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Abstract

This paper presents a network model of market prices and trading volume. In the
model individual agents are represented by nodes. If any two nodes trade with each
other within a unit of calendar time, they are considered connected by an edge. The
edges deÞne a network topology. I assume that the price difference between any two
nodes is a random variable drawn from a normal distribution with a mean proportional
to the number of edges between them and a constant variance. I deÞne trading volume
as the number of new edges added to the network per unit of calendar time. I show
that depending on the underlying pattern of interaction, different levels of volume lead
to the same changes in prices. I also show that while the agents do not directly observe
the global pattern of interaction, they are able to consistently estimate it. I argue that
an appropriate empirical price-volume model is a system of simultaneous equations in
which the variance of prices is a function of volume and volume is a function of price
variability and characteristics of the network topology.
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1. Introduction
“Most people would agree that a fundamental property of complex systems is that they are

composed of a large number of components or “agents”, interacting in some way such that
their collective behavior is not a simple combination of their individual behaviors. Over the
years, a large body of research has been directed at understanding both the behavior of indi-
vidual agents within complex systems and the nature of the interactions between them. As we
are just beginning to realize, however, there is a third aspect to these systems which may be
even more important and which has so far received little attention, and that is the pattern of
interaction between agents, i.e., which agents interact with which others.” (Newman, 2001).

Research on Þnancial markets has been following the general trend of research on complex
systems. Most studies focus on the behavior of individual agents in the marketplace (e.g.,
rational expectations), ways in which agents interact among themselves (e.g., market mi-
crostructure), and the properties of their collective outcomes (e.g., market efficiency). There
are only a few studies that explicitly take into account the pattern of interaction among
agents.1

The pattern of interaction forms a network with a particular structure or topology. Con-
sider an intuitive way to think about network topologies of Þnancial markets. Suppose that
information is dispersed among a large number of economic agents. Markets facilitate in-
formation exchange through trading: direct connections between agents. Trading volume
records the number of new connections (trades) per unit of calendar time, e.g., one hour.
Depending on the underlying topology (pattern of connections), the same number of new
connections can make one network much more connected than another. Intuitively, infor-
mation spreads much faster in a network in which individuals are highly connected to each
other than in one where they are far apart. The closer the connection, the more information
is impounded into market prices over the same period of calendar time. As more dispersed
information is pulled into market prices, they can become more volatile.
This intuition suggests two research questions. Can the pattern of interaction among

agents drive a relationship between trading volume and market prices? Conversely, for
given trading volume, market prices, and local information (direct trades), can the agents
consistently estimate the pattern of interaction for the whole network?
I present a network model of market prices and trading volume. In the model individual

agents are represented by nodes. Any two nodes are considered connected by an edge if they
trade with each other within a given calendar time interval. The edges deÞne a network
topology.
I assume that (in each unit of calendar time) there exists a cross-sectional distribution of

prices over the nodes. The price difference between any two nodes is a random variable drawn

1See, Kirman (1997) for a survey.
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from a normal distribution with mean proportional to the normalized distance between the
two nodes and constant variance. SpeciÞcally, if any two nodes are connected by a single
edge (e.g., they have traded during a given time), then the mean price difference is equal to
zero. If any two nodes are connected through chains of edges, then the mean is equal to a
constant (scaling factor) times the smallest number of edges between them (distance) save
one (normalizing factor).2

For the network as a whole, the price difference between any two nodes is a normal
random variable with mean equal to the normalized average distance (the smallest number
of edges between any two nodes averaged over all pairs of nodes) and constant variance. If
the network is fully connected (each node has traded with all other nodes), then the average
price difference between any two nodes is equal to zero. If the network is completely disjoint
(no trading took place within a unit of calendar time), then the price difference between any
two nodes becomes inÞnite as the number of nodes goes to inÞnity.
For example, if in the last hour, Joe traded with Mary, Mary traded with Bill, and Bill

traded with Alice, then (at the end of the hour) the price difference between Joe and Mary,
Mary and Bill, and Bill and Alice is a Normal random variable with zero mean and constant
variance. The mean of the price difference between Joe and Bill is µ (the scaling factor) and
between Joe and Alice is 2µ. The mean of the price difference for the whole network is 2µ

3
.3

Note that even if all transaction prices are observed, without knowing the pattern of trading,
the distribution of prices over the nodes cannot be described. For instance, if exactly the
same trade took place between Joe and Bill rather than Joe and Mary, the mean of the price
difference for the network is µ

2
rather than 2µ

3
.

In addition to the cross-sectional dispersion of prices, I assume that new edges are added
to the network over time. The nodes know the number of edges added to the network during
a given calendar time, but do not know the location of the new edges on the network unless
a new edge is local to a particular node (i.e., its own trade).
The price distribution changes in accordance with the evolution of the network topology

or �network time�, irrespective of the calendar time scale. However, observations of Þnancial
prices and quantities are typically made in calendar time. As a result, the distribution of
prices in calendar time may appear non-stationary, even though it is stationary in network
time.
In order to permit the difference between network time and calendar time, I use the

methodology based on the work of Bochner (1960), Mandelbrot and Taylor (1967), and
Clark (1973), who propose to apply a �time change�, following which stationary applies.

2For completeness, I assume that if any two nodes are disjoint, then the mean is equal to a constant
times the total number of nodes minus two (maximum number of edges connecting any two nodes minus the
normalizing factor).

3There are 6 possible chains of edges between 4 nodes: (J,M), (J,B), (J,A), (M,B), (M,A), and (B,A).
The means of price differences are 2µ for (J,A), µ for (J,B) and (M,A), and zero for (J,M), (M,B) and (B,A).
Thus, the mean of the price difference for the network is 2µ+µ+µ+0

6 = 2µ
3 .
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Agents do not directly observe network time. However, they conjecture that depending
on the underlying topology, adding the same number of new edges can make the average
distance of one network much smaller compared to another. Conversely, depending on the
network topology, different number of edges needs to be added in order to achieve the same
evolution of the price process.
I assume that agents know the (global) trading volume per unit of calendar time. I deÞne

trading volume as the number of new edges added to the network per unit of calendar time.
By construction, trading volume reßects the intensity of network formation. Consequently,
agents can use trading volume to convert calendar time into network time.
In network time, the mean price dispersion is either constant or decreases in the number

of nodes. Thus, different number of new edges needs to be added to different networks,
in order to make the price process evolve in the same way. Thus, a pattern of interaction
among agents is a latent variable that drives a relationship between trading volume and
market prices.
This results supports suppositions made in earlier studies.4 For example, Clark (1973)

posits that trading volume is a proxy for �operational time� according to which information
ßows into the market.
I show that for a given price process, the average intensity of network formation (trading

volume) is not necessarily constant as assumed by earlier studies, but can also be decreasing
in the number of nodes, depending on the network topology. In other words, depending on
the underlying pattern of interaction among agents, different levels of volume (the addition
of new edges in calendar time) lead to the same changes in prices.
I also show that while the agents do not directly observe the pattern of interaction, they

are able to consistently estimate it if they know prices, volume and network locations of other
agents. I argue that for a broad class of network topologies, agents can use information about
network locations of other agents to form consistent estimators of the unknown parameters
underlying the global network topology. Intuitively, some agents not only trade on their
own, but intermediate transactions between other counterparties. The knowledge of their
clients� trades and the identities of counterparties is the sort of necessary information that,
in addition to prices and volume, can help to form a consistent opinion about the global
trading pattern.
Finally, I provide support for earlier studies that empirically model the variance of prices

as a power function of volume (e.g. Clark (1973)). However, unlike the earlier studies I argue
that the exponential in the power function should be modelled not as a constant, but as a
function of the (latent) network topology among agents. Thus, the correct empirical model
is a system of simultaneous equations (rather than one equation), in which the variance
of prices is a power function of volume and volume is a function of price variability and

4See Ane and Geman (2000) and Howison and Lamper (2000) for recent studies on stochastic
subordination.
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characteristics of the network topology.
The rest of the paper is organized as follows. Section 2 positions this paper in relation

to the existing literature on trading volume. Section 3 gives a brief description of network
topologies. Section 4 presents the model. Section 5 describes how to go from local informa-
tion to global network topology. Section 6 evaluates the robustness of results with respect
to the underlying assumptions. Section 7 concludes.

2. Literature
The network model presents a formal framework to understand the relationship between

prices and volume. According to standard rational expectations models with supply uncer-
tainty, trading orders have both informational (or �signal�) and �noise� components.5 If the
signals are independently and identically distributed or dependencies among them cannot
be learned from volume, then volume contains only �noise� and all valuable information
is in the prices. In other words, although prices and volume and determined simultane-
ously, innovations to changes in prices and volume are generated by independent stochastic
processes.
However, if signals of the informed agents are dependent and the degree of signal cor-

relation and/or precision could be forecasted from volume, then prices and trading volume
together are more informative than prices alone. SpeciÞcally, a more precise estimator of the
variance-covariance matrix of individual private signals can be constructed from prices and
volume together rather than from prices alone.
A number of empirical studies support positive empirical relationship between trading

volume and price changes. Clark (1973) models conditional volatility of price changes as a
power function of the form σ2∆P | v = Cvb, where ∆P is per period (daily) differences in
prices, v is per period (daily) trading volume and C and b are positive constants. Consequent
studies by Epps and Epps (1976) and Tauchen and Pitts (1983) support a nonlinear positive
empirical relationship between trading volume and price changes.
A survey by Karpoff (1987) reports that trading volume is positively related to volatility6

Although when the number of trades and measures of quoted liquidity are included into the
estimation, trading volume has no additional explanatory power. Jiang and Kryzanowski
(1998) report that the number of trades is associated with the rate of information ßow
and Jones, Kaul and Lipson (1994) Þnd that volatility is primarily determined by number

5Private signals of informed traders can either be independently and identically distributed conditional on
the true value of the asset (Diamond and Verrechia (1981), Brown and Jennings (1989)) or correlated (Foster
and Viswanathan (1996)). Signals can either have the same precision (Grundy and McNichols (1989)) or
different precisions across agents (Blume, Easley and O�Hara (1994)). The signals can also be both correlated
and have different precisions (Dupont (1997)).

6For another survey, see Gallant, Rossi, and Tauchen (1992).
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of trades rather than trading volume. Bessembinder, Chan, and Seguin (1996) Þnd that
trading volume rises as a function of divergence in opinions.
These results can be better understood in the context of network topology. Even when it

is not explicitly speciÞed, the pattern of interaction (network topology) is always imbedded in
a model. Standard rational expectations models assume that trades of independent agents
form a regular lattice: either they trade all at once (a star topology) or sequentially (a
segment or ring topology). For example, Kyle (1985) assumes a star topology, while Glosten
(1989) assumes a segment topology. In a batch market, the common agent (market maker)
uses information contained in the order ßow to forecast the parameters (variance-covariance
matrix) of the aggregate distribution of signals (Foster and Viswanathan (1996), Dupont
(1997)). In a sequential setting, each consecutive trader uses preceding and contemporaneous
price-volume sequences to learn about the dispersion of beliefs (e.g., the main diagonal of
the variance-covariance matrix) and utilize this information to form expectations (Blume,
Easley, O�Hara (1994)).
Under these assumptions, because information is incorporated into prices through a reg-

ular lattice, volume does not have any information about the trading process and, unless it
is assumed to be correlated with the dispersion of beliefs, lacks value.
Moreover, according to the Central Limit Theorem for theoretical markets with indepen-

dent traders, the distribution of returns (log changes in price over discrete time intervals)
converges to a Gaussian. Empirically, however, the tails of the distribution of returns decay
according to the power law rather than exponentially (as in the Gaussian). Usefully, for a
general class of network topologies, neither the Central Limit Theorem nor informational
redundancy of volume need to be true.
Therefore, explicitly modeling the pattern of interaction can help explain some empirical

properties of prices and volume that are hard to reconcile with predictions coming from
earlier theoretical models.

3. Network Topologies
This section gives a brief description of network topologies. A network topology is deÞned

by the connection conÞguration and does not depend on the speciÞcs of interconnections or
message characteristics.

3.1. Definitions

Two connected nodes are called neighbors. The degree (or clustering coefficient) of a
node is deÞned to be the number of its neighbors. If the degree is equal to all but one nodes
(i.e. itself), then the agent is connected to all other agents.
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Sometimes, messages must go through several nodes in order to reach their Þnal desti-
nation. The average distance of a network (also known as characteristic path length or the
number of degrees of separation) is the smallest number of edges between any two nodes
averaged over all pairs of nodes. The longer the average distance, the more edges it takes to
go from any node to any other.
The mathematical theory of networks is known as graph theory. A graph is a pair (N,E),

where N is a Þnite set and E is a binary relation on N . Elements u, v of N are called nodes
(or vertices) and elements of E are called edges (or bonds). An edge is a pair (u, v) with
(u, v) ∈ E. In a directed graph, edges are ordered pairs, connecting a source node to a target
node. In an undirected graph, edges are unordered pairs and connect the two nodes in both
directions. Hence, a directed edge (u, v) can be different from a directed edge (v, u), while
an undirected edge (u, v) is the same as (v, u).

3.2. Main types of network topologies

There are three general types of network topologies: regular lattice, random graph, and
disordered or �small-world� topology. Regular lattice is a regular network. There is no
randomness in the connection structure. Regular lattices have high average distances and
high clustering (degrees). SpeciÞcally, their average distances are proportional to the number
of agents and, thus, go to inÞnity when the number of agents increase. For example, an
exogenous sequential arrival of agents forms a regular lattice, a segment or a ring. Each
arriving agent is connected only with her immediate predecessor.
A random graph is constructed by taking a set of n nodes and randomly introducing

each of the possible n(n−1)
2

edges among them with equal probability 0 ≤ p ≤ 1.7 If p = 0,
all nodes remain disconnected and if p = 1, all nodes are connected.8 Random graphs have
small average distances and low clustering. Random graphs also have a property of a rapid
formation of a global connected component when the number of added edges exceeds half
the number of nodes (a phase transition). Random graphs have been used to describe herd
behavior in Þnancial markets: large changes in prices accompanied by low volume levels.9

Disordered or �small-world� networks�called so by analogy with a �small-world� phe-
nomenon, popularly known as the �six degrees of separation��are neither completely regular,
nor purely random. A small world network is constructed by �rewiring� a regular lattice
either (i) by taking one end of an existing edge and assigning it to a new node chosen uni-
formly at random (so some existing edges are removed from the lattice) or (ii) by adding
new shortcuts between pairs of nodes chosen uniformly at random (without removing any
of the existing edges from the regular lattice).10 In other words, disordered networks are

7Random graphs were introduced in Erdös and Rényi (1960).
8An edge connecting a node to itself is allowed.
9See Cont and Bouchaud (2000), Eguiluz and Zimmermann (2000), and D�Hulst and Rogers (2000).
10Under the second type of �rewiring�, a message could be simultanously transmitted to more agents than
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constructed by superimposing a �random� subgraph over a �regular� subgraph. Watts and
Strogatz (1998) show that small-world networks exhibit properties of both regular lattices
(high clustering) and random graphs (small average distances). In this paper, I will use a
small-world framework to model the pattern of interaction in Þnancial markets.
Barthelemy and Amaral (1999) give the following intuitive descriptions of a regular lattice

and random graph network topologies: �The regular network is similar to the streets of
Manhattan: Walking along 5th Avenue from Washington Square Park on 4th Street to
Central Park on 59th Street, we have to go past 55 blocks. ... The random network is
similar to a strange subway system that would directly connect different parts of Manhattan
and enable us to go from Washington Square Park to Central Park in just one stop.� A
disordered network could be thought of as using both the ordered grid and the strange
subway to go between any two points in Manhattan.

3.3. Boundary conditions

Boundary conditions specify what happens at the ends of a network. There are two main
types of boundary conditions: free and periodic. If a part of the network repeats itself after
a speciÞed number of nodes, then boundary conditions are periodic. For example, a network
with a Þnite number of nodes, in which each node is connected to only one other node forms a
simple ring. This network (inÞnitely) repeats itself after every node. With periodic boundary
conditions, each node is always connected to the same number of neighbors irrespective of
it�s location within the network. Periodic boundary conditions represent an approximation
to an inÞnite system in that the connection structure does not change with the addition of
more nodes.
By contrast, if a network has ends at which the nodes have fewer neighbors than in the

interior of the network, then the boundary conditions are free. For example, if one node is
removed from a simple ring deÞned above, then the node that lost the link is not connected
to any other node. This network can be visualized a Þnite line segment. It has ends where
the number of connections is smaller than that in the interior. Free boundary conditions
approximate a Þnite system with the interior and exterior characteristics, e.g., a drop of
liquid on a solid surface or an isolated cluster of agents. Naturally, a multi-dimensional
network can be periodic in some dimensions and free in others. For example, a network can
have periodic boundary conditions across space and free boundary conditions across time.
The way in which the boundary conditions are constructed affects the speed of message

diffusion. For example, if every node is connected to six other nodes rather than just one,
then a message sent by one node will be received by six neighbors, passed on to six more
distinct neighbors (some neighbors will receive the message from multiple nodes), and diffuse
faster than a one-to-one transmission.

speciÞed by the regular lattice.
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3.4. Nodes and edges

Typically, nodes represent distinct agents and edges specify interaction and communica-
tion among them. The objective is to describe the behavior of a group of economic agents
rather than viewing them in isolation. Connections among groups of agents are assumed to
be direct.
There are two main ways of deÞning an edge in the literature.11 According to one way,

an edge represents a match/trade between an agent willing to buy and an agent willing to
sell an asset.12 This is the approach I use in this paper.
Alternatively, an edge between two traders means that they have common (coordinated)

information/beliefs. This deÞnition has been used previously both for regular lattices (Ellison
(1993), Blume (1993), Kosfeld (1998), Bala and Goyal (2000)) and random graphs (Cont and
Bouchaud (2000), Eguiluz and Zimmermann (2000), and D�Hulst and Rogers (2000)).

4. Model
The following network model is based on a small-world model of Kleinberg (1999).

4.1. Setup

Consider a two-dimensional regular integer lattice, (N,E) with N nodes, E edges and
free boundary conditions. Individual agents are represented by nodes. Each of the N nodes,
(i; j), is identiÞed as a point on a grid. Any two nodes are considered connected by an edge
if they trade with each other within a given calendar time interval.
DeÞne the distance between two nodes (i; j) and (k; l) to be the number edges separating

them, d((i; j); (k; l)) = |k − i| + |l − j|. For a constant δ ≥ 1, the node (i; j) has a directed
edge to every other node within distance δ. These are it�s local δ-neighbors. In addition,
for constants M ≥ 0 and 0 ≤ β ≤ 2, node (i; j) has long-range contacts (β-acquittances)
with M other nodes constructed by randomly adding edges between (i; j) and (k; l) with
probability

P (d,β) =
[d((i; j); (k; l))]−βP
(k;l) [d((i; j); (k; l))]

−β . (1)

For Þxed M , this speciÞcation describes a general family of parametric network models

11Kirman (1997) and Brock and Durlauf (2000) provide extensive surveys of the use of networks and graph
theory in economic modelling.
12See, for example, Ioannides (1990).
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characterized by parameters δ and β.13 For β = 0, the distribution over long-range contacts
is uniform (as in the Watts and Strogatz (1998) original �small-world� model) and the choice
of long-range contacts is independent of a node�s location on the grid. As β increases, the
probability of connecting to a node within a smaller distance becomes higher than that for
a higher distance, and the long-range contacts become more localized.
SpeciÞcally, by construction, for this probability distribution, for any two long-range

contacts i and j, the ratio P (j,β)
P (i,β)

= i
j

β ≤ N
β
, where P (j, β) is the probability of connecting

to a long-range acquittance located at a distance j. In other words, the further is j from
the original node compared to i, the less are its chances of becoming a long-range contact.
When β = 2, the probability distribution (1) is inverse-square power. For this value of β, for
any two long-range contacts i and j, P (j,2)

P (i,2)
= i

j

2, proportional to the dimension of the grid.
For δ = 1, each node has four local contacts (trades), one in each direction on the grid. As

δ increases, the number of local neighbors increases. For δ = N , there exists a node for which
any other node on the grid is a neighbor. By construction, the structure of local neighbors
is deterministic and the same for every node. However, the long-range acquaintances are
determined stochastically and their position could differ from node to node. Consequently,
I assume that every node has information about the set of local δ-neighbors for all nodes
(the ordering of the lattice), but knows with certainty only its own long-range contacts.
About the long-range contacts of other nodes, each node knows that they have M long-
range contacts constructed by randomly adding (directed) edges with probability drawn
from a power distribution with parameter β.
At the beginning, I assume that both β and M are known constants. Later, I relax this

assumption and assume that while M is known, only the functional form of the parametric
process (power distribution) is known to the agents, but the value of the parameter β is not.
However, in either case, each node has complete local information, but does not know the
global network structure.

4.2. Prices and average distances

I assume that for all pairs of nodes, (i; j), (k; l), the price difference between any two
connected nodes, ∆Pij,kl, is a random variable drawn from a normal distribution with mean
equal to µ (min (d((i; j); (k; l)))− 1) and variance equal to σ2N , where µ > 0 and σ2N > 0
are constants. I also assume that the price difference between any two unconnected nodes
is a random variable drawn from a normal distribution with mean equal to µ (N − 2) and
variance equal to σ2N .

14

13Accoring to Kleinberg, �this model has a simple �geographic� interpretation: individuals live on a
grid and know their neighbors for some number of steps in all directions; they also have some number of
acquaintances distributed more broadly across the grid.�
14This assumption is without the loss of generality. (N − 2) is the difference between the maximum number
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Intuitively, if any two nodes are connected by a single edge (e.g., they have traded during
a given calendar time), then the mean price difference is equal to zero. If any two nodes are
connected through chains of edges, then the mean is proportional to the distance between
them. If any two nodes are not connected (they have not traded within a given time), then
the mean is proportional to the maximum number of edges between them.
Note that the cross-sectional mean price difference does not have to be equal to zero.

Intuitively, during the same calendar period of time, different pairs of agents could trade
the same asset at different prices. Arbitrage (the same agent trading with many different
agents) makes the network more connected and, thus, forces the mean price difference to
zero. However, I do not assume cross-sectional arbitrage, a priori.
Denote by Pij, the price corresponding to a randomly drawn edge (trade) originating at

some node (i; j). By construction, the price difference between this node and any other node
is a random variable drawn from a Normal distribution with mean equal to the normalized
average distance (the smallest number of edges between any two nodes averaged over all
pairs of nodes) and constant variance. For example, if the network is fully connected (each
node has traded with all other nodes), then the average price difference between any two
nodes is equal to zero. If the network is completely disjoint (no trading took place within
a unit of calendar time), then the price difference between any two nodes is proportional to
the total number of nodes.
The average distance of a network depends on the values of δ, M , and β. For given

δ ≥ 1, M ≥ 0, and 0 ≤ β ≤ 2, each node can calculate how many edges there are on average
between any two nodes. Consider the following lemmas.15

Lemma 1 For δ ≥ 1, 0 ≤ β ≤ 2, when M = 0, the average distance between any two nodes
is proportional to N

4δ(δ+1)
, linear in the number of nodes.

WhenM = 0, the lattice is regular, i.e. no node has random (long-range) edges irrespec-
tive of the value of β. For a two-dimensional grid, the number of local neighbors is equal to
2δ (δ + 1) as each node is connected to all nodes within the distance δ along two dimensions.
Each �step� in any of the four directions connects with δ (δ + 1) new nonoverlaping (local)
contacts. Consequently, the average distance between any two nodes increases as N

4δ(δ+1)
,

and thus grows linearly with the number of nodes. For example, when δ = 1 each node has
2×1×(1+ 1) = 4 local contacts, one in each direction on the grid. Each step in any direction
connects with 2 new nonoverlaping contacts and the average distance between any two nodes
grows at the rate N

8
. When δ = 2, each node has 12 neighbors, each step connects with 6

new nonoverlaping neighbors, and the average distance between any two nodes increases at
the rate N

24
. For more general types of regular lattices, the average distance grows as N

δC(δ)
,

where C (δ) > 0 is a constant independent of N .

of edges connecting any two nodes, (N − 1) and one, the normalizing factor.
15The results in lemmas 1 and 2 are standard in random graph theory.
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Lemma 2 For δ ≥ 1 and M > 0, when β = 0, with high probability the distance between
any two nodes is bounded by lnN

lnM
, exponentially smaller than the total number of nodes.

The value of β = 0 corresponds to a uniform distribution over long-range contacts.
Thus, each �step� connects with M > 0 new long-range contacts. With k steps, with high
probability, the number of edges increases with the number of �steps� as N ∼ Mk. This
implies that the average distance increases proportionally to lnN

lnM
, exponentially smaller than

the total number of nodes. Note that when M = N , i.e. each node has long-range contacts
with all other nodes (including itself), the average distance between any two nodes is equal
to 1.

Lemma 3 For δ = 1 and M > 0, when 0 < β < 2, the average distance between any two
nodes is bounded by a polynomial in N . Moreover, when β = 2, the average distance is
bounded by α1ln2 (N), where α1 is a constant independent of N .

Kleinberg (1999) provides a formal proof. The intuition is as follows. Under the assumed
probability distribution of long-range contacts (1), the placement of long-range links is cor-
related with the lattice distance. For β = 2, a node has the same correlation with each of
it�s long-range contacts. For β < 2, the correlation with its long-range contacts at greater
distances is higher than with those at closer distances. Given this property, a variation of
breadth-Þrst search algorithm (described as a breadth-closest search) is able to Þnd a known
target within a square-logarithmic number of steps.
A breadth-Þrst search algorithm on a directed graph is deÞned as follows. Start at node

u and proceed to build up a series of layers. Layer 1 consists of all nodes to which u points
with a directed edge. Layer i consists of all nodes to which there is a directed edge from
some node in layer i−1, but are not in any earlier layer. By construction, layers are disjoint.
The smallest distance from u to v is the index of the layer that v belongs to. Since the lattice
under study has a connected ordered subgraph, such a layer always exists.
For β = 2, each long-range is equally likely to belong to any of the layers, while for β < 2,

the probability of belonging to layers at greater distances is higher than for those at lower
distances. Consequently, for β = 2, the search is equally likely to move closer to a target at
any layer, while for β < 2, the search is less effective at closer distances to the source.
Consider the following variation of a breadth-Þrst search algorithm, which could be de-

scribed as the breadth-closest algorithm. After constructing the layers, forward the message
to the layer that is as close as possible to the target. Kleinberg (1999) shows that such a
decentralized algorithm is able to Þnd a known target within number of steps that is smaller
than the number of nodes on the grid. In particular, the algorithm can reach from any
source to any target within the number of steps that is proportional to (i) a power func-
tion in the number of nodes with the exponent less than or equal to 2

3
for β < 2 or (ii) a

square-logarithmic function in the number of nodes for β = 2.
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4.3. Volume and network time

In addition to the cross-sectional dispersion of prices, I assume that over time new edges
are added to the network. I also assume that unless a new edge is local to a particular
node (its own trade), the nodes do not observe where the new edges have been added to
the network. However, the nodes do know how many edges have been added to the network
during a given calendar time.
Intuitively, the pattern of trading evolves as new trades are being added.16 The agents

only observe the total number of trades that occurred between calendar time observations.
However, during the same length of calendar time (e.g., one hour), the pattern of trading
among agents may change anywhere between a lot and very little.
By assumption, the distribution of prices changes with the evolution of the network topol-

ogy (the pattern of trading). Intuitively, the pattern of trading affects the transmission of
valuable information through the network. In a highly connected network, information trav-
els very quickly between any two nodes. Consequently, the distribution of price differences
among agents is centered very tightly at zero. In a mostly disjoint network, information
between nodes travels slowly. Correspondingly, the distribution of price differences has a
possibly nonzero mean and a high variance.
During one hour, the network topology may change from moderately connected to highly

connected or become almost disjoint (very few trades). During the same hour, the price
distribution changes in accordance with the evolution of the network topology or �network
time�, irrespective of the calendar time scale. However, observations of Þnancial prices and
quantities are typically made in calendar time. As a result, the distribution of prices in
calendar time may appear non-stationary, even though it is stationary in network time.
In order to permit the difference between network time and calendar time, I use the

methodology based on the work of Bochner (1960), Mandelbrot and Taylor (1967), and
Clark (1973), who propose to apply a �time change�, following which stationary applies.17

I suppose that the intensity of network formation is controlled by a strictly increasing,
continuous, adapted network-time process, T (t) with T (0) = 0. T (t) denotes the amount
of market time that passed after t units of calendar time. For example, when T (t) = t,
network time is equivalent to calendar time. The agents do not directly observe T (t).
Denote by Pij (t) the price corresponding to a randomly drawn edge (trade) originating

at some node (i; j) at calendar time t. From here on, I suppress the subscript ij with the
understanding that the location of the node (i; j) at which the edge (trade) originates is

16In this paper, the network topology evolves as new edges are being added to a constant number of nodes.
There is an expanding literature on growing networks that evolve as both new nodes and new edges are being
added. See, for example, Jin et al (2001) and Callaway et al (2001).
17For recent studies invloving this technique, see Ghysels and Jasiak (1994), Ghysels, Gourerioux and

Jasiak (1995), Conley, Hansen, Luttmer and Scheinkman (1997), Russel and Engle (1998), Duffie and Glynn
(2001), and Geman, Madan and Yor (2001).
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known only to itself and the node to which the edge connects. All other nodes view the
location as random. In other words, only the counterparties speciÞc to the trade know that
the transaction price, P (t), observed by other agents corresponds to their trade.
Denote by ∆P (t+ 1) = P (t+ 1)− P (t), the evolution of the price process in calendar

time t ≥ 0. By construction, ∆P (t+ 1) is a random variable drawn from a Normal distribu-
tion with mean zero and variance σ2N . While for each t ≥ 0, the cross-sectional mean of P (t)
could be nonzero depending on the network topology, the increments of the price process in
calendar time are zero due to arbitrage.
Denote by ∆T (t+ 1, t) = T (t+ 1)− T (t), t = 0, 1, ..., the interval of network time that

passed during the change in calendar time from t to t+ 1.
I assume that agents know the (global) trading volume per unit of calendar time. I deÞne

trading volume as the number of new edges added to the network per unit of calendar time.
By construction, trading volume reßects the intensity of network formation. Consequently,
the agents can use trading volume to convert calendar time into network time.

5. Network topology, prices, and volume
In this section I address two questions. Can the pattern of interaction among agents drive

a relationship between trading volume and market prices? And, for given trading volume,
market prices, and local information (direct trades), can the agents consistently estimate the
pattern of interaction for the whole network?

5.1. From network topology to prices and volume

Clark (1973) proves the following result (Theorem 4 and Corollary 4.2): Suppose that
P (t) is a process with stationary independent increments and T (t) is another process with
possibly nonstationary and correlated increments. Let the increments of P (t) be drawn
from the distribution with mean zero and Þnite variance σ2N and the increments of T (t)
be drawn from a positive distribution with mean λ independent of the increments of P (t).
Then the subordinated stochastic process P (T (t)) has a stationary uncorrelated increments
with mean zero and variance λσ2N .
The intuition is as follows. Suppose that on average λ new edges are added to a network.

Depending on the network topology, the cross-sectional characteristics of the network change.
The average distance becomes much smaller in a random graph than in a regular lattice.
Conversely, depending on the network topology, different number of edges, λ needs to be

added in order to achieve the same evolution of the price process in calendar time. Consider
the following proposition.
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Proposition 1 The values of λ = λ (δ,β,M,N) have the following upper bounds:
(i) N

4δ(δ+1)
for a regular lattice,

(ii) lnN
lnM

for a random graph,

(iii) αβN
2−β

3 for a disordered network with 0 ≤ β < 2, and
(iv) α1(lnN)

2 for a disordered network with β = 2.

The proof follows directly from lemmas 1 - 3. Proposition 1 establishes the relationship
between the parameters describing the network topology and the mean of the (unobserved)
network time process. In contrast to earlier studies, Proposition 1 shows that for a given
price process, the average intensity of network formation (trading volume) is not necessarily
constant, but can also be decreasing in the number of nodes. In other words, depending on
the underlying pattern of interaction among agents, different levels of volume (the addition
of new edges in calendar time) lead to the same changes in prices.
The intuition is as follows. Consider a fully connected network and a fully disjoint

network. The average distance in the fully connected network is one and in the fully disjoint
network is proportional to the number of nodes, N . In order to make the price process
evolve in the same way in the two networks, up to N new edges need to be added to the fully
disjoint network, while up to one edge needs to be added to the fully connected network.

5.2. From prices, volume, and locations to network topology

In the previous subsection, I argued that the average intensity of network formation can
be decreasing in the number of nodes for topologies other than the regular lattice. However,
since the pattern of interaction is not directly observed, can the agents do better than
assuming constant average intensity for the driving (network time) process?
What kind of additional information would an agent need in order to understand the

global network topology? In this section I argue that while the agents do not directly
observe the global pattern of interaction, they are able to consistently estimate it, if they
know prices, volume and lattice locations of other agents.
Is it realistic to assume that agents know lattice locations of other agents? In practice,

some agents not only trade on their own, but intermediate transactions between other coun-
terparties. The knowledge of their clients� trades and the identities of counterparties is the
sort of necessary information that, in addition to prices and volume, can help to form a
consistent opinion about the global trading pattern.
If agents know the values of δ, M , and β, they can solve for the values of λ as a function

of N . I begin by showing for which parameter values of δ, M , and β, even with the knowl-
edge of lattice locations of other agents, the local geometry of the grid is either completely
uninformative or fully informative about the global network topology. Consider the following
lemmas.
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Lemma 4 If there exists a node for which any other node on the grid is a neighbor, i.e.
δ = N , then the local geometry of the grid provides full information about the global network
topology.

The distance between any source and any target is equal to at most two. The simple
message transmission algorithm is as follows: if the target is a neighbor, send the mes-
sage directly, otherwise, send the message to a central node. Information about message
transmission does not add any new information about the global network topology.

Lemma 5 If no random long-range contacts are introduced into the regular lattice, i.e. M =
0, then the local geometry of the grid provides full information about the global network
topology.

If the network topology is a regular lattice, then its global geometry consists of repeated
identical local geometries (e.g. each node is connected by fours edges to four other nodes in
each direction). Thus, local geometry provides full information about the global topology.
No additional information is needed to characterize the network topology.

Lemma 6 If the long-range contacts are generated by a uniform distribution, i.e. β = 0,
then the local geometry of the grid does not provide any additional information about the
global network topology.

The uniform distribution corresponds to a random drawing of agents that is independent
of the underlying grid structure. Thus, although with high probability there exist paths with
lengths bounded by lnN , a decentralized algorithm cannot Þnd these paths. Consequently,
there does not exist a local information-based algorithm capable of improving upon a sequen-
tial grid search. Kleinberg (1999) shows that the smallest number of steps of a decentralized
algorithm is bounded by α0N

2
3 .

In summary, lemmas 4 - 6 show that for boundary parameter values, i.e. δ = N , M =
0, and β = 0, the knowledge of lattice locations of other agents does not add any new
information about the global topology, because the local geometry of the grid is either
completely uninformative or fully informative.
It is reasonable to assume that agents know their local and long-range trading interaction,

δ and M . However, the value of the global parameter β is typically unknown. Suppose that
only the functional form of the general parametric process (power distribution) is known to
the agents, but the value of the global parameter β is not. Can an agent combine information
about prices, volume, and locations of other traders to form a consistent estimate of the value
of β? In other words, can estimates formed on the basis of local probability laws converge
to the global parameter characterizing the aggregate probability law?18

18See Blume and Durlauf (1999) for a discussion of equilibrium concepts for social interaction models.
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Proposition 2 There exists a decentralized algorithm such that local estimators of the un-
known global parameter β are consistent.

Consider the following algorithm. Since lattice locations of source-target pairs are known,
an agent can order these pairs by distance from the smallest to the largest. The agent can
then observe how the realized distances behave as the number of (ordered) edges separating
the source from the target grows. SpeciÞcally, the agent can estimate coefficients in the
following linear regression, lnY = φ0 + φ1lnZ, where Y is the vector of realized distances
(number of edges between each source-target pair) and Z is the ordered vector of lattice
distances (number of edges between the coordinates of the source-target pairs). The esti-
mated coefficient �φ1 is an estimate of β. Namely, �β = 2− 3�φ1, where �β denotes an estimate.
If �φ1 =

2
3
, then �β = 0. If �φ1 = 0, then �β = 2. Finally, if 0 < �φ1 <

2
3
, then the value

of 0 < �β < 2. From the random graph theory, errors around the upper bound on average
distances are O (1). Therefore, �β is a consistent estimator of β. This completes the proof.
Intuitively, average distances found by a local information-based algorithm are bounded

by a power function. Using repeated observations of average distances, agents can form an
estimate that converges to the exponent of the power function (global property).
Standard tests can be applied to test whether �φ1 is signiÞcantly different either from

zero or from 2
3
. If �φ1 is not statistically signiÞcantly different from zero, then with high

probability there exists a local information-based algorithm that could Þnd a short distance
from any source to any target. Similarly, if �φ1 is not statistically signiÞcantly different from
2
3
, then with high probability the local geometry of the grid does not provide any additional
information about the global network topology.

6. Robustness
In this section I evaluate the assumptions underlying the results shown in the previous

sections.
First, I assume that the network topology is exogenous, i.e. agents have no choice over

the design or transformation (e.g., addition of edges) of the topology. This assumption is
restrictive. Agents may wish to change the topology. However, Bala and Goyal (2000)
show that at the local level, the assumed type of topology (stars) is robust with respect to
noncooperative behavior.19

19Bala and Goyal (2000) study the theory of network formation in a noncooperative framefork: an agent
can establish links with others without their permission by simply incurring some costs. They assume that
beneÞts from establising a link can either go to the agent that established the link or to both agents connected
by the link. They show that in the limit (one-dimensional) equilibrium networks have one of two types of
topologies: ring (or wheel) or star. The type of the limiting topology depends on the degree of required
incentive compatibility of agents. If all beneÞts from establishing a link go to one agent, then each agent
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Second, I assume a power family of distributions for the selection of long-range contacts.
Power family of distributions is fairly general. It has been empirically observed in a num-
ber of social and natural phenomena. Power family of distributions is homogeneous (scale
independent), i.e. it holds at all frequencies/magniÞcations with a different exponent and
constant.
Third, I assume that the addition of edges (trades) is costless. This is also a restrictive

assumption. It would be more realistic to assume that the degree of a topology has an
effect on cost, since the more links a node has the more logic it takes to implement the
connections.20 Although a cost structure as a function of distance could be easily formulated,
it would complicate the model, without necessarily adding to its crucial Þndings. This is a
subject of future work.
Fourth, I assume that lattice locations of both the source and the target are known to

all nodes. This may seem to be a restrictive assumption. However, Adamic et al (2001)
show that for β close to two, the average distance between any two nodes remains bounded
by ln2 (N) even if the location of the target is not known. The only information required
is that the nodes have some information about their second degree neighbors, i.e. their
friends� friends. The algorithm that has this property is speciÞed as follows. Starting with
the source node, at each step choose a node with the highest degree (number of local and
long-range contacts) until the highest degree is achieved. After visiting the highest degree
node, continue by choosing the node with the next highest degree. If that node turns out to
have the highest degree continue down the degree sequence until a node with a higher degree
is found.

7. Conclusion
This paper presents a network model of market prices and trading volume. In the model

individual agents are represented by nodes. If any two nodes trade with each other within
a unit of calendar time, they are considered connected by an edge. The edges deÞne the
pattern of interaction among agents or a network topology.
I assume that there is cross-sectional distribution of price differences among agents. The

price distribution changes in accordance with the evolution of the network topology or �net-
work time.� The network time is not directly observable by the nodes. The nodes know
the number of edges added to the network during a given calendar time, but do not know
the location of the new edges on the network unless a new edge is local to a particular
node (its own trade). As a result, the distribution of prices in calendar time may appear

choses a best response strategy to the other agents� strategies and the limiting topology is a ring. If the
beneÞts are shared between two agents connected by a link, then each pair of agents must choose the best
response to the other agents� strategies and the limiting topology is a star.
20See, for example, George, Kaul, and Nimalendran (1994) on how transactions costs can affect volume.
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non-stationary, even though it is stationary in network time.
Based on the work of Bochner (1960), Mandelbrot and Taylor (1967), and Clark (1973),

I apply a �time change�, which results in the stationarity of the price process. However, in
contrast to earlier studies, I argue that for a given evolution of the price process, the intensity
of network formation (trading volume) in calendar time is a function of the network topology.
I show that depending on the underlying pattern of interaction among agents, different levels
of volume (the addition of new edges in calendar time) lead to the same changes in prices.
I also argue that an appropriate empirical price-volume model is a system of simultaneous
equations, in which the variance of prices is a function of volume and volume is a function
of price variability and characteristics of the network topology.
I show that for a broad class of network topologies, there exists a decentralized efficient

mechanism to transmit information dispersed throughout the economy. I argue that while
the agents do not directly observe the pattern of interaction, they are able to consistently
estimate it, if they know prices, volume and network locations of other agents. Intuitively,
some agents not only trade on their own, but also intermediate transactions between other
counterparties. The knowledge of their clients� trades and the identities of counterparties is
the sort of necessary information that, in addition to prices and volume, can help to form a
consistent opinion about the global trading pattern.
Network topology is different from market microstructure. Market microstructure is a set

of trading rules. It changes infrequently. Network topology is a set of trading interactions.
It changes all the time. Individual traders know market microstructure and their trading
decisions. They do not know the global trading pattern.
However, even when it is not explicitly speciÞed, the pattern of interaction (network

topology) is always imbedded in a market microstructure model. Standard rational expec-
tations models assume that trades of independent agents form a regular lattice: either they
trade all at once (a star topology) or sequentially (a segment or ring topology). For example,
Kyle (1985) assumes a star topology, while Glosten (1989) assumes a segment topology. In
addition, it is assumed that the agents know the structure of the network topology. Under
these assumptions, because information is incorporated into prices through a regular lattice,
volume does not have any information about the trading process and, unless it is explicitly
assumed to be correlated with the dispersion of beliefs (Blume, Easley, O�Hara (1994)), lacks
value.
I argue that when the pattern of interaction is not a regular lattice, but a disordered

graph (constructed by superimposing a �random� subgraph over a regular lattice), trading
volume contains information about the network topology. SpeciÞcally, for a given price
process, trading volume is a function of the degree of randomness in the network.
A number of assumptions common in the literature on general complex systems drive

the results of this paper. Two of the assumptions merit a speciÞc mention. I assume that
the global network topology is exogenous. While Bala and Goyal (2000) show that the type
of topology that I assume at the local level (stars) is robust with respect to noncooperative
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behavior, agents collectively may wish to change the global topology. I also assume a power
family of distributions for the selection of random trade pairs. While the power family of
distributions is fairly general and has been empirically observed in a number of social and
natural phenomena, it parametrically determines the functional form of my results.
Developing a suitable set of modelling assumptions and Þnding empirical support for the

arguments made in this paper are subjects of future work.
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