (16)
7=1
and
(J—1)52/0 R (T - 1), (17)

the convergence in (17) being in particles per group N. In the limit N — oo, g,y and
33 are independent.
The corresponding numerical variance estimate for g, y is

52 1 A2
Ogun = (JN) (18)
This should not be confused with the appr0x1mat10n of the posterior variance,

var (9) = (JN) DS g (050) — 78"

j=1 n=1
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The numerical standard error corresponding to (18) is 7, ;v = [8; N "2 This is the
measure of accuracy used in SABL. From (17) the formal interpretation of numerical
standard error is

JINTI 4 g1y,
O0g,JN

If particles within groups are independent then 83 ~ var (g), whereas if they are not then
usually 83 > var (g), although 3; < var (g) may occur and is more likely with smaller
numbers of particle groups J. The relative numerical efficiency of the approximation
gyn 18

RNE, = var(g) /35. (19)

A useful interpretation of (19) is that a hypothetical simulator with 6,, & pr (0) would
achieve the same accuracy with RNE, - JN particles.

This argument does not apply directly in the first pass because of the adaptation.
In particular, recall that RNE is used in the M phase to assess mixing and determine
the end of the sequence of iterations of the Metropolis random walk. This is an example
of the complex feedback between particles and adaptation in the algorithm that has
frustrated central limit theorems. This shortfall in theory is likely to persist. The
two-pass procedure overcomes the problem and, moreover, provides the foundation for
future variants of the algorithm without the overhead of establishing convergence for
each variant.

2.5 Marginal likelihood

The SABL algorithm is particularly well suited to providing a numerical approximation
of the marginal likelihood

o (0) - *
ML= /@ PO (6) p (yur | 6) df = /e K (6) do. (20)

The marginal likelihood, also called the marginal data density, is central in the theory
and practice of Bayesian model comparison, as well as in Bayesian model averaging
for combining models and decision-making. Marginal likelihood provides the bases for
determining relative model probabilities, conditional on the data, and for combining
models in forecasting or for the purpose of decision-making. Two models with the
same likelihood function, but different prior distributions, are different models and thus
marginal likelihood provides objective evidence on the suitability of one prior distribution
relative to another. This is important: in some quarters choosing a prior distribution
is still regarded as subjective and unscientific, but this is entirely false: all aspects of
model specification are subjective, but for all aspects, including the prior distribution,
evidence (science) can be brought to bear on the quality of the specification.

The approximation of marginal likelihood has posed a particularly difficult technical
problem that has seen checkered resolution in the posterior simulation literature as well
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as in practice: depending on the combination of posterior simulation method and model,
approximation of M L can be easy to impossible, and reliably assessing the accuracy of
the approximation poses further issues that are again specific to the situation.

The SABL algorithm overcomes these difficulties because it produces approximations
of M L — more precisely log M L as is standard — as a by-product of the C' phase. Here we
will present the ideas behind the method, without going into full detail which requires
considerable additional notation. Details are in Section 4 of Durham and Geweke (2015)
and are reflected in the SABL toolbox code. From (6) and (8),

Iy k*(L) 0)d0 [ kO (9) o
o

fx@a - RSO | SN oY
(

1
L [y w®

*(0— 1)
= I]*= T kfwkl ) i H/ “V@)ad. (21)

Wean = (N30 ST wl® () o / W (6) pD () do,
j=1 n=1 ©
Hence from (21),
L
Wy JN g k* (9) d(g,
=1 ©

where the convergence is again in the number of particles per group N. This is the
marginal likelihood (20) in a Bayesian inference context. Durham and Geweke (2015)
discusses the approximation of log (ML) and computing the numerical standard error
for that approximation.

2.6 Prediction

Bayesian inference implemented by posterior simulation provides a general practical
approach to most prediction problems. The generic structure is that we wish to access the
probability distribution of observable but not yet observed random vectors conditional
on (a) our current knowledge about the process that produces observed values and (b)
some known aspects of the environment in which the observables will be determined.

p (conditional observables | conditional environment, process knowledge).  (22)

The idea is to simulate hypothetical future observables from this distribution.
The more structured version of this relationship in Bayesian statistics arises from
several elements. With accompanying standard notation, they are

e A specified distribution of observables y conditional on a parameter vector 6 and
and environment z, p (¥ | 0, T);
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The environment = x in which the observed values iy = y were realized;
The environment = x* in which the not yet observed values y = y* are realized;

The specified distribution p (y | 6, 7) applies both ex ante, y | (0,x) ~ p(y | 0, x),
and conditionally, y* | (0, 2*) ~ p(y | 0, z*);

There is additional information A about 6 arising independently of z, y, x* and
y*. Thus

p(y | A, y,a®) = /p<y* 16,2)p (6| 2.y, A)do. (23)

The SABL algorithm, like posterior simulators generally, produces a random sample

0 ~pO|z,y,A)(G=1,...,J;i=1,...,N) (24)

for the specific case in which the additional information A about 6 takes the form
of a proper prior distribution p (6 | A). (The information A then takes the form of
the hyperparameters of the prior distribution.) By then producing the accompanying
random draw

yi; ~p (Y| 05.27) (25)

the result is a random sample of size J - N drawn from (23).

Three cases are of particular interest.

1.

In out-of-sample prediction the set of observed values y is not empty. The con-
ditional observables may correspond to a hypothetical x+ = z*. In this case
p(y* | A x,y,x*) is a counter-factual or “what if” prediction. The conditional
observables may arise from a temporal setting in which 7 in general includes past
realized values of y implying that z* includes some or all of y; x* may also include

deterministic aspects of the future like calendar and trend effects.

. In prior predictive simulation the set of observed values y is empty, and

p(y | Az y2")=py | Ax")

is then known as the prior predictive distribution. This is precisely the situation
that arises when an investigator is contemplating model and prior specification
before collecting data. It is also a useful — sometimes the only — way to assess
the properties of model and prior specifications. The prior predictive distribution,
used in these contexts, has well-established attractive formal Bayesian properties
(Box, 1980; Geweke, 2005, Section 8.3.1).

. In posterior predictive simulation the conditional environment is specified to be

the same as the unconditional environment, x* = z. The resulting sample y;;
then has the interpretation as a representation of what the observable would have
been had it come precisely from the specified model and prior as opposed to the
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process that actually generated it. The posterior predictive distribution does not
fall within a strict Bayesian analysis, for it steps outside conditioning on the model.
This precludes formal Bayesian use of the posterior predictive distribution (Box,
1980; Geweke, 2005, Section 8.3.2). Nevertheless it can indicate in an informal
way the limitations of the specified model and prior, but one must exercise care in
taking from the posterior distribution lessons for improved model specification, for
this constitutes using the same data more than once and can give rise to problems
like over-fitting.

To facilitate prediction, SABL models all include convenient functions that produces
(25), and then (24) and (25) together provide the representation of the predictive dis-
tribution.

2.7 Optimization

Return now to the optimization problem, determining " = arg maxgece h (). As dis-
cussed in Section 2, SABL approaches this problem using kernels of the form (4) in a
manner analogous to the likelihood function p (y1.1 | #) in Bayesian inference. There con-
tinues to be an initial density p(®) (f), and the corresponding distribution is sometimes
call the instrumental distribution in this context. This might or might not be intended
or interpreted as the expression of prior beliefs about the solution of the optimization
problem. The density p® (6) is a technical device providing an initial condition for the
algorithm and it suffices that p(® () >0V 6§ € ©.

If 1 () is bounded above on © (the analogue of (13)) then SABL produces particles
0;; whose distribution has kernel density p® () exp[r - h (#)]. If h has a unique global
mode 6" then, under weak side conditions stated in Geweke and Frischknecht (2014),
9 25 0% as r — oo. It is typical to see a steady increase in power with each successive
cycle. In fact for twice continuously differentiable objective functions h (f) it can be
shown that the rate of change (ry — r,_1) /71 comes to depend only on the number of
elements in #. If the C' phase power tempering criterion is RESS* = 0.5 then for 0
with 3 elements it is 1.153, 10 elements 0.56, 20 elements 0.349, and 50 elements 0.198.
Values are lower for higher RESS* and vice versa. Observed rates are often very close
to the theoretical values in most cycles.

This leaves open the practical problem of terminating the algorithm. If the algo-
rithm is simply left to run then differences in p® (8)exp [r - h ()] become dominated
by the limitations of 64-bit arithmetic rather than the shape of the function. This
adversely affects the performance of the Metropolis search algorithm in the M phase
and in consequence accepted candidates do little to increase effective sample size and
so the increment to r decreases from the theoretical rates of change to values so low
that the entire algorithm effectively “stalls”. Performance for high values of r, and the
point at which the approximation to the optimum suffices, are entirely problem-specific.
Generally this decision can be made by joint consideration of some summary values of
algorithm performance at the end of each cycle as follows:
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1. Power of the algorithm, r; equivalently, the temperature 1/7.

2. Current maximum, p* = max;—1__n.j=1,.P (0;;), especially in relation to the
value in the previous cycle. If the value of the objective function has substance
(e.g., measured in dollars) this may be especially attractive.

3. The distribution of p (6;;) across particles; again, the interpretation is clear given
a substantive value of the objective function.

4. The distribution of the particles 6;;.

5. Fraction of particles #,; for which p (6;;) = p*. In simple problems this value can
exceed 0.5 and even approach 1, indicating that the maximum has been computed
up to the limits of 64-bit arithmetic. Geweke and Frischknecht (2014) find this for
six canonical problems in the global optimization literature.

SABL does not use these criteria to provide a default algorithm stopping rule. In-
stead, it makes the summary values available to the user at the end of each cycle, and
the user includes code in p_monitor that determines whether to continue with another
cycle or terminate the algorithm. Section 4.1.3 indicates how to access to the summary
values above.

3 The SABL toolbox

The SABL toolbox, like all other Matlab toolboxes, becomes an integral part of Matlab
once it is stalled. Instructions for installing Matlab are given in the README file in
the SABL parent directory. This directory shows that SABL code is organized into four
separate directories. The user need not be concerned with this organization, but the
distinction between code in these directories also separates SABL code by functionality.

Many subsections in this and the next section (models and priors) indicate, paren-
thetically, the corresponding Matlab control window help command the covers much of
the same material.

3.1 Organization

SABL organizes code and memory in a way that facilitates the incorporate of a wide
variety of models, priors and objective functions. It also enables the options for tailoring
SABL that make the entire algorithm very flexible.

3.1.1 Functions

Core functions (/code) organize the SABL algorithm at the highest levels, and organi-
zations common to all SABL models and applications. Core functions all have names of
the form c_x with the exception of the root function SABL. This code should never be
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edited because doing so could cause SABL not to perform at all, or lead to errors and
compromises that are evident in its performance, or (worst of all) not evident. This is
not necessary for two reasons:

e SABL provides ample documentation for all users, in several forms (this Handbook
being one).

e SABL provides a specific interface with core code, explained in this section, through
which users can tailor SABL in many ways to their needs.

The code is available consistent with the open architecture of SABL, and the those
with a deep interest in SABL details or trying to address knotty programming issues in
advance applications may find it useful.

Model code (/models) contains the main functions that implement each model in
SABL. Code that organizes the specific computations for a given model is in a subdirec-
tory specific to that model — for example, the code for the normal model (model normal)
is in the directory models/normal. Functions in these subdirectories all have names of
the form m_x*, for example models/normal/m_message.m. The names of these functions
that interface with SABL core functions have the same name regardless of the model.
The user’s specification of the model name tells SABL which model subdirectory to draw
upon. A modeler contributing a new model to SABL does so by creating a subdirectory
in /models. Section 5.6 provides details on how to do this. Users should not modify
model code but consulting the code may prove helpful in some advanced applications.

Utility code (/utilities) includes functions that handle lower level but vital aspects
of SABL. Functions in this subdirectory all have names of the form u_x, for example
utilities/u_mean. The vital aspects addressed in these functions include the different
computing environments in which SABL performs (CPUs or GPUs, either singly or ex-
plicitly multiple). They make it possible to write all other functions in SABL without
incorporating logic that is conditional on the computing environment. These functions
also enable users to write simple code that performs seamlessly in these different environ-
ments and without concern for the technical minutiae that accompany the organization
of computation for GPUs or multiple cores. (Consult help SABLfunctions.) Users
should not modify model code but consulting the code may prove helpful in some ad-
vanced applications.

Library code ( /library) includes computationally intensive functions for which
it is desirable to have both Matlab code — for example 1_egarch.m for CPU envi-
ronments. The subdirectory cufiles has code for GPU environments, for example
cufiles/1_egarch.CUDA. cu. Functions in this subdirectory all have names of the form
1_x. Users should not modify model code but consulting the code may prove helpful in
some advanced applications.

Project code (/projects) provides some examples illustrating SABL models and
methods. The entire interface between a specific project application and SABL is the
function p_monitor. In actual application, the user can — and should — create a project
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folder in a place that is most convenient given the way the user organizes work. For more
advanced applications the user may find it useful to create one or more other functions,
invoked by p_monitor, consistent with the principle of modularity. So long as these
functions do not have names of the form c_%*, 1_*, m_* or u_x* there will be no conflict
with SABL functions. As always in Matlab, user functions take precedence in case of
conflict with Matlab or toolbox functions.

3.1.2 Global structures and stages

help algorithm

All data (arrays, strings, structures) used in more than one invocation of a specific
function exists in one of eight global structures in SABL. Section 3.4 discusses these
structures in detail.

Two of these structures (P and Ppar) are reserved for project use, and it is essential
for the user to understand how these structures work in order to get the most out of the
flexibility that the single function p_monitor provides in tailoring the SABL algorithm,
models and priors to the work at hand. This understanding is essential if the user plans
to use multiple CPUs explicitly, or to use one or more GPUs. Placing all but the most
transient data in these structures is also essential for the user to take advantage of the
way that SABL exploits the pleasingly parallel structure of the SABL algorithm. Using
SABL utility functions that accomplish the same thing is equally important if the user is
to write code that need not be modified when, for example, the code is run using one
GPU as opposed to one or more CPU cores.

Two of these structures (M and Mpar) are reserved for model use, and it is even more
important for the creator of a new SABL model to understand how these structures
work.

For purposes of interfacing with models and applications in projects, and to provide
access to SABL intermediate computations that are useful for many substantive pur-
poses, SABL passes down through a sequence of functions provided by the model and by
the project, and then back up again. This happens at 15 distinct points known as stages.
The string stage is the single input argument of the function p_monitor, and by inter-
rogating this argument p_monitor can perform different tasks at different stages. This
includes harvesting the products of intermediate SABL computations. It also enables
the user to change the default values of many global fields that control the way SABL
works in order to tailor the algorithm to the circumstances at hand.

3.1.3 Invoking SABL

help SABL
To invoke SABL, use the command

SABL([model], [project]) (26)

The argument [model] can take one of three forms:
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e The name of a SABL model, e.g. ’normal’ or ’poisson’;
e The directory (absolute or relative) for model code;

e If the current directory includes all model and project code, then both arguments
can be omitted.

The argument [project] can take one of three forms:

e The directory for project code (absolute or relative);
e The name of one of the example projects in the SABL toolbox;

e If invoked from the project directory the argument can be omitted.

The command allsturctures = SABL([model], [project]) resultsin a structure
containing all eight SABL global structures C, E, M, P, Cpar, Epar, Mpar, Ppar. The com-
mand (26), followed by the declaration global [SABL global structure 1], [SABL
global structure 2], makes the named structures accessible from the command win-
dow.

3.1.4 SABL help

SABL incorporates an extension of the Matlab help command that encompasses a wider
array of documentation.

1. For Matlab functions and for SABL functions not specific to models, help works
in the usual way: help [functionname].

2. For SABL functions specific to models (equivalent to all functions of the form m_x)
the form is help [modelname] [functionname]. The more verbose form is due
to the fact that different model directories have functions with the same names.

3. The help command also applies to all Matlab global structures and their fields.
Except for the M and Mpar global structures, the form is help [field], for example
help C, help E.gpu or help C.Cphase.power. For M and Mpar the form is help
[modelname] [field], for example help normal M.x_pointer. If the field is a
structure then help lists all the fields of that structure, classifying each field as
a structure, required field, monitor field or control field together with its default
value in the last case. Otherwise, help provides a narrative description of the field
as well as the same field classification. Users will find that the help command
streamlines coding of p_monitor.
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4. Finally, the help command provides access from the command window to con-
venient documentation that covers many of the same details in this section on
the SABL toolbox and the section that follows on models and priors. These are
arranged in a three-level branching hierarchy whose top level is help SABL. The
result of that command points to the child nodes, and the rest of the hierarchy
is organized in the same way. In every case the command takes the form help
[topic]. The child nodes of the SABL parent are:

e algorithm: Useful reference for the entire SABL algorithm including stage defi-
nitions

e SABLfunctions: A guide to utility functions that users are most likely to employ

e structures: A concise guide to documentation of the many fields of SABL global
structures

e models: A list of model names in SABL 2015a and a concise guide to their docu-
mentation

e priors: A list of prior names in SABL and some of their variations

3.2 Computing environments

help environments

Getting things done requires both software and hardware. The SABL toolbox func-
tions in a very particular but widely available proprietary software environment. It
operates on two different kinds of hardware, one of which (traditional single or multi-
core CPU) is available to anyone who is able to access Matlab. In addition, and key
to the power of SABL for complex inference and optimization problems, it also oper-
ates using one or more graphics processing units (GPUs) that can be installed easily
and relatively inexpensively. The full combination of hardware and software is available
through cluster computing facilities in many universities and is increasingly available in
academic and cloud computing environments.

3.2.1 Software

The SABL toolbox is written entirely in Matlab, and Matlab, version 2012b or later, is
required. Model likelihood functions have two versions, one written in Matlab and the
other in C/CUDA. Using the C/CUDA version requires a C/C++ compiler (e.g. GCC,
Intel C++ Compiler or Microsoft Visual C++) as well as the CUDA Toolkit from Nvidia.
The CUDA Toolkit is freely available at https://developer.nvidia.com/cuda-toolkit.
It drives the GPUs on the system and operates on top of the C/C++ compiler in compil-
ing C/CUDA code. If Matlab runs successfully on a given combination of hardware and
operating system, then so will the SABL code. By implication the Parallel Computing
Toolbox must be installed to exercise the GPU option (E.gpu = true) in SABL.
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3.2.2 Hardware

All of the options and models in SABL are available for both CPU and GPU hardware;
CPU is the default and is trivial to modify as described below. SABL exploits hardware
in a CPU environment in exactly the same way as Matlab. By default, Matlab attempts
to utilize all available CPU cores efficiently, and the extent to which this has been done
can be gauged by the ratio of CPU time to elapsed time reported at the end of every
SABL run. Experience suggests that this works to greater effect in SABL to the extent
that the application demands more floating-point operations; ratios been 3 and 4 can be
attained in these circumstances in conventional quadcore environments.

Through the Parallel Computing Toolbox, Matlab provides the facility to access
GPU(s) and dispatch execution explicitly to individual GPUs; if more than one is
present. In the context of the Matlab Parallel Toolbox each GPU constitutes a worker.

The Matlab Parallel Computing Toolbox enables users to access GPU memory con-
veniently and implements a subset of its instructions for the GPU. With a bit of effort
one can also execute Matlab on more than one GPU simultaneously. SABL code is
written respecting the limitations of the Matlab instruction set for the GPU, making
it a trivial matter to execute SABL exploiting a GPU-enhanced platform. Thus the
modeler and user can continue to code exclusively in Matlab and SABL will exploit
the GPU. However, it does so relying only on the Matlab instruction subset for the
GPU, and that is an important limitation. In the Matlab Parallel Computing Toolbox
the organization of GPU computing is then function specific: it takes advantage of the
GPU function by function in vector arithmetic and to some extent in linear algebra. It
does in any way exploit the pleasingly parallel nature of the SABL algorithm, especially
important in likelihood function evaluation. In this environment GPU execution can be
faster than multicore CPU execution, but at best by a small factor — rarely more than
5 and certainly less than 10 compared with quadcore CPU.

The SABL toolbox organizes execution to exploit the pleasingly parallel nature of the
SABL algorithm. This organization involves the entire algorithm and extends across the
many functions that implement both current and prospective variants of the algorithm,
models, and objective functions. Because of this organization, GPU execution in SABL
can be faster than multicore CPU execution by much higher factors

To fully exploit these advantages SABL offers the option of providing code written
using C/CUDA to evaluate likelihood functions. This provides for more explicit control
of threads, and in particular the ability to specify that each thread evaluates the entire
likelihood or objective function for a particular particle. As the number of floating
point operations per particle required to evaluate these functions increases, the fraction
of total SABL execution time devoted to the evaluation of these functions increases
toward one. This enhances the reduction in execution time afforded by this organization
of computations on the GPU. The number of floating point operations in the entire
algorithm is close to proportional to the number of particles, especially in applications
dominated by likelihood function evaluation. But, because there is also fixed overhead
in GPU execution, returns to this organization of computations on the GPU increase
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noticeably, typically to the point of several tens of thousands of particles. In the most
favorable cases we have observed execution 40 times faster in this environment using a
GPU with about 500 cores, compared with a quadcore CPU.

3.3 Layering, stages and passing control

help algorithm

Table 1 (page 65) provides an overview of the SABL algorithm described in Section 2,
links it to the highest level core code of SABL (functions SABL, c_sabl and c_SABL_spmd)
and indicates the stages in SABL.

SABL employs three layers: core, model and project. The core layer is the algorithm
itself, including all of the options for the C, S and M phases. (SABL is designed to
accommodate additional phase options in the future, including options provided by third
parties.) Each layer consists of a set of functions. All function names in the core layer
take the form c_x*, except for the highest-level function SABL. All function names in the
model layer take the form m_*. These functions are model specific. Each model has its
own directory, and from the declaration of the model name at the outset, SABL builds
the path that includes the right model directory.

A particular application of a model, including the data, specification of a prior distri-
bution, and parameters controlling the algorithm (for example, the number of particles)
is called a project. Each projects must include the function p_monitor, which defines
and manages the application. Users may find it advantageous to write additional func-
tions invoked directly or indirectly by p_monitor. As always it is important that these
functions should not have names the same as those in Matlab or any Matlab toolbox
being used, unless the intention is to provide a replacement for the function in question.
For the SABL toolbox this simply means not having functions of the form c_*, 1_x,
m_*, or u_%, or writing a function SABL.

At each of the points indicated by “Stage:” in Table 1 (page 65) top level SABL
code control passes to the function c_monitor in the core layer. This function executes
certain commands and then passes control to the function m_monitor in the model
layer. This model-specific function executes certain commands and then passes con-
trol to the p_monitor, the project-specific interface provided by the user. On return
from p_monitor control passes back to m_monitor, which can execute certain further
commands, then to c_monitor which can also perform additional tasks before control
returns to the top level code.

The hierarchy has several purposes, one of which is simply to accommodate many
models and projects in the same system. Somewhat more subtle but quite important
is that the code in the c_monitor and m_monitor functions is written so as to enable
the modeler (through m_monitor) and the user (through p_monitor) to exercise a great
deal of control over the details of the SABL algorithm. The pattern is that c_monitor
provides all of the details required for the SABL algorithm, using pre-defined default
choices, before passing control to m_monitor. (For example, the default choice for the
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number of particles is J = 16 groups with N' = 1024 particles apiece: C.J=16, C.N=1024.)
The function m_monitor then has the opportunity to modify these defaults before in-
voking p_monitor, as well as to make default choices for options specific to the model,
for example the form of the prior distribution. In p_monitor the user has the oppor-
tunity to override defaults set in either c_monitor or m_monitor before control returns
to m_monitor, and similarly m_monitor provides all of the model-specific details and
defaults required before control returns to c_monitor.

Since control passes downward from c_monitor to m_monitor to p_monitor and
back again at many points in the algorithm SABL must communicate to those functions
the point at which control has been passed. To this end the entire algorithm is partitioned
into stages (a concept) and at the end of each stage there is a round trip through the
*_monitor functions (the implementation of the concept). This single input parameter
of c_monitor, m_monitor and p_monitor is the stage name. The SABL code, including
sample projects, uses stage as the variable name of this input string. The current stage
can also be access through the field C.stage.

Thus the structure of p_monitor code must be

if strcmp(stage, [stagename_1])
execute this ...
elseif strcmp(stage, [stagename_2])
execute that ...

elseif strcmp(stage, [stagename_n])
execute yet something different ...
end

While the ordering of the if and elseif blocks makes no difference, it may be
helpful to keep them in the same order they occur in the algorithm. It is important
to bear in mind that SABL makes the round trip through the monitor functions at 9
points in each cycle, and in general passes through two of them (’whileCphase’ and
’whileMphase’ more than once in each cycle — often many times). Thus it is good
practice that all execution in m_monitor and p_monitor be written within if / elseif
branches of the kind just described. Anything executed outside those branches will be
repeated thousands of times in a typical application of SABL. If data (e.g. an array or
string) need be computed only once but is used later, it is best to place it in the P or
Ppar structure and then access it as needed.

3.4 Global structures

help structures
Most constants and arrays in SABL are fields of structures, and these structures are
global. SABL employs 8 structures, as follows:

e Core constants and arrays: C and Cpar. Examples are C.J, the number of particle
groups, and Cpar.theta, the matrix of particles.
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e Environment constants and arrays: E and Epar. Examples are E.gpu, indicator
for execution using one or more GPUs, and E.pus, number of Matlab workers.
Epar currently has no fields.

e Model constants and arrays: M and Mpar. Examples are M.data, the data array
in most models, and M.x_pointer, which defines the covariates by pointing to
columns of M.data in many models. Mpar has no fields in SABL 2015a models.

e Project constants and arrays: P and Ppar. These global structures are reserved
for users who find it convenient to use global structures to communicate between
user-defined functions or between SABL stages. These structures, as well as any
p_* function other than p_monitor, are never accessed by SABL and so they
are not required. However, SABL. management of GPUs and multiple processors
pertains only to the fields of its 8 global structures. As a consequence users must
take advantage of P (virtually always) and Ppar (only if creating arrays in that
correspond to particles) if their code is to function correctly in anything other than
a single-CPU environment.

All vectors (i.e., two dimensional arrays in which one size dimension is 1) in SABL
are column vectors, and some SABL functions rely on this fact. SABL automatically
re-orients row vectors in global structures to be column vectors, implying that users
can ignore this convention when providing fields of M structures in p_monitor in stage
’startrun’. But the convention must be respected explicitly when a user invokes a
utility function directly or indirectly from p_monitor.

With a single exception all communication between users and SABL, and between
modelers and SABL, is managed through the fields of these global structures. The one
exception is the string argument stage, which is the single input argument of p_monitor
(for users) and is the single input argument of m_monitor (for modelers), but this string
is also available in the field C.stage.

Every field of the C and E structures that is not itself a structure (for example,
C.Cphase, which is a structure with its own fields) is either a control field or a monitor
field. M structures have both kinds of fields, and in addition they have required fields. A
required field is a control field for which there is no default value, whereas control fields
(proper) always have default values. Failure to provide a required field always produces
a terminating error. M structures have both kinds of fields, and in addition they have
required fields. A required field is a control field for which there is no default value.
Control fields, proper, always have default values.

Control fields and subfields with content in the C structure define the specific vari-
ant of the SABL algorithm; those in the E structure do the same for the computing
environment; and those in the M structure define the specific model. The P structure is
reserved for the user. The advantage of using the P structure is that its contents may
be accessed after the algorithm is complete, by declaring global P in the command
window, whereas the values of local arrays in functions are lost.
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There are no required fields in the C and E structures. All control fields have default
values and each of these control fields requires user access only if the user wishes to
change its value. Control fields of the C structure must be set inp_monitor in stage
’startrun’: for example, a user wishing to use N = 512 particles in each of J =
8 groups would specify C.J=8, C.N=512 because the default core values are C.J=16,
C.N=1024.) Control fields of the E structure must be set inp_monitor in stage ’open’:
for example, in an environment with two GPUs the user would specify E.gpu=true
and E.pus = 2 because the default core values are E.gup=false and E.pus=1. In each
model the M structure has required fields that define the application (i.e., inference
or optimization problem) that must be declared in p_monitor in stage ’startrun’,
for example M.data, M.x_pointer and M.y_pointer in most models. By virtue of the
passing of control downward and back upward in each stage, user values take priority
over either core or model default values, but if they do not respect the conventions of
the field (e.g. M.y_pointer < 1 or M.y_pointer > size(M.data, 2) then a higher
level will produce a terminating error. Most models also have a number of control fields
with default values, which the user may change to tailor the model to the application.

As with any software, in learning SABL it is best to begin with the default values of
the control fields and then experiment with alternatives. Experimentation will lead to a
deeper understanding of the algorithm’s behavior that will stand the user in good stead
in approaching complex applications.

Monitor fields provide access to intermediate aspects of the SABL algorithm, and are
very useful for specific purposes — for example, having access to predictive log likelihoods
in the data_whole’ variant of the C phase. In these applications it can be efficient to
harvest (retrieve) the contents of these fields or functions of their contents. It is most
efficient to copy the harvested information into a field of the P structure and then save
the entire P structure at the termination of SABL.

Example 1 Suppose that p_monitor invokes additional functions provided by the user.
The user could pass stage as an input through a hierarchy of functions as needed, but
it may prove simpler to declare global C in these functions and then access C.stage
directly.

There is an important distinction between C and Cpar. Cpar is reserved for ar-
rays whose row dimension is the number of particles per Matlab worker (C.JNwork =
C.JN/E.pus). These arrays are distinguished by placement in a different structure be-
cause when there are multiple Matlab workers or multiple GPUs all C.JN particles are
partitioned into E.pus sets of equal size and each set is allocated to a worker. Thus
each worker “sees” only part of any array whose rows correspond to particles, and core
SABL code handles function of all particles in a computationally efficient way. (SABL
has specific functions devoted to this task that are also available to users, for example
u_mean and u_std — see Section 3.8 or invoke help SABLfunctions.) In the same sit-
uation the fields the entire C structure is copied to each worker. The structures Epar,
Mpar and Ppar exist to handle the contingency that environment globals, model globals,
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or project globals have arrays that have the same size and allocation properties as the
structures that are the fields of Cpar.

3.5 Updating with new data

help updating

Given an ordering of the observations ¢ = 1,...,T, the posterior distribution for
all T" observations may be expressed as a sequence of recursive updates of posterior
distributions at times t,, with 0 <t; < ... <tg=1T:

s
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SABL facilitates this updating by making it convenient to use the distribution p (6 | y1.;)
in place of the prior distribution p (6). If particles from p (6 | y1.1) are available in a file,
it is faster to update than it is to execute the entire algorithm — often much faster. This
is especially advantageous in real time, on-line settings in which data arrive rapidly.

The project specification E. simulation_record = filename, declared by p_monitor
in stage ’open’, causes SABL to record all 8 global structures in file filename.

In an updating run of SABL the project specifies E.simulation_get = fname (the
same name assigned to E.simulation_record in the earlier run of SABL). This dec-
laration must be made by p_monitor in stage ’open’. SABL then begins using these
previously recorded particles rather than particles drawn from the prior distribution in
the updating run. It also uses all of the data, and for this reason SABL requires that
p_monitor provide the full, updated data set in stage ’startup’. (SABL identifies the
part that is new from the value of C.Cphase.tlast read from E.simulation_get.)

Not all of the details of the SABL algorithm need be the same in an updating run
as they were in the earlier run. For example, criteria for stopping the M phase can be
changed based on experience in the earlier run, as can the effective sample size criterion
C.Cstop.ress for stopping the C' phase. But certain other details cannot, for example
the number and organization of particles specified by C.J and C.N. SABL checks for this
particular error, but SABL 2015a does not check all such possible errors, which could
cause SABL to terminate with an error message that is not particularly illuminating. The
SABL updating feature is tailored for ready implementation in environments in which
new data arrive regularly but the specific variant of the SABL algorithm employed, as
specified in the control fields of the C structure, does not evolve in any significant way.

Heuristically, updating in SABL is more efficient than re-execution from the begin-
ning to the extent that the increment to information in the update relative to the previous
sample is small compared to the increment in information in the entire sample relative
to the prior distribution. If the information in the prior distribution is small compared
to that in a typical observation (corresponding to the colloquial “diffuse prior”) then
this advantage is considerable. In this situation SABL bypasses the early cycles in which
observations enter the sample slowly (in the ‘data_whole’ variant of the C' phase) or
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the power of the likelihood function increases slowly from zero (in the ‘anneal_Bayes’
variant). Each iteration of the M phase takes longer in updating than it typically did
in the previous run because the likelihood function incorporates more observations, but
this cost would also be incurred if the entire algorithm, rather than just the update,
were executed in any event. In regular updating, for example the addition of the next
quarter’s macroeconomic data or the next day of financial data, the update often entails
just one cycle. Moreover this cycle in turn involves a very small number of iterations,
sometimes just one, in the M phase. The reason for this is that by default the final cycle
of SABL uses a stronger termination criterion (C.Mstop.rne_end) than do the earlier
cycles (C.Mstop.rne), implying that the particles at the start of an update are more
thoroughly mixed than they are at the start of a typical cycle.

It is important to distinguish updating with additional data from revision of data
employed in a previous run of SABL. The SABL algorithm cannot “undo” information
once it is incorporated — this is fundamental. If data are revised it is necessary to begin
with the prior distribution or a posterior distribution that uses only a subset of the
unrevised portions of the data.

3.6 Two-pass variant of the SABL algorithm

help pass
As described in Section 2 the SABL algorithm builds the kernels &) in the C' phase of
successive cycles using information in the particles 0%;1) and the transition kernels dQ**)

in the M phase using information in the succession of particles 9%371) (s=1,2,...).
These critical adaptations, especially in the M phase, are precluded by the theorems for
sequential Monte Carlo, a key underpinning of SABL. Indeed, all practical implementa-
tions of sequential Monte Carlo are subject to this limitation.

SABL resolves this problem and achieves analytical integrity by utilizing two passes.
As explained in Section 2.4.1, the first pass is the adaptive variant in which the algorithm
is self-modifying. The second pass fixes the design emerging from the first pass and then
executes the fixed Bayesian learning algorithm to which the theorems in the sequential
Monte Carlo literature directly apply. Experience strongly suggests that the second
pass leads to qualitatively the same results as the first pass — in particular, to similar
simulated posterior moments and associated numerical standard errors. Differences in
posterior moment approximations, between the two passes, are typically consistent with
numerical standard errors. Yet this is simply an observation, and it is important to be
able to check this condition at least occasionally in the course of a research project.

All that is required for a project to execute the two-pass variant of the algorithm in
SABL is for p_monitor to set C.twopass = true in stage ‘startrun’. The impact of
this change is easy to trace in Table 1. (page 65) SABL executes both passes in sequence
without pausing, displays to the screen in similar fashion in both passes, and records
the results of the second pass to file if E.simulation_record is not empty. The logical
field C.passone indicates whether SABL is in the first (true) or second (false) pass.
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Example 2 Suppose that a research project makes a formal comparison of results in the
first and second passes, and to this end requires access to the particles of both passes.
This can be accomplished by setting C. twopass = true in stage ’startrun’, and then:
elseif strcmp(stage, ’finish’)
1f C.passone
P.passl.mean = u_mean(Cpar.theta);
P.passl.std = u_std(Cpar.theta);
P.passl.nse = u_nse(Cpar.theta);
P.pass1l.rne = u_rne(Cpar.theta)
else

P.pass2.mean = u_mean(Cpar.theta);
P.pass2.std = u_std(Cpar.theta);
P.pass2.nse = u_nse(Cpar.theta);
P.pass2.rne = u_rne(Cpar. theta);
p_passcompare(P.passl, P.pass2); J Formal comparison

end

end

Users contemplating this kind of work with multiple workers can test their preparation
by understanding why this code would not run at stage ’endrun’. Would it work if E. gpu
= true, and if not what changes should be made? If the p_passcompare code led to a
terminal error, the results could still be saved with the line global P followed by the
line save filename P from the console. Then p_passcompare could be modified, the
file loaded, and p_passcompare executed. FEither way, p_passcompare has access to
all SABL functions. A more conservative strategy would simply save P at the end of
execution without attempting p_passcompare in stage 'finish’.

3.7 Using multiple workers and GPUs

help environments

As detailed in Section 2 the SABL algorithm is pleasingly parallel, meaning that
almost all steps execute the same instructions on different particles and there is very
little communication between particles. The SABL toolbox exploits this property by
organizing execution in one of four ways, corresponding in to the Cartesian product of
(a) one (E.pus = 1) or more (E.pus > 1) workers, and (b) execution using CPU cores
(E.gpu = false) or GPU cores (E.gpu = true). Alternatives (a) and (b) interact as
follows.

1. With one worker and CPU cores (E.pus = 1, E.gpu = false) SABL exploits the
pleasingly parallel structure of the algorithm by means of array arithmetic on
any dimension corresponds to particles. This is merely a convenience for coding
in Matlab: at the machine execution level all computation is serial, with the
important exception that the Matlab compiler takes advantage of multiple CPU
cores in translating Matlab code to C code, on a function-by-function basis. Matlab
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can be quite efficient in organizing multiple CPU cores, but this is not due to
exploiting the pleasingly parallel structure of the SABL algorithm.

2. With several workers and CPU cores (E.pus > 1, E.gpu = false) SABL par-
titions particles amongst cores. (E.pus cannot exceed the number of CPU cores
available.) Each worker (in fact, a thread) utilizes a single CPU core and threads
are synchronized using Matlab’s single processor multiple data protocol. This of-
ten, but not necessarily, leads to faster execution than when E.pus = 1: the reason
is that Matlab was already exploiting multiple CPU cores with E.pus=1, although
with a different strategy.

3. With one worker and one GPU (E.pus = 1, E.gpu = true) SABL performs all
but a few housekeeping functions on the GPU. GPU code exploits the hundreds
or thousands of GPU cores available, defining threads to take advantage of the
parallel structure of the algorithm and the single-instruction multiple-data nature
of the GPU. This is accomplished in part through Matlab GPU kernels, but most
importantly through C/CUDA code for likelihood or objective function evaluation,
which in turn dominates floating point arithmetic in all but the simplest models
and applications.

4. With several workers and GPUs (E.pus > 1, E.gpu = true) particles are parti-
tioned across GPUs, and then on each GPU execution proceeds as in the single-
GPU case. Because of the pleasingly parallel structure of the SABL algorithm
there is little need for communication between GPUs; that which takes place uti-
lizes Matlab utilities for this kind of transfer. In all but the simplest models and
applications this overhead accounts for a very small fraction of the time required
to complete the computations.

User code executed from p_monitor in stage ’startrun’ can ignore issues related
to multiple workers and GPUs in assigning constants or arrays to fields of the P and M
structures: SABL allocates the fields of these structures to CPU or GPU, and across
workers, in an appropriate way. Thus users who have experience with Matlab but are
unfamiliar with any of the extensions in the Matlab Parallel Computing Toolbox can
simply write code to set control fields at this stage in their usual manner. In other
stages more care is required, especially when harvesting monitor fields into fields of
the P or Ppar structures. The remainder of this section goes into some of the details
and considerations that are important for these operations to proceed smoothly and
successfully.

3.7.1 Using multiple workers

By default SABL uses one worker (E.pus = 1). Using multiple workers requires that
the Matlab Parallel Computing Toolbox be installed. The user manages the opening
of the Matlab pool, including specification of number of workers, as well as its closing.
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The user can also do this in p_monitor, opening a Matlab pool in stage ’open’ and
closing it in stage ’close’. However, this leads to the complication that the Matlab
pool remains open if SABL never reaches stage ‘endrun’ (for example, if SABL issues
a terminal error or if the user interrupts SABL) and then the user must manually close
the pool or else a Matlab error arises on the next execution of the code when it attempts
to open a pool that is already open. For this reason SABL does not attempt to open or
close pools directly, and leaves it up to the user to handle this in p_monitor or outside
of SABL. If the user sets E.pus to an integer greater than 1 in stage ’startrun’ and
there is no pool open, or if there are fewer than E.pus workers in the pool then SABL
terminates with an error message to that effect.

SABL executes in parallel on multiple workers by means of a Matlab spmd block,
which contains all stages between (but not including) ’startrun’ and ’endrun’. If
there are multiple workers then at the first bold Copy line in Table 1 (page 65) identical
copies of the C, E, M and P global structures are passed to each worker. By contrast the
arrays in Cpar (as well as any other *par global structures, currently unused) all have
leading dimension J - N = C.JN and are split equally among E. pus workers, so that each
array then has leading dimension C.JNwork=C.JN/E.pus. (SABL requires that C.J be
wholly divisible by E.pus.) Once inside the spmd block there are E.pus workers (more
technically, threads) that execute the same instructions. These instructions create and
modify arrays and constants that have the same names but are in fact different. Control
passes back out of the spmd block at the second bold Copy line in Table 1 (page 65).

This implies that if there are multiple workers then the nature of global structures
accessed in p_monitor is quite different depending on the stage (but not if E.pus=1).
To obviate this tedious dependence for the user in p_monitor, SABL provides utility
functions to manipulate arrays in a way that is transparent to being in or out of the
spmd block in the invoking function. To see a list and brief description of these utility
functions invoke help SABLfunctions from the command window, followed by help
[functionname] for the description required to use the function correctly. Because of
these utility functions, SABL code outside these functions is not contingent on E.pus,
E.gpu, or the status of the spmd block. Code written by users can do the same.

Example 3 Suppose that a project works with quarterly macroeconomic data and one
of its objectives is to illustrate how the posterior mean and standard deviation of sev-
eral interesting functions of the parameters evolved over time. (For example, how they
changed before, during and after the “great moderation” might be a particular focus.)
To accomplish this in most approaches would require that inference be repeated for all
quarters, a time-consuming task. The option C.Cphase_method = ’data_whole’ intro-
duces data one observation at a time in the C' phase and in doing so provides access to
the required posterior distributions. This access is transient: it exists in each step of the
C' phase within each cycle, but once that step is completed the posterior distribution is
modified with the introduction of the next observation, either in the next step of the C
phase in the current or next cycle. When the algorithm is complete the user would like to
store the posterior means and standard deviations in a file, where they can be accessed to
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create tables or figures. Code of the following form will accomplish this for nf functions
of interest g, regardless of whether execution takes place with E.pus = 1 or E.pus > 1:
elseif strcmp(stage, ’startrun’)
P. funcmeans = zeros(C.tlast, nf);
P. funcstds = zeros(C.tlast, nf);

elseif strcmp(stage, ’whileCphase’)
/4 The function func evaluates the nf functions of interest:
g = func(Cpar.theta); 7 C.JNwork z nf on each worker
P. funcmeans (C.Cphase.t, :) = u_mean(g, 1, E.pus>1, Cpar.logw);
P. funcstds(C.Cphase.t, :) = u_std(g, 1, E.pus>1, Cpar.logw);

elseif strcmp(stage, ’endrun’)

funcmeans = P. funcmeans;
funcstds = P. funcstds;
save funcfile funcmeans funcstds

The first and last of the three blocks execute as a single thread whereas the second block
executes as E.pus threads. If E.pus > 1 then in the middle block there are identical
copies of the global C, E, M and P structures on each thread. The Cpar structure, and
hence Cpar. theta and g, differ across workers. The last block references the P structure
that SABL retrieved from one of the workers just before leaving the spmd block. (Use
help for explicit descriptions of C.Cphase.t and Cpar.logw.)

The functions u_mean and u_std deal with a number of complications that arise reg-
ularly and would otherwise be inconvenient. One s that the particles are weighted in the
C phase and this affects the computations — hence the input Cpar. Logw. A second one is
that the computations require communication across the workers. The functions u_mean
and u_std handle this in an efficient fashion, minimizing the information transferred
between threads.

Observe that if any of the arrays created as fields of the P structure had instead been
local, or persistent, or had been a field of any structure other than the eight defined by
SABL, the computations would have failed if E.pus > 1. The only local constant or
array s g in the middle block, which exists only to avoid executing func twice. This
s satisfactory because g is transient — the E.pus versions of g are used only on this
occasion. Some care must be exercised in writing the code in func if is to execute
successfully when E.pus > 1 and/or when E.gpu is true. Since Cpar.theta can be
quite large and exists on the GPU if E. gpu is true, there is the potential for the code to
mowve particles between GPU and CPU inadvertently, thereby adding possibly substantial
overhead in each iteration of the C phase. SABL provides utility functions that assist
with this (Section 3.8 and help SABLfunctions), but they do not entirely preclude the
possibility of mistakes of this kind.

The efficiency of using multiple CPU cores explicitly in this way increases as prob-
lems become larger and more complex: the dominant relevant dimensions are number
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of particles along with the number of floating point operations in the evaluation of the
likelihood function (in Bayesian inference) or objective function (in optimization). For
Bayesian inference in models that cannot exploit sufficient statistics the number of ob-
servations is a third relevant dimension. This is complicated by the fact that under
the basis for comparison, E.pus = 1, Matlab already exploits the multiple CPU cores
found in most hardware. The implications can be seen directly in SABL, which indicates
both elapsed time and CPU seconds at the end: the latter is typically a multiple of the
former that can be a respectable fraction (e.g., 75%) of the number of cores. The re-
turns to explicit multicore CPU execution by assigning a value greater than 1 to E.pus
are application-specific, but generally will be maximized by making this value the total
number of CPU cores available.

In hardware with multiple GPUs, E.pus indicates the number of GPUs to use (in
conjunction, of course, with E.gpu = true). Gains here can be proportional to E.pus.
Limited experiments to date with four K80 chips on a single server reduce execution
time by very close to 50% in moving from E.pus = 1 to E.pus = 2, and a reduction
not quite as great in moving from E.pus = 2 to E.pus = 4.

3.7.2 Using graphics processing units

The Matlab Parallel Computing Toolbox also integrates computation on graphics process-
ing units (GPUs) into Matlab code. By default, SABL executes on the CPU (E.gpu =
false). To execute with one or more GPUs, the user declares E.gpu = true in stage
>open’ of p_monitor. SABL will then use E.pus GPUs so long as there are at least
E.pus physical GPUs installed and available — if not, SABL terminates with an error
message. If E.pus > 1 then the user must also manage a Matlab pool in the same way
described at the start of Section 3.7.1.

Just as Matlab uses the compiled language C to execute code on CPU cores, with the
Parallel Computing Toolbox it uses the extension C/CUDA to execute code on GPUs.
It enables the Matlab programmer to create constants, arrays and certain structures
in GPU memory and transfer data from CPU to GPU and vice versa. Many Matlab
commands have been extended to GPUs and have same options and variants (e.g., svd
and kron); some other commands have been extended to GPUs but with particular
options (e.g., rand, and log with complex output) and others have not been extended
(e.g., pinv and poissrnd). These extensions are still actively underway and grow with
each new edition of the Matlab Parallel Computing Toolbox, so documentation for the
installed version of the Parallel Computing Toolbox should be consulted. As with any
documentation the contingencies are not exhaustive and some learning by trial and error
may be required. However, it is not necessary for the SABL user to master these Matlab
conventions.

GPU arrays have precedence over all other types, and within GPU types precedence
is the same as within CPU types (e.g., double takes precedence over single). Thus if
a type double CPU array A and a type double GPU array GA are conformable, then B
= A + GA is a type double GPU array. If GA had been a type single GPU array then
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B would be type single GPU array. The primary tool for moving data from the CPU
into the GPU array is gpuArray, for example GA = gpuArray(A), and the primary tool
for moving data from the GPU to the CPU is gather, for example A = gather(GA).
Other data types supported on the GPU include int and unit types as well as logical.
The arguments of cell arrays and the field names of structures are pointers that exist
in CPU memory. Different fields in a structure can contain both GPU and CPU data
types. The SABL utility functions listed under the subheadings “Matrix arithmetic”
and “Management” in help SABLfunctions manage the intricacies in GPU use and in
writing code that performs well on both the GPU and CPU. This enables the SABL
user to write code that does not branch on either E.gpu or E.pus.

GPUs work to advantage when arrays are large and operations are at least pleasingly
parallel. This includes many operations in linear algebra. Because there is substantial
overhead in execution on the GPU, the problem must be sufficiently large and amenable
to parallel execution for net gains to occur. When these conditions are not met then
execution on the GPU can take even longer than it does on CPU cores. The SABL
algorithm is inherently pleasingly parallel, and it is in large and complex problems that
efficiency gains matter: the gain from reducing computing time from 12 hours to 36
minutes (95%) is generally more valuable than reducing it from 2 minutes to 6 seconds
(also 95%). In these large problems gains are nearly proportional to the number of GPU
cores as well as to the number of GPUs, and gains of a factor of 50 to 100 compared
with conventional “single CPU” implementation can be achieved with a 1,000 - processor
GPU. In considering the value of this increase in speed, keep in mind that the basis of
comparison is a CPU environment in which 4 or more cores are already being used
efficiently, and that the cost of GPU hardware, now well under one US dollar per core,
is small relative to CPU installation and this relative cost has been falling.

Whether or not gains of this order are realized is strongly affected by the way the
log likelihood or objective function is evaluated. In large problems the vast majority of
floating point operations are devoted to repeated evaluations of this function, which is
in turn heavily concentrated in the M phase. It is because of this concentration that
the parts of the SABL algorithm that are not perfectly parallel, chiefly resampling in
the S phase and the assessment of acceptance rates in the M phase, are unimportant
in large problems — in the relevant sense that reducing their execution time to nothing
would have a proportionately negligible effect on total execution time. For likelihood
or objective function evaluation to realize anything like its potential efficiency in SABL
running on the GPU threads, it is important that the threads be organized to carry out
function evaluation at a particle from start to finish. At least in its current incarnation,
Matlab code running on the GPU cannot be instructed to do this. However, if likelihood
function evaluation is carried out using a function coded in C/CUDA (more properly
termed a kernel) this barrier can be overcome. More precisely, C/CUDA code organizes
the threads and defines a single thread as a complete evaluation of the likelihood or
objective function.

Communication between Matlab and kernels running on GPUs (for example, code
in *.cu and files) is straightforward, just as it always has been between conventional
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Matlab and functions written in C (Matlab *.mex files). SABL 2015a contains a full
implementation of a C/CUDA kernel for likelihood functions in each model, comple-
menting functions written in Matlab. This code, especially for egarch, is designed in
part as a template for the implementation of C/CUDA kernels for other models. Model-
ers, especially, will find it helpful to consult the cufiles directory and compile_CUDA.m
file in the various models subdirectories.

The principle that parallel operations arise because each particle is a thread is central
to the efficiency of SABL in exploiting GPUs. Most existing GPU code, for example the
GPU functions in the Matlab Parallel Toolbox, do not exploit parallelism arising from
application of the function to thousands of different input values, which is what SABL
requires. Instead, they exploit instances of parallel operations that are inherent in the
arithmetic of the function as applied to a single input. (And, in fact, SABL speed-up
factors often exceed those of functions in the Matlab Parallel Toolbox GPU function
library.) Attempts to use GPU-enabled functions like these, which use a different princi-
ple for defining threads, operates at cross-purposes to the organization of GPU threads
in SABL. Thus these functions should not be used in likelihood function evaluation:
coding a likelihood function using the Matlab Parallel Toolbox GPU functions may well
result in less efficient computation than with a single CPU. Since there are, indeed, a
variety of situations in which it is sensible to organize threads by different function input
data, such functions are currently being developed in some leading GPU libraries in the
public domain and these may turn out to be useful for SABL GPU code.

In this environment, one of the greatest inefficiencies that can be introduced is fre-
quent movement of all particles, or any array with size C.JN in some dimensions, from
GPU to CPU or vice versa. This never happens in the core SABL code: in particular all
fields of the Cpar global structure are GPU arrays when E.gpu is true. This convention
should be respected by the user in creating any Ppar fields if the efficiency of SABL
running on GPUs is to be maintained. Particles are born (S phase), mutate (M phase)
and die (S phase) in GPU memory. The precedence of the gpuArray data type implies
that natural ways of writing project code avoid transfer from GPU to CPU.

Example 4 z = gpudrray(randn(10,1)) orz = gpudrray.randn([10,1]) creales
on the GPU. The subsequent command y=z. 2 places y on the GPU as well and en-
tails no intervening movement between CPU and GPU. This is reinforced by the fact
that Matlab prohibits conversion from gpuArray to double in assignment statements:
continuing the example, the subsequent command z = zeros (10, 1) followed by z(1) =
z(1) generates a terminal error. But with the SABL toolbox installed, if the user has
declared E global and set E. gpu, then the sequence z=u_allocate([10,1], ’randn’);
y = z.72; z = u_allocate([10,1]); z(1) = x(1) will execute without error regard-
less of the value of the logical field E. gpu.

Example 5 Return to Example 3, evecuting E.gpu = true in stage ‘open’. Then

Cpar.theta is a GPU array, and so is the vector g created in stage ’whileCphase”’.
However, P. funcmeans and P. funcstds are CPU arrays, created in stage ’startrun’.
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Direct conversion of a GPU array to a CPU array is prohibited, and so the lines
P. funcmeans... and P.funcstds... 1in stage ‘whileCphase’ cause a terminal er-
ror. Matlab specifically provides the command gather in its parallel toolbox to cope with
this situation, and since code using E.gpu = true successfully must have the Matlab
toolbox installed, the command

P. funcmeans (C.Cphase.t,:) = gather(u_mean(g, 1, E.pus>1, Cpar.logw))

and stmilarly for P. funcstds will successfully address this problem.

But now suppose the user provides the code to a colleague using Matlab without the
Parallel Computing Toolbox installed. Matlab will not recognize gather, leading to an
error the colleague may not recognize. Multiply this by many such occurrences in more
complex code, and it’s clear a major portability problem to Matlab without the Parallel
Computing Toolbox installed has arisen. For this reason, all SABL code is designed to
execute without the Parallel Computing Toolbox installed (and, for that matter, without
the Statistics Toolbox installed) so long as E.gpu = false and E.pus = 1. The substi-
tute for gather is u_setdatatype:

P. funcmeans (C.Cphase.t,:) = ...
u_setdatatype (u_mean(g, 1, E.pus>1, Cpar.logw), ’cpu’)

This command causes the transfer of 16*xlength(q) bytes from GPU to CPU per
observation if E.gpu = true, but acts as a simple assignment statement if E.gpu =
false.. In any problem large enough that GPU computation is more efficient than CPU
computation this overhead in this transfer is so negligible as to be difficult to measure.

3.8 Utilities

help SABLfunctions

SABL employs many utility functions that facilitate code writing and testing. Many
of them provide a single command for array creation and common mathematical opera-
tions regardless of whether the computing environment is one or multiple workers, and
CPU or GPU. For example, when execution takes place on one or multiple GPUs, these
functions minimize transfer of data across GPUs and between CPU and GPU.

This section organizes and lists these functions, providing very brief descriptions.
The Matlab help command provides full technical detail. The actual code can be found
in the utilities directory of the SABL toolbox, along with some other functions that are
important to SABL but less likely to be relevant for modelers and users.

e Array manipulation

— u_allocate Allocate an array on CPU or GPU memory
— u_gcat Aggregate data from multiple workers to one worker

— u_setdatatype Move data to CPU or GPU memory
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o Matrix arithmetic

— u_logmeanlog Replicate log(mean(exp(x)) avoiding overflow

— u_logmomlog Also replicate log(std(exp(x)) avoiding overflow

— u_logsumlog Replicate log(sum(exp(x)) avoiding overflow

— u_max Replicate max(x) with efficient handling of multiple workers
— u_mean Replicate mean(x) with efficient handling of multiple workers
— u_min Replicate min(x) with efficient handling of multiple workers

— u_mvmom Replicate mean(x) and cov(x) with efficient handling of multiple
workers

— u_nse Compute numerical standard error
— u_rne Compute relative numerical efficiency
— u_std Replicate std(x) with efficient handling of multiple workers

— u_sum Replicate sum(x) with efficient handling of multiple workers
e Management

— u_islabl Replicate labindex == 1 independent of Parallel Toolbox

— u_numlabs Replicate numlabs independent of Parallel Toolbox
e Code testing

— u_pfcheck Test probability function and random sample

— u_pdfcheck Test probability density function and random sample

4 Variants of the algorithm in the SABL toolbox

help algorithm

The SABL code incorporates variants of tempering in the C' phase, resampling in
the S phase, and mutation employing an invariant transition kernel in the M phase.
Similarly there are variants on procedures for determining the degree of incremental
information in the C' phase and degree of mixing mixing in the M phase, referred to
collectively as stopping criteria.

For each of these variants this section provides a short description, often by reference
to other sections of this Handbook; the protocol for invoking the option; a list of the
control fields or subfields of the global structure C that define the variant precisely and
may be set by the user; and a list of the monitor fields or subfields of the global structure
C that may be useful in accessing the state of the algorithm and should not be changed
by the user. The help command, in turn, documents the fields, and in the case of control
fields indicates the default setting employed by SABL if the user or modeler does not
set the field explicitly.
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4.1 ( phase

help Cphase

SABL 2015a has three variants of the C' phase: data tempering, power tempering,
and optimization. The default method is power tempering.

SABL 2015a has two variants of the C' phase stopping criterion: effective sample
size and optimization. Both terminate the C' phase if relative effective sample size (10)
reaches or falls below threshold (RESS® < RESS*). In the case of power tempering
this is guaranteed at the end of the first iteration of the C' phase by solving (11) for
Ay, but checking takes place regardless because it is almost costless and simplifies flow
control in the code.

The following fields are common to all variants.

Control fields: C.Cphase_method, C.Cstop_method, C.Cstop.ress

Monitor fields: C.Cphase.count, C.Cphase.total

4.1.1 Power tempering

Description: See power tempering in Section 2.1. This is the core default.
Invocation: C.Cphase_method = ’anneal_Bayes’
Additional control fields: C.Cphase.crit
Additional monitor fields: C.Cphase.power, C.Cphase.logpowers

4.1.2 Data tempering

Description: See data tempering in Section 2.1.
Invocation: C.Cphase_method = ’data_whole’
Additional control fields: None
Additional monitor fields: C.Cphase.t, C.logpl

4.1.3 Optimization

Description: See power tempering in Section 2.1 and optimization Section 2.7
Invocation: C.Cphase_method = ’anneal_optimize’
Additional control fields: C.Cphase.crit
Additional monitor fields: In the structure C.optstatus

4.2 S phase

help Sphase

SABL has four variants of the S phase: multinomial, residual, systematic and strat-
ified resampling. The default method is residual resampling. In the S phase there is no
analogue of the stopping rule in the C' phase or M phase. Control fields and monitoring
fields are common to all variants of the S phase.

Control fields: C.Sphase_method
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Monitor fields: C.Sphase.nunique, Cpar.select

4.2.1 Residual resampling

Description: See Section 2.2.
Invocation: C.Sphase_method = ’residual’. This is the core default.

4.2.2 Multinomial resampling

Description: See Section 2.2.
Invocation: C.Sphase_method = ’multinomial’

4.2.3 Systematic resampling

Description: This variant is more efficient than residual resampling, but there is no
central limit theorem for numerical accuracy. This option is intended for research only
and should not be used in applications.

Invocation: C.Sphase_method = ’systematic’

4.2.4 Stratified resampling

Description: This variant is more efficient than residual resampling, but there is no
central limit theorem for numerical accuracy. This option is intended for research only
and should not be used in applications.

Invocation: C.Sphase_method = ’stratified’

4.3 M phase

help Mphase

SABL 2015a has two variants of the M phase: Metropolis random walk and blocked
Metropolis random walk. The default method is Metropolis random walk. Both variants
are described in Section 2.3. In complex or less tractable applications, the specification
of the M phase can be critical to SABL execution that respects practical time and
resource constraints. This is an acquired skill that involves a solid understanding of
the algorithm and mastering the many options for control of the M phase that SABL
affords. Those options are present precisely because they have proven useful in these
cases.

4.3.1 Metropolis random walk

The control field C.Mphase_method = ’MGRW’ invokes this option, which is the core
default. The M phase proceeds as described in Section 2.3. The following fields are
common to all variants of the M phase and the M phase stopping rule.

Control fields: C.Mphase_method, C.Mstop_method,
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C.Mphase.step_inc, C.Mphase.step_initial, C.Mphase.step_lower,
C.Mphase.step_upper, C.Mphase.acceptgoal, C.Mphase.total
Monitor fields: C.Mphase.accept_rate, C.Mphase.count, C.Mphase.step,
C.Mphase.rne, C.Mphase.total
Consult the respective help commands for detailed descriptions of these fields and
their relationship to the description in Section 2.3.
SABL 2015a has four variants of the M phase stopping rule. Each rule is a func-
tion two criteria: the number of iterations elapsed (iterations) and the average relative
numerical efficiency of several functions of the parameters (RNE).

1. When C.Mphase_method = ’steps’ the stopping rule is the fixed number of it-
erations C.Mstop.steps (core default 100), except in the last cycle where it is
C.Mstop.steps_end (core default 300).

2. When C.Mphase_method = ’RNE’ the stopping rule is the minimum value of RNE
C.Mstop.rne (core default 0.4), except in the last cycle where it is C.Mstop.rne_end
(core default 0.9).

3. When C.Mphase_method = ’RNE&steps’ the stopping rule is the maximum value
of iterations C.Mstop.steps or the minimum value of RNE C.Mstop.rne, whichever
comes first. In the last cycle these criteria are replaced by C.Mstop.steps_end
and C.Mstop.rne_end, respectively.

4. When C.Mphase_method = ’hybrid’ the iterations of the M phase continue so
long as

C.Mphase.rne > C.Mstop.rne*C.Mphase.count/C.Mstop.steps.

In the last cycle C.Mstop.rne_end replaces C.Mstop.rne and C.Mstop.steps_end
replaces C.Mstop.steps in this expression. This limits the number of further iter-

ations if RNE improvement stalls as M phase iterations continue, a phenomenon

that can arise with complex models, casual formulation of strong prior distribu-

tions, and errors in code. This is the core default.

4.3.2 Blocked Metropolis random walk

The control field C.Mphase_method = ’MRGW_blocked’ invokes this option, which in
turn has two variants: fixed blocks and random blocks. The default is random blocks
unless the user or modeler creates the field C.Mphase.blocks, a cell array with one entry
per block, each entry pointing to the entries of the parameter vector 6 defining that block.
If the user or modeler does not create this field but creates the field C.Mphase.nblocks,
each iteration of the M phase randomly allocates 6 to blocks, making the block lengths
as close as possible. If the field C.Mphase.nblocks is also absent then it is taken to be
one-six the number of parameters rounded to the nearest integer with a minimum of 2.
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An attempt to use the blocked variant of the Metropolis random walk terminates with
error if the model has only one parameter.

The stopping criteria are computed and the stopping rule is imposed accordingly at
the end of each iteration. The iteration stopping criterion is the total number of blocks
executed in the M phase of the current cycle: thus, for example, if C.Mstop.steps =
100 and C.Mphase.nblocks = 4, the M phase will execute exactly 25 complete itera-
tions with 4 blocks in each iteration.

Invocation: C.Mphase_method = ’MRGW_blocked’

Control fields: C.Mphase.ranblock, C.Mphase.blocks, C.Mphase.nblocks

Monitor fields: C.Mphase.blocks, C.Mphase.iblock, C.Mphase.blocks,

C.Mphase.nblocks

4.4 Adding a new variant of the algorithm to the SABL toolbox

Algorithm variants are manifest in the code as if / elseif blocks in the functions
c_Cphase, c_Sphase and c_Mphase. In each case there is a field with a string indicating
the variant (e.g., C.Cphase_method = ’anneal_Bayes’) and a function that invokes
the variant, e.g. c_Cphase_anneal_Bayes(stage)). The functions c_Cphase, c_Sphase
and c_Mphase recognize the string ’custom’ for the field, and control then passes to a
function for that variant, e.g. p_Cphase_custom(stage) for the C' phase and similarly
for the S and M phase. The p_ prefix recognizes the fact that a customized variant might
be project specific. It also facilitates initial work on any variant that is a candidate for
future inclusion in the SABL algorithm and toolbox, at which point an additional elseif
block would be added at the appropriate place in c_Cphase, c_Sphase or c_Mphase.

Stopping rule variants are manifest in the code as if / elseif blocks in the func-
tions c_Cphase and c_Mphase. The string ’custom’ is recognized for the C' and M
phase stopping rules, and control then passes to p_Cstop_custom and p_Mstop_custom
respectively.

5 Models in the SABL toolbox

The SABL algorithm provides for Bayesian inference in any likelihood function and
maximization of any objective function, in each case subject to some weak conditions
described early in Section 2. The SABL toolbox exploits this structure to minimize
the effort required for new models and objective functions to be added to SABL, in
a manner that in turn lets users apply these models or objective functions. SABL
provides a generic structure that results in a common “look and feel” across different
models and objective functions. Models, in turn, provide default structures that are
simple and handle many common applications by users, while also allowing users to
construct variants that include a wide variety of model and prior specifications.
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5.1 Model specifications and parameter maps

SABL 2015a offers a small core group of models that will be substantially expanded in
the future editions of SABL.

5.1.1 SABL models

help models

To use a particular model, the user invokes SABL ( [modelname], [project folder])
where [project folder] is the absolute or relative address of the directory that con-
tains the function p_monitor.m and any other functions invoked by p_monitor. If pwd
= [project folder] then the second input argument can be omitted. SABL gener-
ates both intermediate and final output that may be of interest to the user, all contained
in the global structures discussed in Section 3.4. The final output can be accessed by
declaring the relevant globals before after invoking SABL, and the intermediate output
can be accessed by making the same declarations in p_monitor and then harvesting the
quantities of interest to the generic project global structure P at the appropriate stage(s).
These will then be available after invoking SABL once P has been declared global.

Each model requires specific inputs in the global structure M and these requirements
are documented for each model in Section 5.5. Every model requires that the field
M.data, a data matrix with observations by rows and variables by columns, be created
in stage ’startrun’. Typically data are read from file and then following any required
transformations or rearrangement of rows and/or columns p_monitor places the result
in M.data in stage ’startrun’.

SABL uses rows C.tfirst through C.tlast of M.data. It takes as default values
C.tfirst = 1andC.tlast = size(M.data, 1). The user can designate an alternative
range directly in stage ’startrun’.

Each model also requires the user to designate the columns in M.data corresponding
to the observables of that model. For example, model normal is

Yt NN(ﬁlxt7’7,Zt) (t: 1)7T)

where the outcomes y; are independent conditional on (z;,z;t=1,...,T). In stage
’startrun’ the user must designate the scalar M.y_pointer pointing to the column
of M.data containing y; (t = 1,...,T), the column vector M.x_pointer pointing to the
columns of M.data containing x; (t =1,...,7) and the column vector M.z_pointer
pointing to the columns of M.data containing z;. (t =1,...,7). All models use these
naming conventions for pointers corresponding to the notation that describes the model.

Users or others who need access to model code (or are simply curious) can find it in
the models/[modelname] directory of the SABL toolbox. Because Matlab places user
code above toolbox code in the path it searches to find invoked functions the user can
modify model code by copying the relevant model file to an appropriate directory and
making sure that directory is in the Matlab path. Doing this successfully requires a solid
understanding of how the model code works, since otherwise it can lead to errors that
are difficult to trace or (even worse) detect.
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5.1.2 Parameter maps

help parametermaps

Each model employs a map from the SABL algorithm vector 6 described at the start
of Section 2 to the model parameter vectors (for example, § and v in the case of model
normal). Many models, including the simpler ones, have a default map and when this
is the case then this map is described in the detailed model description in Section 5.5.
For example, in model normal the default map is from the first length(M.x_pointer)
elements of 6 to # and from the next length(M.z_pointer) elements of 6 to ~. If this
structure is also suited to the user’s specification then the user need do noting further
about parameter maps.

More complex models, for example full information inference ( M.specification =
’FI’) in the multivariate normal model MVN, require the user to construct an explicit
map, and this is an option in any model when the user’s specification does not match
the default specification. The map must be declared by the user in stage ’startrun’ of
p_monitor. For each parameter vector of the model there are one or more arrays that
provide the map from 6 to that parameter vector. These arrays are all in the structure
M, and each model has names of the structures in M that specify the map(s).

For each model parameter map(s) are required if the user does not employ the default
model map. Each model parameter vector or matrix has an associated vector or matrix
map. In the case of model normal the required instances are M.betmap and M.gammap.
There are four degrees of flexibility in map specification. In what follows, if the parameter
matrix is a vector then it is a column vector, meaning that arguments (i,j) in the
description could be replaced with (i) or (i,1).

1. In the simplest specification map (i, j) designates the column of § that corresponds
to element (i, j) of the parameter matrix. This is how model normal handles the de-
fault case. Notice that this simplest specification can also be used to specify cross-
restrictions of the form 3, = v,: for example, M.betmap(2) = 3, M.gammap(3) =
3 in model normal. This requires that the elements of map all be integers between
1 and C.parameters (the number of elements of #; equivalently, the number of
columns of Cpar.theta) inclusive.

2. If map(i,j) = 0 then element ¢ of the parameter vector is identically zero. This
is unnecessary in a simple model like normal because the same result can be
achieved by omitting element ¢ of the corresponding M. *_pointer vector. In other
models, for example the full information specification of the multivariate normal
model (MVN) it is critical because this implements the use of identifying and over-
identifying exclusion restrictions in the model parameters.

3. If map(i,j) < O then element ¢ of the parameter vector is a linear combination
of the elements of . The linear combinations are stored in an array linc, and
column -map (i) contains the linear combination for element i. (If all elements of
map are nonnegative then the array linc need not exist and will be ignored if
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it does. The number of columns in linc must be at least -min(min(map)). The
number of rows in 1linc is one more than the number of elements of #; equivalently,

size(linc, 1) = size(Cpar.theta, 2) + 1 = C.parameters + 1.

SABL constructs the particles corresponding to element (i, j) of the parameter
matrix as

Cpar.theta*linc(1:C.parameters,-map(i,j)) + .

linc(C.parameters+1,-map(i,j).

. If map(i,j) > C.parameters then element ¢ is a nonlinear function of the el-
ements of #. If map(i,j) > C.parameters for any i, then SABL provides the
following 6 inputs to a Matlab or C function written by the user that computes
the nonlinear transformations:

e theta The C.JN X C.parameters matrix of particles

e name This is a name assigned by the model indicating which map is being
constructed. The documentation for each model provides the names. For
example, in model normal, name = ’bet’ for the map M.betmap and name =
>gam’ for the map M. gammap.

e ii is a vector with one entry for each model parameter that is a nonlinear
function of 0; its length is sum(sum(map>npars)). The entry ii(r) is the
row ¢ of map leading to the need to compute the r’th nonlinear transformation.

e jj is a vector with one entry for each model parameter that is a nonlinear
function of . The entry jj(r) is the column j of map leading to the need to
compute the r’th nonlinear transformation.

e columns is a vector with one entry for each model parameter that is a non-
linear function of . The entry columns(r) is the column of A_in that is
missing (i.e., is entirely zeros) on input that will be filled out using the r’th
nonlinear transformation.

e A_in is the matrix of model parameters with C.JNwork rows. At input, the
columns of A that result from linear transformations of 6 are already filled.
The rest — those requiring nonlinear transformations — are identically zero.

The output A of the function is the same as A_in but with the columns requiring
nonlinear transformations now filled. Good practice in coding the function is to
set A=A_in at the start and then fill in the nonlinear transformations.

(a) If computations are carried out using CPU cores (i.e., E.gpu = false) then
the function must consist of Matlab code and take the name p_thetapar.m.
Thus,

A = p_thetapar(theta, name, ii, jj, columns, A_in).
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(b) If the computations are carried out using one or more GPUs (i.e., E.gpu =
true) then the function may consist of C/CUDA code and take the name
p_thetapar_CUDA. Thus,

A = p_thetapar_CUDA(theta, name, ii, jj, columns, A_in).

The user must set C.nlcuda = true if using p_thetapar_CUDA. (The default
value is false.)

(c) If E.gpu = true the user may, alternatively, provide the function evaluations
using the Matlab function p_thetapar.m. This facility exists so that users
who are not experienced with C/CUDA may still use GPUs when nonlin-
ear transformations are included. However, this alternative is generally less
efficient than (b). This difference may become quite important if the map
from 6 to model parameters is computationally intensive and dominates the
computatons required to evaluate the likelihood functions. Examples include
more involved dynamic stochastic general equilibrium models, game-theoretic
models with complex solutions, and complex state space models.

Example 6 In the SABL toolbox projects/normal_AR3 provides an example of a non-
linear map from algorithm parameters 6 to the parameters of the normal model in a study
of business cycle dynamics. It includes code for p_thetapar and p_thetapar_CUDA.

5.1.3 Prediction

Each model in SABL provides the facility for sampling from the model’s distribution of
observables conditional on covariates and parameters, which can be expressed generically
as (25), page 16 in Section 2.6: y;; ~ p (y | 0;;.2%). The function [modelname]sim (e.g.,
normalsim) provides the code in each case. The input and output arguments are similar
from one model to another, but there are some exceptions, so the user should consult the
help documentation in each case, e.g. help normal normalsim. The SABL algorithm
does not require this facility. SABL includes these functions because they are useful
in prediction and simulating from the prior and posterior predictive distributions as
explained in Section 2.6.

5.1.4 On model specification

In all but the simplest cases, it can be difficult to determine what events a model
renders more and less probable (or impossible) simply from the analytical form of the
conditional distribution of observables (25) and the prior density p (#). In principle, these
probabilities for functions of observables can be determined from the prior predictive
distribution represented discussed in Section 2.6 by repeating the sequence

0ij ~p(0i5), v ~p@ | 052, g5 =9 (v;)
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fore=1,...,N; 7 =1,...,J,g9 being an interesting and relevant vector function. For
example, in a macroeconomic application g might include the number of business cycles
per century and the relative lengths of upturns and downturns; in an industrial organi-
zation application g might include post-merger price increases. For fuller discussion see
Geisser (2004) and Geweke (2005, Section 8.3.1).

The user may construct these distributions directly in SABL. This is especially useful
at the start of a project in examining prospective model specifications and alternative
priors. In stage ’initialize’ the particles 0;; represent the prior distribution of ¢. In
p_monitor, stage ’initialize’ the user executes the following steps.

1. Select either a subset of the particles (randperm is useful here) or all the particles.

2. For each of the selected particles simulate one (or more, if all the particles were
selected) draws from the distribution of observables conditional on the sample
covariates using the function [modelname]sim.

3. Compute the functions of interest of the simulated observables that will be used to
study the implications of the specified model, and present them in a format useful
for understanding and iterating on model specification (graphical presentations are
a favorite).

An instance of this procedure is included in projects/poisson_example/p_monitor.
On completion of the steps it may be useful to insert the command pause, to provide
time to study the results. The user may then proceed with the SABL algorithm or
halt execution to reconsider the model specification. This procedure can be especially
useful in complex models in determining whether the specified model precludes aspects
of observed behavior that are deemed important for the purposes at hand: if so, better
to stop at this point than to proceed with resource-demanding computing, analysis, or
perhaps even data collection.

5.2 Prior and initial distributions

help priors

SABL is structured to work with generic prior and initial distributions, facilitating
both the future expansion of SABL priors and the incorporation of custom priors by
modellers and users.

5.2.1 Priors in SABL 2015a

SABL 2015a provides seven different prior distributions directly and makes it straight-
forward for modellers or users to incorporate others — The distributes currently provided
are

e the beta distribution (beta, univariate);

47



the Dirichlet distribution (dirichlet, multivariate);

the gamma distribution (gamma , univariate);

the Laplace distribution (laplace , univariate);

the linear distribution comprising both the Gaussian and Student-t distributions
(linear, univariate and multivariate);

the uniform distribution (uniform, univariate and multivariate);

the Wishart distribution (wishart, multivariate).

The subsections of Section 5.3 provide detailed descriptions.

5.2.2 Customized and extended prior distributions

SABL includes two other named prior distributions, model and custom. These are
handles to code directly provided by a modeler (model) or a user (custom) that can be
used just like the named prior distributions in SABL 2015a. See Section 5.4.2 for details;
alternatively, help modelbrief or help custombrief.

Any univariate distribution can be mixed with a discrete distribution: i.e., a dis-
tribution for which P (z = a;) = p; for a finite set of points (i = 1,...n) and then the
balance the distribution (i.e., with probability 1 — " | p;) is the continuous univariate
distribution. See Section 5.4.4 for details; alternatively, help priormixed.

Any univariate distribution and any multivariate linear distribution can be truncated
by linear constraints. See Section 5.4.5 for details; alternatively, help priorconstraints.

5.2.3 Organization of the prior distributions

Associated with each prior distribution there are three functions
u_prior_[name]setup (creates the prior distribution)
u_prior_[name]sim (simulates from the prior distribution)
u_prior_[name] (evaluates the prior probability density function)

For example in the case of the gamma distribution the three functions are

u_prior_gammasetup,u_prior_gammasim and u_prior_gamma.

The SABL user need only be concerned with the first one, invoked in p_monitor stage
’startrun’ as
prior = u_prior_[name]setup(prior).

Specification of the exact form of the prior distribution entails creating and filling
some fields of prior before invoking u_prior_[name]setup. On output prior con-
tains additional fields with values that are subsequently used in the execution of SABL.
Invoking help u_prior_[name]setup provides detailed description of both inputs and
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outputs. The input fields may include the structures constraints and/or mixed (see
Sections 5.4.4 and 5.4.5). The other input fields are specific to the distribution, and the
following section provides some mathematical details that are not practical to include
in the SABL help facility.

5.3 Prior distributions in SABL 2015a
help priors

This section links the input fields of prior to the probability density functions.
5.3.1 Beta prior distribution

help betabrief
This distribution is univariate. The prior density has support on x € (0,1),

p(r|a,b)=[B(ab)] 2 (1-2)"".
On input prior specifies either

e a and b (scalar fields a and b) or

e the mean and standard deviation of the distribution (scalar fields mean and std).

If the beta prior distribution is not part of a default model specification then the
scalar control field columns provides the column of Cpar.theta to which the prior
distribution pertains.

5.3.2 Dirichlet prior distribution

help dirichletbrief
This distribution is multivariate. The prior density has support on the n-dimensional
unit simplex z; >0 (¢ =1,...,n)and > x; =1,

p(zla)=[B(a)] " JTat"

Jj=1

where B (a) is the multivariate beta function

B(a) = [r (Z%M HF(ai).

defined for a; > 0 (i = 1,...,n). On input prior specifies this distribution by providing
either

e the n x 1 vector a (vector field a) or
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e 1 and a single number a for which a; = ...a, = a (scalar fields n and a)

If the Dirichlet prior distribution is not part of a default model specification then the
vector control field columns provides the n columns of Cpar.theta to which the prior
distribution pertains.

5.3.3 Gamma prior distribution

(help gammabrief
This distribution is univariate. The prior density has support = € (0, 00),

plx| k.0) = [T (k) 0] a* Vexp (—2/0),

where k is the shape parameter and 6 is the scale parameter. On input prior specifies
this distribution in one of four ways by providing either

e the shape parameter k and scale parameter 0 (scalar fields shape and scale),
e the shape parameter k and rate parameter b = 1/6 (scalar fields shape and rate),

e the mean and standard deviation of the distribution (scalar fields mean and std),
or

e the degrees of freedom parameter v and scale factor s? in the alternative represen-
tation of the prior distribution

(the fields chi2df and scale).

If the gamma prior distribution is not part of a default model specification then the
scalar control field columns provides the column of
Cpar.theta to which the prior distribution pertains.

5.3.4 Laplace prior distribution

help laplacebrief
This distribution is univariate. The prior density has support x € (—o0, 00),

plx ] p,b) = (A/2) exp (=Alx —pul),

where p is the location (or mean) parameter and A is the diversity parameter. On input
prior provides either

e 1 and A (the scalar fields mean and diversity) or
e the mean and standard deviation of the distribution (scalar fields mean and std) .

If the Laplace prior distribution is not part of a default model specification then
the scalar control field columns provides the column of Cpar.theta to which the prior
distribution pertains.
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5.3.5 Linear prior distribution

help linearbrief
This distribution is univariate or multivariate. The prior distribution is either normal
(indicated by the absence of the field df) with prior probability density

pla]p,s) =) "2 = Pexp [~ (@ —p) ST (h—p) /2] (27)

or Student-t (indicated by the presence of the scalar field df set to a positive finite value)
with prior probability density

pl@pZv) = T/ T(W+n) /2 0Pr g
Qv @) S @ - ] (28)
where in each case x is n X 1; p is the mean parameter vector in (27) and the location
parameter vector in (28); ¥ is the variance matrix in (27) and the scale matrix in (28);

and v is the degrees of freedom parameter in (28).
In both cases the distribution can be specified by providing either

e the n x 1 vector p (vector field mean) and the n x n positive definite matrix %
(matrix field variance),

e the n x 1 vector u (vector field mean) and the positive definite matrix X! (matrix
field precision),

e the n x 1 vector u (vector field mean) and the n x 1 positive vector (0}{2, ce a%f)

(vector field std) with the understanding that ¥ = diag (011, ...,0p,), Or

e the n X n nonsingular matrix R (matrix field R), the n x 1 vector r (vector field

r) such that Rz — r either has a probability density of the form (27) or (28) with
p = 0, and variance ¥ = diag (011, ..,0n,) With (0142, . ,0%2) in vector field

std.

If the linear prior distribution is not part of a default model specification then the
vector control field columns provides the n columns of Cpar.theta to which the prior
distribution pertains.

5.3.6 Uniform prior distribution

help uniformbrief
This distribution is univariate or multivariate. If the prior distribution is uniform on
the n-dimensional hypercube {z : a < 2z < b} then the structure prior specifies either

e the n x 1 vectors a and b with b > a (n x 2 matrix field endpoints = [a, b]) or
e the mean of the distribution (a + b) /2 and the n-dimensional width of the distri-

bution b — a (vector field mean and positive vector field width).
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5.3.7 Wishart prior distribution

help wishartbrief
This distribution is multivariate. The prior density has support on the space of n xn
positive definite matrices X,

p(X | V) =202 20, (v/2)] XY P exp [tr (VTIX) /2]

in which V' is the scale matrix, v is the degrees of freedom parameter with v > n — 1,
and I',, is the multivariate gamma function,

AT +1—j
T, (v)2) = "= DAT T (2222
(12 =m0 ] (2

The structure prior specifies the degrees of freedom parameter v (positive scalar field
df) and either

e the n x n positive definite scale matrix V' (matrix field variance),

e the n X n positive definite matrix V! (matrix field precision), or

e the positive vector <v%{2, . ,vi{f) (vector field std) with the understanding that

V = diag (vi1, .-, Unn)-

SABL uses an internal vector representation of X, and any other random positive
definite matrix, that may be described as follows:

e Let B be the unique Choleski factorization of X with the properties (a) X = B'B,
(b) B is upper triangular, and (c) the diagonal elements of B are all positive.

e Construct C' from B by taking ¢;; = b;; (j > i; ¢ =1,...,n) and ¢; = log (b;)
(1=1,...,n).

e Let 0 be the row-major vectorization of C' omitting the below-diagonal elements
(all identically zero).

For compactness and subsequent reference denote this sequence of transformations
by
0 =c(X), (29)
where X is any n X n positive definite matrix and 6 is n (n + 1) /2 x 1.
If the Wishart prior distribution is not part of a default model specification then the

vector control field columns provides the n (n + 1) /2 columns of Cpar.theta providing
this internal representation of X to which the prior distribution pertains.
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5.4 Specifying model prior distributions

help priors

The used can specify prior distributions in three levels of increasing generality. As
with any software, less generality implies more compact and simpler specification; more
generality implies more verbose and complex specification.

5.4.1 Model specific default prior specifications

Some models in SABL, mostly simpler ones, have default structures for the map from the
algorithm parameter vector ¢ to the model parameter vector (Section 5.1.2) and for the
prior distribution. The documentation for each model details these default structures,
which minimize the amount of work required by the user but (of course) provide limited
flexibility in model and prior specifications.

For example the model normal is y; | (x4, 2¢) ~ N (8'zy, exp(7'z:)) where the out-
come variables y; are mutually independent conditional on (x4, ) (¢t =1,...,T). In the
default structure 0’ = (3',~') with the length of 3 inferred from the user’s specifica-
tion of M.x_pointer, the columns of M.data corresponding to x;, and similarly for ~,
M.z_pointer and z;. The prior distribution has two independent components, one for
[ and one for . Each can be linear or Laplace. The user specifies these distributions
by creating the structures M.betprior and M.gamprior as described for the normal
distribution 5.3.5 or the Laplace distribution in Section 5.3.4 For example, if 3 has two
independent elements and in the prior distribution 5, ~ N (1,1) and 8, ~ N (0, 1) then

M.betprior.distribution = ’normal’;
M.betprior.mean = [1; 0];

M.betprior.std = ones(2, 1);

M.betprior = u_prior_linearsetup(M.betprior)

5.4.2 Tailoring prior specifications using prior provided in SABL

Internally, SABL represents prior distributions by means of a cell array M.prior; the
name is the same for all models. Each cell entry is a structure, whose fields include all of
those discussed for specific prior distributions in Section 5.3. The u_prior_[priorname]setup
functions create additional fields. SABL adds to this the field columns, a vector indi-
cating the elements of § (columns of Cpar.theta) to which the prior distribution ap-
plies. For the default prior in model normal SABL uses M.prior{1} for 3, adding the
field columns = 1:length(M.x_pointer), and uses M.prior{2} for 7, adding the field
columns = length(M.x_pointer)+1:length(M.x_pointer)+length(M.y_pointer).
The user may access this internal representation directly — and must, unless he/she
creates all default prior fields (M.betprior and M. gamprior in the case of model normal);
or, if the model does not have default prior distributions. The structure for an entry
M.prior{j} may be created by means of the relevant u_prior_[priorname] setup func-
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tion if one of the prior distributions described in Section 5.3 is used. The user must add
the columns field.

5.4.3 Customizing all or some of the prior distribution

Prior distributions are not limited to those of Section 5.3. Models may supplement these
with their own specific distributions, providing a function m_prior_modelsetup to create
the prior distribution. Using these specifications is very much like using the specifications
in Section 5.3. In general the user takes advantage of these model-specific priors by
providing other fields as indicated in the model descriptionu_prior [name] _setup and
then invoking u_prior [name] _setup . This makes it straightforward for modelers to
exploit the existing infrastructure for management of prior distributions, providing only
what is unique to their prior distribution(s).

But the user also has the ability to create any prior distribution at all, so long as the
user can provide code that simulates from the prior distribution and evaluates its prior
density. The user does this by specifying M.prior{j}.name = ’custom’ together with
the following two functions written in Matab:

e theta = p_prior_customsim(ipart, a): ipart is the index of M.prior{ipart};
a is a prior specification structure created by the user in p_monitor, stage >startrun’;
and the output theta has C.JNwork rows, each row an independent draw from
the prior distribution. SABL will move theta to the GPU if E.gpu = true. If
E.pus>1 then p_prior_custom is executed on each of the E.pus threads and
SABL does the attendant bookkeeping.

e logp = p_prior_custom(theta, ipart, a) evaluates the prior density: theta
is the matrix providing the points of evaluation; the input arguments ipart and
a are as for p_prior_customsim.

The user may wish to write an accompanying function p_prior_customsetup for
their own convenience, but this is not necessary. SABL never invokes a function with
this name directly.

5.4.4 Specifying mixed prior distributions and constraints

help priormixed

Any univariate prior distributions becomes mixed discrete-continuous if the prior
structure prior contains the field mixed. The mixture is described by two fields of the
structure prior.mixed:

e The scalar field a is the vector a with mass points a4, ..., a,. They must all be in
the support of the distribution.

e The scalar field p provides the vector of corresponding probabilities py, ..., pn,
specifying P (x = a;) = p;. They must be positive with Y  p; < 1.
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The continuous part of the distribution is then given by the univariate prior dis-
tribution and the total probability associated with the continuous part is 1 — >"7" | p;.
Violation of these conditions on the a; and p;, or an attempt to make a multivariate
distribution mixed discrete-continuous produces a terminating error.

5.4.5 Specifying constraints for prior distributions

help priorconstraints
Any univariate prior distribution, as well as the multivariate 1inear prior distrib-
ution becomes truncated if the prior structure prior contains the field constraints.
The constraints have the form
a<Dxr<b

where z is n x 1, a and b are r x 1 with a; < b; (i =1,...7) and D is r x n of rank
r. These are in the fields a, b and D, respectively, of the structure prior.constraints.
Values a; = —oo and b; = 400 are permitted. For univariate distributions it is simplest
to set the field D = 1. Failure to respect a < b or rank (D) = r produces a terminating
€error.

5.5 Models in SABL 2015a

These are the models currently offered in SABL. Future editions will include substantially
more.

5.5.1 The normal model
To invoke the normal model, use SABL(’normal’) from the project directory, or

SABL(’normal’, [project_directoryl])

from any directory.

Observables distribution Let x; and z; be vectors of covariates and y; the corre-
sponding outcome. The outcomes y; (t = 1,...,T) are mutually independent conditional
on (x,2z) (t=1,...,7):

Yo ~ N (B'zy, exp (v'2))

The user provides the model data through the required model specification control fields

e M.data: T X d data matrix;
e M.x_pointer: A length k, vector pointing to columns of M.data (defines z;);
e M.z_pointer: A length k, vector pointing to columns of M.data (defines z);

e M.y_pointer: A scalar pointing to a column of M.data (defines y;).
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Parameter map (See Section 5.1.2.) In general § and  are each an arbitrary function
of the algorithm parameter vector 6. The default map is ¢ = (5',+'). To override the
default the user creates both the model specification control fields

e M.betmap: Part of the parameter map for component [;

e M.gammap: Part of the parameter map for component ~.
Consistent with all parameter maps the user may also need to specify

e M.betlinc: Part of the parameter map for component [3;

e M.gamlinc: Part of the parameter map for component .

For nonlinear parameter maps model normal provides the name ’bet’ for § and
>gam’ for v as input to p_thetapar.

Prior distributions In conjunction with the default parameter map for § and ~ the
user may invoke either or both of the two default prior distributions

M.betprior: Prior distribution for 5, must be linear;

M.gamprior: Prior distribution for v, must be linear.

The user may also create the prior distribution for 6 directly in the cell array M.prior
described in Section 5.4.2.

M phase RNE functions By default there are two M phase RNE functions, 37 and
~'Z. The user may substitute custom RNE functions by setting the field M. rnecustom =
true and providing a function g = p_rne(theta) that has as input the particle matrix
theta and output the corresponding RNE function values g.

5.5.2 The Poisson model

To invoke the Poisson model, use SABL(’poisson’) from the project directory, or

SABL(’poisson’, [project_directory]) from any directory.

Observables distribution Let z; be a vector of covariates and y; be the corre-

sponding outcome. The outcomes y; (t =1,...,T) are independent conditional on z;
(t=1,...,7):
y; ~ Poisson (), log (\;) = B'x.

The user provides the model data through the required model specification control fields
e M.data: T X d data matrix;
e M.x_pointer: A length k, vector pointing to columns of M.data (defines z;);

e M.y_pointer: A scalar pointing to a column of M.data (defines y;.).
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Parameter map (See Section 5.1.2) In general 3 is an arbitrary function of the algo-
rithm parameter vector 6. The default map is § = 3. To override the default the user
creates the model specification control field

e M.betamap: Part of the parameter map for f3.
Consistent with all parameter maps the user may also need to specify
e M.betalinc: Part of the parameter map for .

For nonlinear parameter maps model normal provides the name ’beta’as input to
p_thetapar.

Prior distributions In conjunction with the default parameter map for § the user
may invoke the distribution

M.betaprior: Prior distribution for £, must be linear;

The user may also create the prior distribution for 6 directly in the cell array M. prior
described in Section 5.4.2.

M phase RNE functions By default there is one M phase RNE function, 5'Z . The
user may substitute custom RNE functions by setting the field M.rnecustom = true and
providing a function g = p_rne(theta) that has as input the particle matrix theta and
output the corresponding RNE function values g.

5.5.3 The negative binomial model

To invoke the Poisson model, use SABL(’negative_binomial’) from the project direc-
tory, or SABL(’negative_binomial’, [project_directory]) from any directory.

Observables distribution Let x; be a vector of covariates and y; be the correspond-
ing outcome. The outcomes y; (t =1,...,T) are mutually independent conditional on
(x4, 2) (t=1,...,T):

Yg ~ NB(Ttapt):
log E (y) = 1og( ey )zﬁ'xt,

var (y;) } ( Dt ) '
lo -1 = lo =~'2z.
& [ E (%) & 1—p T

The function of moments var (y;) /E (y;) — 1 is the overdispersion coefficient, which has
support (0,00) in the negative binomial distribution. (In the Poisson distribution the
overdispersion coefficient is 0.) The inverse map is therefore r; = exp (8'z; —v'2),
pe=[L+exp (_’Y,Zt)]_l-

The user provides the model data through the required model specification control
fields
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e M.data: T X d data matrix;
e M.x_pointer: A length k, vector pointing to columns of M.data (defines z;);
e M.z_pointer: A length k, vector pointing to columns of M.data (defines z;);

e M.y_pointer: A scalar pointing to a column of M.data (defines y;.).

Parameter map (See Section 5.1.2.) In general § and v are each an arbitrary function
of the algorithm parameter vector §. The default map is 6 = (5’,7'). To override the
default the user creates both the model specification control fields

e M.betmap: Part of the parameter map for component ;

e M.gammap: Part of the parameter map for component ~.
Consistent with all parameter maps the user may also need to specify

e M.betlinc: Part of the parameter map for component [3;

e M.gamlinc: Part of the parameter map for component .

For nonlinear parameter maps model normal provides the name ’bet’ for S and
’gam’ for v as input to p_thetapar (see Section 5.1.2).

Prior distributions In conjunction with the default parameter map for S and ~ the
user may invoke either or both of the two default prior distributions

M.betprior: Prior distribution for £, must be linear;

M.gamprior: Prior distribution for v, must be linear.

The user may also create the prior distribution for § directly in the cell array M.prior
described in Section 5.4.

M phase RNE functions By default there are two M phase RNE functions, 37 and
~'Z. The user may substitute custom RNE functions by setting the field M. rnecustom =
true and providing a function g = p_rne(theta) that has as input the particle matrix
theta and output the corresponding RNE function values g.

5.5.4 The multivariate normal model, full information specification

To invoke the MVN model specification FI (hereafter MVN-FI), use SABL(’MVN’) from
the project directory, or SABL(’MVN’, [project_directory]) from any directory, and
set M.specification = ’FI’ in p_monitor stage ’startrun’.
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Observables distribution Let x; and z; be vectors of covariates and let 1y, be the
corresponding vector of outcomes. In MVN-FI

Yt = Ayt + Bl’t -+ Ety, Et N (0, E) . (30)

The vectors y; and €, are n X 1 and the vector x; is k x 1; y; and x; are observable. The
disturbances ¢, (t = 1,...,T) are mutually independent conditional on z; (t =1,...,T).
The matrix A is n x n and the matrix B is n x k. Usually the diagonal elements of A are
all zero, but they need not be; the prior distribution must imply that the matrix I,, — A
is nonsingular with probability 1. Note that MVN-FI implies that

Yy~ N((I—A)" By, I-A)7"'S(I-A4)7") (31)

and that conditional on z; (t = 1,...,T) the observables y; are mutually independent.
As with all positive definite matrices in SABL X! is represented by ¢ (X) (29) in (30) and
(31), and priors for ¥ must address ¢ (2). The Wishart prior distribution for ¥~ (Section
5.3.7), equivalently the inverse Wishart prior distribution for 3, does this directly and
conveniently.

The user provides the model data through the required model specification control
fields

e M.data: T X d data matrix;
e M.x_pointer: A length k vector pointing to columns of M.data (defines z;);

e M.y_pointer: A length n vector pointing to columns of M.data (defines y;).

Parameter map (See Section 5.1.2.) There are no default parameter maps in MVN-
FI. The model parameter vector consists of all of the elements of A, B and H that
are not identically zero. Each of these can be an arbitrary function of the algorithm
parameter vector , implemented using the parameter map capability of SABL. The
parameter map arrays are

e M.Amap (an n X n matrix ) for A together with M.Alinc if required. For nonlinear
maps the name is *A’;

e M.Bmap (an n X k matrix ) for B together with M.Blinc if required. For nonlinear
maps the name is ’B’;

e M.Hmap (an nXxn upper triangular matrix ) for H together with M.Hlinc if required.
For nonlinear maps the name is *H’.

Thus SABL can be applied to any model of the form
y=AO) y+B Oz +e, e~ N(0, (c(f(0))7). (32)
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This includes the very large class of structural models that are linearized when applied
to data. Of course, one must be able to code the functions in (32), and for these models
this may be a demanding analytical and programming task in its own right using SABL
or any other econometric approach. The practicality and efficiency of SABL in this
dimension can only be determined on a case-by-case basis.

Prior distributions Since there is no default parameter map, there is no default prior
specification. Perhaps the simplest situation arises when 6’ = (07, 05), A and B are linear
functions of 6 (ny x 1), both with linear prior distributions, and ¥ is independent with
an inverse Wishart distribution. Then M. prior may have a few as two cells: the first cell
pertains to 61, which has a linear prior distribution, and the n; x 1 vector columns field
points to ;. The second cell pertains to 6y = ¢(X71), for which the prior distribution
is Wishart and the n (n+ 1) /2 X 1 columns field points to the internal representation
of ¥~ (Section 5.3.7).

Of course this simple situation need not apply, and specifically does not at the level
of generality in (32). The ability to employ prior distributions that go beyond those
described in Section 5.3 by means of the functions m_prior_custom and p_prior_custom
described in Section 5.4.3 implies that SABL is limited mainly by the creativity and
coding skills of the modeler or user. The practicality and efficiency of SABL in this
dimension can only be determined on a case-by-case basis.

M phase RNE functions By default the M phase RNE functions are the algorithm
parameters 6 themselves. The user can provide g = p_rne(theta)that has as input the
particle matrix theta and output the corresponding RNE function values g, if a different
set of RNE functions is desired. It is best to avoid intensive computations in p_rne,
since the results are not used elsewhere in SABL.

5.5.5 The EGARCH model
To invoke the EGARCH model, use SABL(’egarch’) from the project directory, or
SABL(’egarch’, [project_directory]) from any directory.

Observables distribution Let y; (¢t =1,...,T) denote an observed sequence of asset
returns. The EGARCH model is

K
Y = Uy —+ Oy €Xp <Zﬂkt/2> Et

k=1

where py = E (y;) and 02 = var (y;). The K volatility factors are

Ut = Uk -1 + B, (|5t71‘ — (2/7)1/2> + e (h=1,... K).

The disturbance terms ¢, are independent and identically distributed as a full mixture
of I normal distributions
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1
pler) =Y pid(eisp,0l); E(e) =0, var(e) = 1.
=1

The user must specify the fields M.K = K and M.I = I, as well as M.y_pointer
indicating the column of M.data containing the time series y; (t = 1,...,7T).

Parameter map (See Section 5.1.2.) The default parameter map in the egarch model
consists of the transformations used in Durham and Geweke (2014), Section 4. In these

transformations the algorithm parameter vector is §' = (9(1), e ,9(8)’>. The map from
algorithm parameters to model parameters begins with
pry =01 /1000, oy = exp (0(2)> \e (33)
Then for k=1,..., K,
oy = tanh <6’,(€3)) , Br=exp (924)) y Ve = 91(5)- (34)
Fori=1,...,1,
p; = tanh <9§6)> =0 oF=exp (058)) : (35)
and then
. I
pi = ijj pyt =y — ;pjuj,

I -1/2
¢ = {ij [(u;f>2+<o;>2}} ,
Jj=1
mo= oul, i =co}.

The alternative to the default parameter map entails the specification the following
8 fields by the user:

M.muYmap (a scalar) for uy together with M.muYlinc if required. For nonlinear maps
the name is ’muY’;

M.sigmaYmap (a scalar) for oy together with M. sigmaYlinc if required. For nonlinear
maps the name is ’sigma¥’;

M.alphamap (a K x 1 vector) for o together with M.alphalinc if required. For
nonlinear maps the name is >alpha’;

M.betamap (a K x 1 vector) for 8 together with M.betalinc if required. For nonlinear
maps the name is *beta’;

M.gammamap (a K x 1 vector) for v together with M.gammalinc if required. For
nonlinear maps the name is ’gamma’;
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M.pmap (an I x 1 vector) for p together with M.plinc if required. For nonlinear maps
the name is ’p’;

M.mumap an [ x 1 vector) for p together with M.mulinc if required. For nonlinear
maps the name is ’mu’;

M.sigmamap (an [ X 1 vector) for o together with M.sigmalinc if required. For
nonlinear maps the name is *sigma’.

The user must specify all 8 fields or none of them. If none of the fields are specified
then egarch uses the default parameter map. Users creating their own map may find it
useful to review the code in models/egarch/p_thetapar for the logic employed.

Prior distributions The egarch model has a default prior structure that can be used
only in conjunction with the default parameter map — but need not be: the user can
employ an alternative prior by constructing the cell array of prior structures M.prior.
In the default prior, each of the vectors #) in (33) - (35) normal and independent
of V) (j # 1), each element having the same mean and standard deviation, and a di-
agonal variance matrix. Correspondingly there are eight structure fields M.muYprior,
M.sigmaYprior, M.alphaprior, M.betaprior, M.gammaprior, M.muprior, M.ppriior,
and M.sigmaprior, each of these structures with fields mean and std.

M phase RNE functions The default RNE functions are py and log oy

5.6 Adding a new model to the SABL toolbox

The SABL toolbox accommodates the incorporation of new models. It is straightforward
to develop a local research library of models that have full interface with the SABL
toolbox and can take advantage of all of its features, so long as the conventions common
to all models are respected. This section describes those conventions.

5.6.1 Required functions

The SABL toolbox interface requires an interface of four functions for each model:

e m_message: Log likelihood or objective function.
e m_monitor: Interface between c_monitor and p_monitor (see Section 3.3).

e m_[modelname]sim: Simulate from the distribution of observables conditional on
parameters.

e m_rnefunctions: RNE test functions use in the M phase.

New model developers should consult the model directories in the SABL toolbox.
Files in these directories provide insight into the management of execution, especially
code that uses GPUs or multiple workers efficiently. As with all code development
projects, there are substantial advantages to modularity, and in general this entails
developing other functions that are invoked directly or indirectly by these four functions.
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5.6.2 Interaction with SABL

Before adding a new model to SABL — ideally, at the time the prospect is conceived —
the modeler should digest the many commonalities in the four interface functions for
current SABL models. This includes conventions for field names in the M structure not
spelled out explicitly in this document or in the help system.

Specific attention must be given to modification of core default values in the C struc-
ture, documentation of the M structure in a corresponding helpfiles directory, at least
one example project, and tests provided in a testcode subdirectory.

The last requirement is the most important. SABL provides checks for analytical
and coding errors in u_pfcheck and u_pdfcheck, as well as functions u_runtest and
u_runtest_study that test the correct integration of the model code with the most
important control fields in the C and E structures. The developers of the SABL toolbox
actively encourage such contributions and are happy to consider contributions that meet
these standards.

5.6.3 CUDA code

CUDA code for likelihood evaluation is essential to efficient GPU performance with all
but the simplest models (in which GPU computing provides little if any advantage over
CPU in the first place). CUDA code is contained in a subdirectory cufiles of each
model directory. The subdirectory contains several similar mex files, one each for linux,
mac and windows operating systems. Consult the existing CUDA model files for more
details. New models may also entail the development of additional library functions:
note that the directory library also has subdirectories specific to CUDA code.

5.6.4 Code documentation

Each model function should include:

1. Comment lines at the start that then constitute the response to the corresponding
help command, in the format common to all SABL functions;

2. A model subdirectory that contains

(a) One file for each field of the M structure in that model, using the convention
that the symbol Q replaces the dot (.) in any field name, in a subdirectory
helpfiles;

(b) The file helpfiles/modelname]lbrief.m that provides the structure of the
model description returned in response to help [modelname]brief.

These conventions assure that the model will be fully incorporated in the SABL help
system.
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Table 1: SABL algorithm
Retrieve particles to be updated (if E.simulation_get specified)
Set SABL environment (E fields)
Stage: ’open’
for pass = first, [second if C.twopass = true]
Define the problem, including priors and data Stage: ’startrun’
Copy global structures from one to multiple workers if E.pus > 1
Draw particles from prior if not updating Stage: ’initialize’
while SABL cycles =1, 2, 3,
Stage: ’startcycle’
Initialize C (Correction) phase weight function
Stage: ’startCphase’
while C phase steps incomplete
Update the weight function Stage: ’whileCphase’
end
Stage: ’endCphase’
Stage: ’startSphase’
Execute S (Selection) phase
Stage: ’endSphase’
Stage: ’startMphase’
while M (Mutation) phase steps incomplete
Execute the next step Stage: ’whileMphase’
end
Stage: ’endMphase’
end
Stage: >finish’
Stage: ’endrun’
Copy global structures from multiple workers to one if E.pus > 1
end
Stage: ’close’
Save particles for future updating (if E.simulation_record specified)
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