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Abstract

This paper models and estimates the Beveridge-Nelson decomposition of multivariate time series

in an unobserved components framework. This is an alternative to standard approaches based on

VAR and VECM models. The appeal of this method lies in its transparency and structural character.

The basic model parsimoniously nests a large set of common trend and common cycle restrictions. It

is found that if the cyclical component has a sufficiently rich serial correlation pattern, all covariance

terms of the trend and cycle innovations are identified. Tests for common trends are based on a

method developed by Nyblom and Harvey (2000), while hypotheses on common cycles are tested

using likelihood ratio statistics with standard distributions. This testing framework is used to assess

the implications of common trend-common cycle restrictions for the income-consumption relationship

in U.S. data. The presence of a common cyclical component yields a rejection of the permanent

income hypothesis and evidence is found for the stylized fact that permanent shocks play a more

important role for consumption than for income. Out-of-sample forecasts show that common trend

and common cycle restrictions improve predictive accuracy.
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1 Introduction

It is well known in business cycle research1 that trend-cycle decompositions based on

unobserved component (UC) models tend to be very different than those based on the

Beveridge-Nelson decomposition. While the former typically produce smooth trends

and highly persistent cycles of large amplitude, the latter yields uneven trends and

cycles that are small and mean-reverting. In a recent paper Morley, Nelson and Zivot

(2002, MNZ henceforth) take a closer look at this apparent inconsistency and note

that unobserved components models tend to impose the restriction that trend and

cycle innovations are orthogonal. This restriction limits the parameter space of the

underlying ARIMA representation of the UC model. MNZ show that if the correlation

between the innovations of the unobserved components is unrestricted, the UC model

gives a trend-cycle decomposition that is identical to that of the Beveridge-Nelson

decomposition. Moreover, they find that the zero-correlation restriction is rejected

by U.S. GDP data.

This paper expands the analysis of MNZ to a multivariate setting. This aim is mo-

tivated on a variety of grounds. First, it is generally believed that a multivariate

framework provides a superior modeling environment for macroeconomic variables,

because it offers important insights in the dynamic relations between variables as

well as the identification of innovation sources. Second, as Durbin and Koopman

(2001) argue, the key advantage of unobserved components models and the under-

lying state-space approach is the structural analysis of the problem that contrasts

with ARIMA modeling methods. Individual pieces like the trend, cycle, seasonal and

possible exogenous and endogenous explanatory variables can be modeled separately

and subsequently combined in the state-space model. Third, the unobserved compo-

nents approach has the particulary appealing property that restrictions imposed by

common factors can be modeled in a transparent way.

For the multivariate Beveridge-Nelson decomposition, possible common factor restric-

tions include long-run restrictions imposed by common trends (Engle and Granger,

1987, Stock and Watson, 1988) and short-run restrictions imposed by common cycles

1See e.g. Canova (1998a).
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(Vahid and Engle, 1993). The theoretical framework of both Stock and Watson and

Vahid and Engle is based on a structural unobserved components model derived from

the Wold representation of a differenced multivariate time series. However, virtually

all empirical work2 has been based on finite order vector autoregressions. While VARs

are simple to estimate, this approach has the disadvantage that the Beveridge-Nelson

decomposition can only be retrieved indirectly, except in the case where the number

of common trends and common cycles adds up to the dimension of the system, as

shown by Proietti (1997).

Naturally, several issues arise in this context. First, it is not a priori clear whether

and under what circumstances the covariance terms of trend and cycle innovations are

identified in a multivariate setting. Second, estimation needs to be based on a Kalman

filter maximum likelihood method. While this approach is more involved than the

standard OLS and IV methods used for the estimation of VARs and structural VARs,

it provides a more flexible framework that can be adjusted for the inclusion of ad-

ditional components such as seasonals and exogenous variables. Recent innovations

(see Durbin and Koopman, 2001) have reduced the computational burden and im-

proved the capacity of the Kalman filter to deal with non-stationary problems. As in

the VECM framework a goal is to use the estimated model to generate out-of-sample

forecasts and forecast error variance decompositions. Third, the standard routines

to test for common trends and common cycles (Johansen, 1988 and Vahid and En-

gle, 1993) are not applicable, therefore we need an alternative testing framework. A

contribution of this paper is to shed light on these issues and offer answers.

The general multivariate unobserved components model parsimoniously nests more

specific models with a restricted number of common trends and common cycles. The

issue of selecting the best model among possible alternatives is interesting for sev-

eral reasons. First, as Stock and Watson (1988) and later Vahid and Engle (1993)

note, the existence of common trends and common cycles may be predicted by the-

oretical models, such that testing the implied restrictions is equivalent to a test of

the theory itself. Second, if a simpler model with fewer parameters is the correct

data-generating process, its use improves forecast accuracy. Third, misspecification

2Examples include King et al. (1991), Engle and Issler (1995) and Issler and Vahid (2001).
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of common stochastic trends components leads to biased estimates or loss of efficiency.

Restrictions imposed by common factors can be interpreted as a reduction of the

rank of the covariance of trend and cycle innovations. If the number of trends is

held constant under both alternatives, likelihood ratio tests have standard limiting

distributions. This is the case for tests for common cycles. The limiting distribution

for likelihood ratio tests for common trends is nonstandard. Thus, this paper employs

an alternative test for common trends recently developed by Nyblom and Harvey

(2000).

The rest of the paper is organized as follows. Section 2 describes the Beveridge-Nelson

decomposition and extensions to common trends and common cycles. The standard

VECM approach is compared with the state-space framework. It is also shown that

a simple correspondence between the VECM and UC models exists in the special

case when the number of trends and cycles is equal to the dimension of the system.

Section 3 outlines a testing framework based on nested models. Section 4 includes an

empirical application for U.S. income and consumption data, a comparison of out-of-

sample forecasts, and forecast error variance decompositions. Section 5 concludes.

2 A structual approach to cointegration and com-

mon cycles

This section derives the multivariate Beveridge-Nelson decomposition with com-

mon trend and common cycle restrictions and gives an overview of the standard

VAR/VECM-based estimation approach. Subsequently a state-space model for di-

rect estimation of the unobserved components in the trend-cycle decomposition is

introduced.

Let yt denote an n-vector of I(1) variables such that its first difference has a Wold
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representation3

∆yt = C(L)ut (1)

where C(L) is a polynomial matrix with the properties
∑∞

j=1 j|Cj| < ∞ and C(0) = In

and ut is multivariate white noise. By defining C∗(L) = (1−L)−1(C(L)−C(1))4 this

process can be rewritten as

∆yt = C(1)ut + ∆C∗(L)ut. (2)

Integrating both sides then gives the trend-cycle decomposition

yt = C(1)
∞∑

s=0

ut−s + C∗(L)ut (3)

= τt + ct,

which is Stock and Watson’s (1988) multivariate extension of the decomposition

proposed by Beveridge and Nelson (1981). Beveridge-Nelson showed that any

ARIMA(p,1,q) process can be decomposed into an exactly identified stochastic trend

τt plus a transitory part with a cyclical interpretation ct. The trend can alternatively

be defined as the limit of the forecast of the time series as the horizon approaches

infinity, adjusted for the mean rate of growth µ (which is set equal to zero in our

case)

τBN
t = lim

κ→∞
E[yt+κ − κµ|Ωt]. (4)

Consequently the cyclical component has no long-run effect. More generally, Stock

and Watson build on earlier work by Engle and Granger (1987), to allow for common

trends in (3). We will use the following definition:

(Common Trends) An n-vector of I(1) variables yt is said to have k = n− r common

trends if there exists an n× r matrix α of rank r such that

α′yt ∼ I(0). (5)

Consider further an n × k matrix γ that lies in the left null-space of α such that

α′γ = 0. The Stock-Watson trend-cycle decomposition is then given by

yt = γτt + ct (6)

3In the following we will assume without loss of generality that the mean of ∆yt equals zero,
which implies the absence of a linear trend in levels.

4See, for example Engle and Granger (1987) for this result.
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where τt is a k-vector of random walks (the common trends). Note that this implies

that C(1) can be factored as γδ′ for some k × n matrix δ in equation (3). A similar,

albeit more restricted, version of this model is given in a seemingly unrelated time

series equations (SUTSE) context by Harvey (1989).

The Stock and Watson common trends model was further refined with common cy-

cle restrictions proposed Vahid and Engle (1993)5. Analogously to the definition of

common trends, common cycles (in the sense of Vahid and Engle) are defined as

follows:

(Common Cycles) An n-vector of I(0) variables ∆yt is said do have l = n−s common

cycles if there exists an n× s (s + r ≤ n) matrix α̃ of rank s such that

α̃′∆yt ∼ WN. (7)

By defining a n × l matrix γ̃ that lies in the null-space of the cofeature vectors α̃

(α̃′γ̃ = 0) and an n × l polynomial δ̃(L) such that γ̃δ̃′(L) = C∗(L), we can extend

the Stock-Watson-Beveridge-Nelson decomposition to include common cycles, which

is then given by the structural model

yt = γτt + γ̃ct (8)

τt = τt−1 + δ′ut

ct = δ̃′(L)ut.

The k common trends τt follow a multivariate random walk, the l common cycles ct

are usually modelled as an ARMA(p,q) process. Also note that the contemporaneous

trend and cycle innovations are perfectly correlated6, which is an often cited feature

of the BN decomposition.

5Building on the common features notion of Engle and Kozicki (1993).
6In the original paper by Beveridge and Nelson (1981) the trend-cycle decomposition was defined

as yt = τt − ct, such that trend and cycle innovations are perfectly negatively correlated.
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2.1 The standard VECM approach

In the related literature7 the usual approach to estimate models with common trends

and common cycles is based on finite order vector autoregressive (VAR) models as an

approximation to the more general class of models given by (1). Consider therefore

the p-th order VAR model in levels

Π(L)yt = ut, (9)

where Π(L) = I − Π1L − Π2L
2 − ... − ΠpL

p. Since yt ∈ I(1) some of the roots of

|Π(z)| = 0 fall on or outside the unit circle. The VAR in levels can be reparametrized

to yield the interim multiplier representation (see Banerjee et al. (1993))

∆yt = Γ1∆yt−1 + ... + Γt−p+1∆yt−p+1 + Πyt−1 + ut, (10)

where Π(L) = Π(1)+∆Γ(L), Γ(L) = I −Γ1L− ...−Γp−1L
p−1 and Γj = −

∑p
i=j+1 Γi.

Engle and Granger (1987) show that if there are cointegrating relationships, the

rank of Π equals r < n, such that Π can be factored as the product of two n × r

matrices (Π = −βα′). Here α includes the r cointegrating vectors which span the

cointegration space, while β is called the matrix of adjustment coefficients that are

the factor loadings in the vector error correction model (VECM)

Γ(L)∆yt = −βzt, (11)

where zt = α′yt is the error correction term. It is clear that the assumption of

common trends imposes cross-equation restrictions on the VAR in levels, since the

sum
∑

Πi must then have a reduced rank. It is also evident that the VAR in levels

parsimoniously encompasses the VECM, since the former has n2p parameters, while

the latter has only n2(p − 1) + 2nr − r2 parameters in the conditional mean after

accounting for free parameters in α.

Vahid and Engle (1993) show that the existence of common cycles presents additional

cross-equation restrictions on the VAR model. Premultiplication of the system in

7King et al. (1991), Vahid and Engle (1994), Proietti (1997), Issler and Vahid (2001), amongst
others.
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differences by the cofeature matrix α̃ produces multivariate white noise

α̃′∆yt = α̃′ut. (12)

The linear combinations of the cofeature vectors therefore remove serial correlation

from the first difference of the data. Equation (12) eliminates s(np + r) − s(n − s)

additional parameters, so that the model with common cycles is parsimoniously nested

in the VECM.

For estimation usually Johansen’s (1988) full information maximum likelihood

method is used to determine the number of cointegrating relationships and estimate

the VECM. Conditional on the cointegrating vectors the structural reduced form im-

plied by the existence of common cycles can be estimated by standard simultaneous

equations techniques (see Vahid and Engle (1993) and Issler and Vahid (2001) for

details).

A main attraction of the approach based on finite order vector autoregression lies in

the fact that it is relatively straightforward to estimate even if the dimension of the

system n and the number of lags p necessary to describe dynamic interaction is large.

On the downside, it does not directly give the trend-cycle decomposition described

in the previous section (equation (8)). An important exception, as Vahid and Engle

note, is the case where the sum of common trends and common cycles is equal to the

dimension of the system (k + l = n). In this case the cointegrating vectors and the

cofeature vectors together span Rn. Using the notation of the previous section we

have

α̃′yt = α̃γτt

α′yt = αγ̃ct

such that the trend-cycle decomposition is given by

yt =

[
α̃′

α′

]−1

(α̃γτt + αγ̃ct) . (13)

For the more general case in which k and l do not necessarily add up to n, Proietti

(1997) derived explicit formulae for the multivariate Beveridge-Nelson decomposition
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based on the state-space representation of (10). Proietti’s framework also sheds light

on the connection between the Beveridge-Nelson decomposition and an alternative

factor based decomposition proposed by Gonzalo and Granger (1995). In the partic-

ular case where k + l = n, the two decompositions are identical.

2.2 The unobserved components model

Instead of following the VAR-based approach discussed in the previous section, the

aim of this paper is to approach the model specified in equation (8) directly. This

section presents a state-space model that serves as a basis to estimate the Beveridge-

Nelson decomposition as the sum of two unobserved components, which consist of

k common stochastic trends, γτt, and l common cycles, γ̃ct. This approach is in

line with the unobserved components models proposed by Harvey (1985), Watson

(1986) and Clark (1987), except that no restrictions are imposed on the covariances

of the error terms. It is also assumed that the cyclical component is described by a

stationary VAR(p) process. This structure yields the model

yt = γτt + γ̃ct, (14)

τt = τt−1 + ηt, (15)

Φ(L)ct = εt, (16)

where ηt and εt are the trend and cycle innovations, and Φ(L) is a l-dimensional lag

polynomial of order p. The model ((14)-(16)) can be cast into state space form by

defining the measurement equation as (14) and the state vector as (15) with present

and past values of the cycle being generated by (16). For a model with a VAR(2)

cycle a due state space representation is

yt = Zαt, (17)

αt = Tαt−1 + Rνt, νt ∼ NID(0, Q), (18)

α1 ∼ NID(α1|0, P1|0), (19)
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where

Z =
[

γ γ̃ 0
]
, αt =

 τt

ct

ct−1

 , T =

 Ik 0k×l 0k×l

0l×k Φ1 Φ2

0l×k Il 0l

 ,

R =

 Ik 0k×l

0l×k Il

0l×k 0l

 , νt =

[
ηt

εt

]
, Q = E[ν ′tνt].

The parameters can be estimated by maximum likelihood using the prediction error

decomposition (Harvey 1981). Based on available information at time t and suitable

initial conditions, the Kalman filter generates mean square error predictions of the

unobserved components, as well as their contemporaneous estimates8. A special fea-

ture of the state-space system under consideration is that the transition matrix T

has k unit roots (corresponding to the k stochastic trends). Therefore care has to be

taken with regards to the initialization of the state vector. A consistent way to deal

with this problem is the exact initialization method developed by Koopman (1997)

and refined in Durbin and Koopman (2001)9.

The state-space model has a VARIMA reduced form (the canonical form), which can

be found by expressing the unobserved components as a function of their innovations

and then substituting them into the observation equation:

τt = ∆−1ηt

ct = Φ(L)−1εt

∆yt = γηt + γ̃Φ(L)−1∆εt.

By defining γ̄ ≡ γ̃(γ̃′γ̃)−1, we get the structural model

γ̄Φ(L)γ̄′∆yt = γ̄Φ(L)γ̄′γηt + γ̄∆εt, (20)

which, by Granger and Newbold’s theorem10 and because the right hand side has zero

autocorrelations for lags greater than p, has the VARIMA(p,1,p) reduced form

Φ̃(L)∆yt = Θ(L)vt. (21)

8Details about the estimation by the Kalman filter are given in appendix D.
9See appendix D for a brief description.

10Granger and Newbold 1986, p. 29.
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Here Φ̃(L) ≡ γ̄Φ(L)γ̄′ and Θ(L) are lag polynomials of rank l, the dimension of the

common cycle, and order p. The error process vt is a linear combination of γηt and

γ̄εt.

As Morley et al. show for the univariate case, in the absence of restrictions on the

covariance matrix of ηt and εt, the Beveridge-Nelson decomposition of the VARIMA

reduced form is identical to the contemporaneous estimates of the unobserved com-

ponents, τt|t and ct|t, generated by the Kalman filter. This observation is the converse

of Proietti’s derivation of the Beveridge-Nelson decomposition for VECM models.

It is important in this context to distinguish between the innovations of the unob-

served components ηt and εt and the observed innovations vt. The correlation between

the former is not restricted in any way. However, since the observed components con-

stitute a Beveridge-Nelson decomposition, their innovations are perfectly correlated.

Returning to the structural model at the beginning of this section, we can state that

if the Wold representation of the reduced VARIMA model (21) is identical to the

Wold representation in (1), the contemporaneous ML estimates of the Kalman filter

of the structural unobserved components model (14)-(16) will be the FIML estimates

of the Beveridge-Nelson decomposition in (8).

2.3 A special case: k + l = n

In the case when the number of trends and cycles add up to the dimension of the

system, the cointegration and cofeature vectors exactly span the space Rn, which

simplifies the analysis and gives rise to a direct relationship between the VECM

and the UC representation. Consider the following simple example from Engle and

Granger (1987)11:

xt + byt = ut (22)

xt + ayt = et

ut = ut−1 + ε1t

11Banerjee et al. (1993) also use this example as a demonstration for equivalent model represen-
tations.
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et = ρet−1 + ε2t

|ρ| < 1

[ε1t, ε2]
′ ∼ NID(0,Σ).

It is easy to see that this model contains one common stochastic trend ut (with co-

integrating vector α = [1, a]′) and one common cycle et that follows an AR(1) process

(with co-feature vector α̃ = [1, b]′). It is straightforward to modify the model into an

unobserved component framework (assuming that a 6= b)[
xt

yt

]
=

[
1 b

1 a

]−1 [
ut

et

]

=
1

a− b

[
a

−1

]
ut +

1

a− b

[
−b

1

]
et

= γτt + γ̃ct,

where

γ =
1

a− b

[
a

−1

]
and γ̃ =

1

a− b

[
−b

1

]
are the loading matrices for the stochastic trend τt (= ut) and the cyclical component

ct (= et). It is easy to check that γ and γ̃ lie in the null space of α and α̃, respectively.

Also α′γ̃ = α̃′γ = 1, such that

(α̃′γ)−1α̃′yt = α̃′yt = τt

(α′γ̃)−1α′yt = α′yt = ct.

This, and the fact that the number of trends and cycles add up to the dimension of

the system, are be used to derive the error-correction form of the model. Define

A ≡

[
α̃′

α′

]

Apply this definition to the previous equations to find

Ayt =

[
τt

ct

]
and A∆yt =

[
ε1t

ε2t

]
−

[
0

(1− ρ)

]
α′yt−1
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such that the interim multiplier representation is given by

∆yt = Πyt−1 + vt.

The impact matrix Π has rank 1 and can be factored as Π = −βα′, where

β = A−1

[
0

(1− ρ)

]

vt = A−1

[
ε1t

ε2t

]
.

Define the error-correction term to be zt = α′yt, to produce the vector-error correction

representation

∆yt = −βzt−1.

The following proposition generalizes this result for the more general case of a VAR(p)

cycle.

Proposition 1 (VECM Representation) If the sum of common cycles and common

trends equals the dimension of the system (k + l = n), the reduced form of a mul-

tivariate unobserved component model with p autoregressive lags in the cycle has a

vector error correction representation with p lags.

The interim multiplier representation is given by

∆yt = Γ1∆yt−1 + ... + Γp−1∆yt−p+1 + Πyt−1 + νt, (23)

where

Γj = −A−1

[
0k×l∑p

i=j+1 Φi

]
α′

Π = −A−1

[
0k×l

I−
∑p

i=1 Φi

]
α′ = −A−1

[
0k×l

Φ(1)

]
α′

νt = A−1

[
ηt

εt

]

13



and A is defined as before (see appendix A for a derivation). The VECM repre-

sentation is given by factoring the long-run multiplier matrix Π = −βα′, which is

restricted in the sense that it has (p − 1)nr + 2nr − r2 variables in the conditional

mean, compared to the VAR in levels, which has pn2 variables12.

The converse of proposition 1 is not true, because not every VECM(p) model has a

UC representation with a VAR(p) cycle. However, it follows from Proietti’s (1997)

derivation of the BN decomposition that every VECM model has a UC representation

with a VARMA(p,q) cycle. On the other hand, as was shown in the previous section,

every UC model has a VARIMA reduced form.

3 Testing for common trends and common cycles

The state space framework allows for a direct and transparent comparison between

nested models, which provides a convenient background for testing for common trends

and common cycles. Most existing tests in the literature, in particular the common

trend tests by Stock and Watson (1988) and Johansen (1988) and the common cycle

test by Vahid and Engle (1993), are based on a VECM framework. These approaches

cannot be applied in our case. Since the unobserved components model is estimated by

maximum likelihood, it is intuitive to ground a test on a comparison of the likelihoods

of a restricted and an unrestricted model. The likelihood ratio (LR) test is a leading

example. For the case where the number of stochastic trends is equal under both the

null and the alternative hypothesis (such as a test for common cycles), the LR test

statistic has a standard χ2 distribution based on the number of restrictions imposed.

If, on the other hand, the number of stochastic trends differs under the alternative

hypotheses, the limiting distribution of the LR test becomes non-standard and is

unknown. A viable alternative in this case is a test recently developed by Nyblom

and Harvey (2000).

This section presents a general to specific procedure of model testing and a subsequent

discussion of LR tests for common cycles and the Nyblom/Harvey test for common

12Issler and Vahid 2001 show this in their appendix A.
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trends. Define model M(k, l), to have at most k and l common trends and cycles,

respectively, such that the set of all possible models M = {M(k, l) : 0 < k ≤ n, 0 <

l ≤ n, n ≤ k + l}13 has cardinality n− 1 +
∑n

j=1 j. We can also see that two models

are nested

M(k1, l1) ⊂ M(k2, l2)

if (and only if) k1 ≤ k2 and l1 ≤ l2.

To show that the matrices γ and γ̃ do not alter the inherent structure of the model

(in the sense that submodels can be nested) we can define τ̃ ≡ γτ and c̃ = γ̃c and

rewrite the unobserved components model as

yt = τ̃t + c̃t (24)

∆τ̃t = γηt

γ̄Φ(L)γ̄′ = γ̃εt,

which gives an alternative interpretation in terms of reduced rank components.

The proposed strategy for model selection and testing for common cycles can be

described as follows: (i) Start with the most detailed model (n, n) and estimate

its likelihood. (ii) Estimate the models (n − 1, n) and (n, n − 1) and compute the

relevant test statistics. As is argued below, tests for common cycles (comparing

models (k, l) and (k, l − 1)) have a limiting χ2 distribution, while tests for common

trends (comparing models (k, l) and (k−1, l)) can be based on the method developed

by Nyblom and Harvey. (iii) Repeat these steps until the less general model is rejected

by the tests. For the cases n = 2 and n = 3 the model selection tree is shown in

figure 7. For n = 2 the most parsimonious model has one common trend and one

common cycle. For n = 3 the most parsimonious models have once cycle and two

trends and two trends and one cycle, respectively. If there were only one trend and

one cycle the resulting model would be stochastically singular and the data could be

represented by a two-dimensional system. Note that the selection scheme may not

provide a unique result, since tests are only possible on a vertical level among nested

models, but not on a horizontal level among non-nested models. In the case where

13The last inequality stems from Issler and Vahid’s (1993) observation that the space spanned by
the co-integrating and common cycle vectors α and α̃ must be at least of dimension n.
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several potential models remain, the ultimate choice has to be left to the discretion

of the researcher.

Tests for common cycles:

Since there are no misspecified nonstationary components under either H0: M(k, l)

and H1: M(k, l+1) the asymptotic distribution of the LR test has a χ2(f) distribution,

where f is the number of restrictions imposed by H0. In order to compute f , we

need first verify that the model is not under-identified. Otherwise there might be

unrestricted parameters under the alternatives.

It is common practice to set the covariance between trend and cycle innovations

equal to zero to avoid under-identification of unobserved components models. An

example is the univariate local level model, which is a special case of the unobserved

components model considered in this paper in which n = 1 and p = 0. This model

is under-identified unless E[ηtεt] = σηε is fixed. On the other hand, Morley et al.

show that in the case when n = 1, p = 2, the model is exactly identified. The

following proposition indicates that in most cases of interest a sufficient condition for

identification is that there are at least 2 autoregressive lags in cycle. The intuition

behind this result is that the serial correlation induced by the cyclical component

increases the complexity of the autocovariance function of the VARIMA reduced

form which is directly observable.

Proposition 2 If k = l = n, the parameters in the UC model defined in equations

(14) to (16) with with a VAR(p) cycle are identified if (and only if) p ≥ 1 + 1
n
.

The model is exactly identified if p = 1 + 1
n
. The only integer solution for exact

identification is p = 2 and n = 1.

If k < n and/or l < n the condition p ≥ 1 + 1
n

is sufficient, but not necessary for

identification.

See appendix B for a proof. Given that the model is identified under both alternatives,

the number of restrictions can be determined by comparing the VAR polynomial

Φ̃(L) = γ̄Φ(L)γ̄′,
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and the covariance matrix of the trend and cycle innovations

Σ̃ = E[ṽṽ′] =

[
γΣηγ

′ γ̃Σ′
ηεγ

′

γΣηεγ̃′ γ̃Σεγ̃
′

]

under the alternatives. A Monte-Carlo experiment (described in appendix F) indi-

cates that empirical critical values of LR tests on simulated data are close to their

theoretical counterparts.

Tests for common trends:

Because the limiting distribution of the LR test for alternative hypothesis about

the numbers of stochastic trends is unknown, Nyblom and Harvey (2000) consider a

locally best invariant (LBI) test. Their framework operates on the multivariate local

level model, which is a basic building block of many structural time series models:

τt = µt + εt

µt = µt−1 + ξt. (25)

Here εt ∼ NID(0, Σε), ξt ∼ NID(0, Σξ), and E[εξ′] = 0. In our context the multivari-

ate local level model describes the estimated trend component τt after accounting for

the cyclical component ct (τ̂t = yt − ĉt). We are interested in the hypotheses M(k, l)

and M(k +1, l), which in Nyblom and Harvey’s test correspond to H0 : rank(Σξ) = k

against H1 : rank(Σξ) > k. The test statistic is given by

ζk,n = λk+1 + ... + λn, (26)

which is the sum of the (n−k) smallest eigenvalues of S−1C, where C is an estimator

of the second moments of partial sums of the time series

C = T−2

T∑
j=1

[
j∑

t=1

(τt − τ̄)

] [
j∑

t=1

(τt − τ̄)

]′

and S is an estimator of the spectral density at zero frequency

S = T−1

T∑
t=1

(τt − τ̄)(τt − τ̄).
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The limiting distribution of ζk,n depends on functionals of Brownian motion and is

given in appendix E, critical values are tabulated by Nyblom and Harvey. The test

can be adjusted for serial dependence in εt by substituting S with a non-parametric

estimator of the spectral density at the zero frequency.

An interesting observation is that this test moves in the opposite direction as Johan-

son’s (1988) test based on canonical correlations. The Nyblom and Harvey test starts

with the null hypothesis of no stochastic trends, while at the outset of Johansens’s

testing framework is the assumption of n stochastic trends. As a consequence a re-

searcher rejecting alternatives at a low tail probability level will more likely adopt a

model with fewer common trends using the Harvey/Nyblom test than with Johansen’s

test.

4 The permanent income example

A reoccurring theme in macroeconomic research is Hall’s (1978) assertion14 that under

certain assumptions rational representative agents with time-separable utility func-

tion will maximize their life-time utility by consuming their permanent income in

each period. An important implication of the permanent income hypothesis (PIH) is

that it would allow identification of the unobserved permanent component of income

by setting it equal to observed consumption. While Beveridge and Nelson (1981)

demonstrate that a decomposition of income into a stochastic trend and a stationary

cyclical component is always possible, from a statistical perspective there is no guar-

antee for uniqueness and competing decompositions may be unidentifiable (Watson,

1986).

Contrary to the earlier belief that consumption would violate the PIH by being too

volatile, Deaton (1987) shows that consumption is in fact excessively smooth. Noting

that the first difference of GDP is positively autocorrelated, Deaton deduces that

the variance of income must be smaller than that of permanent shocks to income,

and therefore the variance of consumption. However, for U.S. data the variance of

14Based on Friedman’s (1957) earlier work.
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innovations in income is larger or approximately equal to the variance of the first

difference of consumption.

With the aim to reconcile theory with empirical evidence, Campbell and Mankiw

(1989 and 1990) and Flavin (1981 and 1993) develop alternative consumption models.

As Vahid and Engle show, these models imply the unobserved components form

[
yt

ct

]
=

[
1

1

]
yP

t +

[
1

λ

]
yT

t , (27)

where yP
t is permanent income following a random walk and yT

t is a stationary cyclical

component (transitory income). Note that this model is a special case of a two

dimensional unobserved components model with a common and a common cycle

where γ = [1, 1]′ and γ̃ = [1, λ]′. The model nests the PIH as the case λ = 0. In

Campbell and Mankiw’s model the economy is populated by two types of agents.

Rational individuals consume their permanent income in each period, while their

myopic counterparts consume their present income. λ is defined as the ratio of income

that belongs to the myopic rule-of-thumb consumers. In Flavin’s model λ has a

conceptually similar interpretation as the marginal propensity to consume out of

transitory income.

Compared to earlier investigations of the PIH based on univariate models15, a bivari-

ate system provides a superior modeling environment to test for stationary interac-

tion (or the lack thereof) between income and consumption. Moreover, Flavin (1993)

notes that the relative size of income and consumption innovations, which are the

variables of interest in Deaton’s paradox, may be sensitive to whether we allow for

contemporaneous correlation or not.

The data are quarterly series of U.S. per capita GNP and private consumption in

the period 1949:1-1988:4 taken from the dataset of King et al. (1991) that was also

used later by Proietti (1997) and Issler and Vahid (2001). A plot of the data (figure

1) indicates that the two series share similar long-run and short-run movements. It

is also evident that consumption has a smoother appearance than income. Because

15Examples include Hall (1978), Watson (1986) and Deaton (1987).
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the unobserved components model in this paper abstracts from a drift term in the

stochastic trend, a linear trend was subtracted from the data prior to estimation.

Based on the testing framework discussed in the previous section we can compare the

following four statistical models

• Model 1, M(2, 2): 2 trends and 2 cycles

• Model 2, M(1, 2): 1 trend and 2 cycles

• Model 3, M(2, 1): 2 trends and 1 cycle

• Model 4, M(1, 1): 1 trend and 1 cycle.

The corresponding model selection chart is shown in the top row of figure (7). Fol-

lowing a tradition in the unobserved components literature the cyclical component is

modeled as an AR(2) process, since this is the most parsimonious representation that

allows for an interior maximum in the spectral density16.

The parameter estimates of the four competing model are summarized in table 1 and

the corresponding trend-cycle decompositions are shown in figures 2 to 5. Standard

errors are computed from the inverse of the Hessian at the maximized log-likelihood.

Table 1 reveals that all estimates of the autoregressive lag polynomial φi,j, as well

as the loading matrices γ and γ̃ are significantly different from zero. Most standard

errors of the covariance terms are of the same magnitude as the parameter estimates

themselves. We can also rank the the log-likelihoods of the models as -438.26 > -

441.10 > -443.07 > -445.19, going from model 1 to model 4. Restrictions imposed

by common cycles therefore have a stronger impact on the likelihood function than

restrictions imposed by a common trend. This observation comes as a surprise because

the trend-cycle decompositions with common trend restrictions are qualitatively more

different from the most general model with two trends and cycles in the sense that

the cyclical component has a much larger amplitude.

This is clearly visible in figures 2 to 5, which are drawn on the same scale. Another

salient feature of the graphs is that the estimated cycles drop during each NBER

16The choice of two autoregressive parameters also facilitates the constraint that the roots of the
AR polynomial stay outside the unit circle during ML estimation.
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recession. For the two models with 2 trends (model 1 and model 3), the spectra of

the cycles (shown in figure 6) peak at a periodicity of about one year. If, on the

other hand, the trends are restricted to cointegrate, the peak of the cyclical spectra

moves to the zero frequency for income in model 2 (2 cycles) and for both income

and consumption for model 4 (1 cycle). For the two models with a common cycle

the quadrature-spectra are equal to zero, since (by definition) there is no correlation

between phase-shifted components at any frequencies.

A more rigorous comparison between the 4 different statistical representations can be

drawn using the tests among nested alternatives discussed in section 3. It was main-

tained that LR tests for the number of common cycles have standard distributions,

while a comparison of hypotheses about the number of common trends can be based

on the test developed by Nyblom and Harvey (2001). Test statistics and critical val-

ues are given in table 2. To remove the effect of serial correlation in the estimated

trend component, the estimator of the long-run variance in the Nyblom-Harvey test

S is corrected by a Bartlett window with 8 lags. The null hypothesis of model 2

(M(1, 2): 1 trend and 2 cycles) versus the alternative of model 1 (M(2, 2): 2 trends

and 2 cycles) is not rejected at the 10 percent level using the critical values of the

Cramér-von Mises distribution tabulated by Nyblom and Harvey. A similar result

holds for the case of model 4 (M(1, 1): 1 trend and 1 cycle) against model 3 (M(2, 1):

2 trends and 1 cycle).

Tests for common cycles yield somewhat weaker evidence. Since model 3 has 5 fewer

parameters than model 1, the distribution of the LR test is asymptotically χ2(5). The

test statistic is 9.608, therefore the null hypothesis of a common cycle can be rejected

at the 10 percent level, but not at the 5 percent level. Model 4 (M(1, 1): 1 trend and

1 cycle) has 4 fewer parameters than model 2, implying a χ2(4) distribution. Again

we can reject the null at the 10 percent level, but not at the 5 percent level.

These results confirm the earlier impression that common trend restrictions are better

supported by the data than common cycle restrictions. Note also that the estimates

of the common trend parameter γ and the common cycle parameter γ̃ are both

significantly different from zero at the 5 percent level17.

17With some abuse of notation the loading matrix of the common trend components is defined
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The statistical results have several implications for the consumption models men-

tioned earlier. It is fair to assume that income and consumption share a common

stochastic trend and we cannot reject the hypothesis that the cointegrating vector is

equal to [1,−1], since the estimate of γ is not significantly different from unity. In

all specifications, except model 2, the variance of the innovations of the stationary

component of consumption (σ2
ε2

in models 1 and 2 and γ̃2σ2
ε1

in models 3 and 4) is

significantly different from zero, which implies a rejection of the PIH. If we accept

the hypothesis of a common cycle (which is not rejected at the 5 percent level), we

can use the modeling environment (27) of Campbell and Mankiw and Flavin, which

statistically encompasses Hall’s model. In this case the estimate of λ is 0.5 (parame-

ter γ̃ in model 4) and significantly different from zero. Therefore the PIH is rejected

in favor of the new-Keynesian consumption models. An interesting observation is

that the estimated value of λ is identical to the estimate of Campbell and Mankiw

(1990). In the sample period half of the U.S. economy’s income therefore accrues to

rule-of-thumb consumers. Similar estimates are also obtained by Flavin (1993) and

Vahid and Engle (1993).

Table 1 shows that the covariances between trend and cycle innovations are nega-

tive in all cases, which coincides with the univariate example of MNZ (2002). MNZ

interpret their finding as evidence for the relative importance of real shocks, in the

sense that positive shocks to the trend will have a negative effect for the cycle. This

view is questioned by Proietti (2002), who argues that the direction of causality may

be well reversed, such that positive cyclical shocks have a negative impact on the

long-run trend. At the crux of the problem lies the fact that it is impossible to pin

down the particular orthogonal decomposition of the trend and cycle errors based on

a priori grounds. Proietti notes that permanent-transitory decompositions based on

orthogonalized errors are close to the spirit of Blanchard and Quah (1989), such that

the permanent component follows a VARIMA process rather than a random walk.

Proietti further finds that (i) unobserved components models with correlated trend

and cycle innovations may be observationally equivalent to alternative UC represen-

as γ = [γ1, γ2]′ ≡ [1, γ]′. Since α and γ are only defined up to a nonsingular transformation, we
can normalize γ1 = 1. The same definition is used for γ̃, the loading matrix of the common cycle
components.
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tations that have orthogonal innovations and (ii) negative correlation between the

innovations implies that the future carries more information for the signal extraction

than the past. The first point is of little relevance for our results, since it only con-

cerns the case where innovations are either positively correlated or the variance of

trend innovations is relatively small compared to the variance of cycle innovations.

The second point is important, however, and hints at the possibility that the cyclical

components extracted by the Kalman filter are too small in amplitude. A remedy

for this problem is to compute smoothed estimates that make use of past as well as

future information.

The variances of the income trend and cycle innovations are both larger than the cor-

responding values for consumption, which matches Deaton’s challenging result that

consumption fails the PIH because of excessive smoothness. In order to assess the rel-

ative importance of permanent and transitory shocks, tables 5 and 6 provide forecast

error variance decompositions for income and consumption, respectively (see appendix

D for details on the computation of the FEVDs). Because the orthogonalization is

based on a Cholesky decomposition, the FEVDs should be interpreted with caution.

The variation of FEVDs between the four estimated models and earlier results by

King et al. (1991) and Issler and Vahid (2001) is quite large. It is, however, possible

to draw comparisons between the relative importance of permanent and transitory

shocks of income and consumption. All models indicate that the relative importance

of permanent shocks at business cycle horizons is much larger for consumption than

for income. One can conclude that although the PIH in its purest form is not sup-

ported by the data, permanent income has a strong impact on consumption even over

a short horizon.

4.1 Out-of-sample forecasts

A potential advantage of common factor restrictions is that they lead to a more

parsimonious representation of the data and, if correctly imposed, will improve the

predictive accuracy of the model. Since the Kalman filter is built on a Markovian

first order difference equation (the state equation), it provides an ideal forecasting

framework (see appendix D for more details). To produce out-of-sample forecasts, the
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four statistical models were estimated by setting the last 22 observations as missing.

A comparison between the forecasts and actual values of income and consumption is

given in figure 8. The confidence sets indicate that the standard error of the forecast

is about twice as high for consumption as for income. Table 3 provides mean squared

forecast errors to compare the predictive accuracy of the individual models. A striking

feature is that for both time-series the models with a common trend (model 2 and

model 4) outperform the other models. For income the best predictor is model 2 and

for consumption the best predictor is model 4. If we use the determinant of the mean

squared error matrix as a measure of the overall predictive ability of the system, the

most parsimonious representation, model 4, is the clear winner. In order to verify the

statistical significance of the variations in predictive accuracy, table 4 gives p-values of

White’s (2000) reality-check test, based on 50.000 stationary bootstrap18 resamples.

The test is applied to the determinant of the mean squared forecast error matrix, and

shows that model 4 consistently outperforms all other models, except model 2. These

findings are in line with those of Issler and Vahid (2001), who find that a VECM

with common cycle restrictions provides more accurate forecasts than an unrestricted

VECM.

5 Conclusions

The theoretical framework on the Beveridge-Nelson decomposition and its extensions

to common trends and common cycles are usually based on unobserved components

models. However, the tradition is to estimate VECMs. This paper shows that direct

estimation of the unobserved components model is a viable alternative which may be

preferred from an econometric perspective. The UC model can be cast into a state-

space framework and estimated by Kalman filter maximum likelihood. The appeal

of this approach is that restrictions imposed by common factors are transparent.

A further advantage is that the trend-cycle decomposition is immediately available,

also in cases when the sum of common trends and common cycles is greater than the

dimension of the system.

18Politis and Romano (1994).
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The unobserved components model always has a VARIMA reduced form which can

be used to verify the identification of the model parameters. In the case where the

cyclical component follows a VAR(p) process, the model is identified whenever p

is greater than one. The structure of the unobserved components model facilitates

testing for common trends and common cycles. It is found that tests for common

cycles can be based on the likelihood ratio principle, where the number of restrictions

depends on the reduction of the rank of the VAR polynomial of the cyclical component

and the covariance matrix of the trend and cycle innovations. Likelihood ratio tests

for common trends have an unknown nonstandard limiting distribution. A possible

alternative is the test developed by Nyblom and Harvey (2000).

As Vahid and Engle (1993) show, the common trend - common cycle model provides a

suitable testing framework for hypotheses on consumption models. For U.S. data the

unobserved components model finds strong evidence that income and consumption

follow the same stochastic trend. The existence of a common cycle finds support at

the 5 percent level. Furthermore, the cofeature vector is significantly different from

[1, 0], thereby rejecting the permanent income hypothesis. However, forecast error

variance decompositions show that consumption is dominated by permanent shocks,

even in the short-run. Out-of-sample forecasts support the assertion that common

trend and common cycle restrictions provide a more efficient representation of the

data-generating process, thus improving predictive accuracy.

Proietti (2002) notes that correlation between innovations of unobserved trend and

cycle components may be explained by a variety of data-generating processes. If the

correlation is negative, he further shows that the future carries more information

for signal extraction than the past, such that the Kalman filter underestimates the

cyclical component. In this case the two-sided Kalman filter (Kalman smoother) is a

preferred alternative.

For the sake of parsimony and comparability to the existing unobserved components

literature the cyclical component is modelled as a simple AR(2) process, however it is

likely that a more complex model will give a better description of the data. Further

research should concentrate on more realistic models for the unobserved components,

such as the inclusion of seasonal dummies and higher order autoregressive processes.
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Another interesting application are rational expectations models. The Markovian

nature of the state-space approach often allows to express expectations conditional on

past values of driving forces in a compact way, which provides a potential alternative

to GMM estimation of Euler equations.
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Appendix

A Derivation of Proposition 1

By choosing α, α̃, γ and γ̃ so that α′γ̃ = Ir and α̃′γ = Is (which is possible, since

these matrices are defined only up to a nonsingular transformation), we can write

α̃′yt = τt (A-1)

α′yt = ct (A-2)

and

α̃′∆yt = ηt (A-3)

α′∆yt = εt + Φ1α
′yt + ... + Φpα

′yt−p − α′yt−1. (A-4)

The last expression can be rewritten as

εt + (Φ1 − I)α′yt−1 + ... + (Φp−1 + Φp)α
′yt−p+1 −Φpα

′∆yt−p+1

= εt + (Φ1 − I)α′yt−1 + ... + (Φp−2 + Φp−1 + Φp)α
′yt−p+2

−(Φp−1 + Φp)α
′∆yt−p+2 −Φpα

′∆yt−p+1

= ε + (

p∑
i=1

Φi − I)α′yt−1 −
p∑

i=2

Φiα
′∆yt−1 − ...−Φpα

′∆yt−p+1 (A-5)

B Proof of Proposition 2

Identification of the model parameters can be verified by comparing the structural

VARIMA representation of the unobserved component model

Φ̃(L)∆yt = Φ̃(L)γηt + γ̄∆εt, (B-1)

and its reduced form

Φ̃(L)∆yt = Θ(L)ut, (B-2)

where Φ̃(L) = γ̄Φ(L)γ̄′.
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The parameters in the autoregressive lag polynomial and γ̄ (and consequently γ̃ up

to a nonsingular transformation) are clearly identified by equating the LHS of (B-1)

and (B-2). Similarly, identification of the parameters in the covariance matrix

Σ̃ = E[ṽṽ′], ṽ ≡ [γη′, γ̄ε′]′,

and γ depends on equating the information of the RHS of the structural and the

reduced form. This information is contained in the structural and reduced form

autocovariance functions Γs(j) and Γr(j), with Γs(j) = Γr(j) = 0 for |j| > p. Assume

first that k = l = n such that γ = γ̃ = In. Then we have n2(p + 1) equations

(Γ(j), j = 0, ..., p) equations in 2n2 + n unknowns (the parameters in Σ̃). Hence

the model parameters are (over-) identified if (and only if) n2(p + 1) ≥ 2n2 + n, or

p ≥ 1 + 1
n
. Define M = p + 1. Then the model is exactly identified if (and only if)

MN = 1. Clearly there are no positive integer solutions other than M = n = 1.

For the cases k 6= n and l 6= n there are still n2(p + 1) equations generated by the

autocovariances, since the space spanned by ṽ must have at least dimension n, because

k + l ≥ n. However, the number of parameters to be identified decreases. Hence the

model parameters are (over-) identified if p ≥ 1 + 1
n
.

C Implicit restrictions on the covariance structure imposed

by common trends and common cycles

It is shown in (24) that the UC model with common trends and common cycles

can be alternatively expressed in terms of n-dimensional components with reduced-

rank innovations. This representation has the advantage that nested models are

directly comparable. This appendix demonstrates how common trends and common

cyles implied by rank reductions of the cointegration and cofeature matrices α and

α̃ (and consequently γ and γ̃) implicitly lead to (partly) nonlinear restrictions on

the covariance matrix of vt = [ηt, εt]
′. This is shown by comparing the parameters of

model 1 (2 trends and 2 cycles) and model 3 (2 trends and 1 cycle) from the empirical

part (section 4).
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The parameters of model 1 are: φ1,1, φ1,2, φ2,1, φ2,2 plus the covariance terms

E[(η′t, ε
′
t)
′(η′t, ε

′
t)] =


σ2

η1

ση1η2 σ2
η2

ση1ε1 ση2ε1 σ2
ε1

ση1ε2 ση2ε2 ση1η2 σ2
ε2


The restrictions imposed by model 3 are:

φ2,1 = φ1,1 φ2,2 = φ1,2

σ2
ε2

= γ̃2σ2
ε1

ση1ε2 = γ̃ση1ε1

ση2ε2 = γ̃ση2ε2 σε1ε2 = γ̃σ2
ε1

.

After using one restriction to eliminate γ̃, 5 (partly nonlinear) restrictions remain. It

is easy to see that the rank of the covariance matrix of ηt and εt is reduced from full

rank to rank 3. The other cases are similar, except that model 4 (1 trend, 1 cycle) has

two additional parameters (γ and γ̃) such that the number of restrictions decreases

by two.

D Maximum likelihood estimation and the Kalman filter

Given the state-space framework (17)-(18)

yt = Zαt (D-1)

αt = Tαt−1 + Rνt, νt ∼ NID(0, Q), (D-2)

and initial conditions (19),

α1 ∼ NID(α1|0, P1|0), (D-3)

the Kalman filter (Kalman, 1960) computes minimum mean squared error estimates

at of the state vector αt+1 and its mean square error matrix Pt+1 conditional on
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available information at time t (Ωt = {y1, y2, ..., yt}) using the recursive algorithm

vt = yt − Zαt, Ft = ZPtZ
′,

Kt = TPtZ
′F−1

t , Lt = T −KtZ,

at+1 = Tat + Ktvt, Pt+1 = TPtL
′
t + RQR′.

(D-4)

The contemporaneous filtering equations give the real time or concurrent estimates

of the state vector and its mean square error matrix

at|t = at + PtZ
′F−1

t vt, Pt|t = Pt − PtZ
′F−1

t ZP ′
t . (D-5)

In the context of this study, the trend-cycle decomposition is based on the correspond-

ing components of at|t, which is identical to the Beveridge-Nelson decomposition of

the underlying reduced form VARIMA model.

If the system is stationary in the sense that all roots of the transition matrix T are

inside the unit disk, the log-likelihood of the estimated model is given by

log L(y) = −NT

2
log 2π − 1

2

T∑
t=1

(log |Ft|+ v′tF
−1
t vt). (D-6)

The exact initial Kalman filter

For the UC model defined in section 2.2 matters are complicated by the fact that

the transition matrix of the state equation T has k unit roots, corresponding to k

stochastic trends. Therefore the covariance matrix of the initial value of the state

vector, α1|0 will be unbounded. A consistent approach to this problem is the exact

initial Kalman filter developed by Koopman (1997) and refined by Koopman and

Durbin (2001). For the UC model the diffuse initial state vector can be defined as

α1|0 =

[
δk×1

02l×1

]
+ ν0, (D-7)

where δ ∼ N(0, κIk), κ → ∞. The covariance matrix of the initial state vector, P1|0

can be split into an unbounded component κP∞ pertaining to the stochastic trends

and a bounded component associated with the stationary component P∗

P1|0 = κP∞ + P∗, κ →∞, (D-8)
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where

P∞ =

[
Ik 0k×2l

02l×k 02l

]
and P∗ = RQR′. (D-9)

The stationary component P∗ can be initialized as the steady state value

vec(P∗) = (I(k+2l)2 − T ∗ ⊗ T ∗)−1vec(RQR′), (D-10)

where T ∗ ≡ T − P∞ is the stationary component of the transition matrix.

Univariate treatment of the multivariate series

Koopman’s original solution approach to the exact initialization problem can be sim-

plified by using the univariate treatment of multivariate series originally suggested

by Anderson and Moore (1979). Apart from avoiding a complicated factorization

problem, the univariate treatment also leads to considerable computational efficiency

gains, especially if the dimension of the system n is large (see Durbin and Koopman

(2001), ch. 6.4 for more details).

Forecasting

Forecasts are obtained by setting the innovations vt equal to zero during the forecast

window. 95% confidence intervals for variable j can be based on ±1.96Ft(jj). This

method is equivalent to the treatment of missing observations.

Forecast error variance decompositions

The forecast variance decomposition can be computed as follows: Using Cholesky-

factorization we can write RQR′ = RCC ′R′. Setting Pt = 0 and using a recursive

argument, it can be shown that

Pt+j =

j∑
i=1

T jCC ′T ′j. (D-11)
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The forecast variance at period j is then given by Ft+j = ZPt+jZ
′. The forecast

variance that is attributed to the k-th orthogonalized innovation is then obtained by

computing

P̄t+j,k =

j∑
i=1

T jCEkC
′T ′j (D-12)

F̄t+j,k = ZP̄t+jZ
′, (D-13)

where Ek is a square matrix of zeros with a 1 in the k-th diagonal entry.

E Nyblom and Harvey (2000), A Test for Common Stochas-

tic Trends

Based on the multivariate local level model

yt = τt + εt (E-1)

τt = τt−1 + ηt, ηt ∼ NID(0, Ση),

we test for the null hypothesis H0 : rank(Ση) = k (k < n) versus the alternative

hypothesis H1 : rank(Ση) > k.

Let λ1 ≤ ... ≤ λn be the ordered eigenvalues of S−1C, where

C = T−2

T∑
j=1

[
j∑

t=1

(yt − ȳ)

] [
j∑

t=1

(yt − ȳ)

]′

S = T−1

T∑
t=1

(yt − ȳ)(yt − ȳ).

Then the test statistic is given by the sum of the (n− k) smallest eigenvalues

ζk,n = λk+1 + ... + λn. (E-2)

Nyblom and Harvey (Theorem 4) show that under the null hypothesis the limiting

distribution of ζk,n is given by

ζk,n
d→ tr

[
C∗

22 − C∗
11
−1C∗

12

]
(E-3)
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C∗
11 =

∫ 1

0

[∫ u

0

W ∗(s)ds

] [∫ u

0

W ∗(s)ds

]′
du

C∗
12 = C∗

21
′ =

∫ 1

0

[∫ u

0

W ∗(s)ds

]
B(u)du

C∗
22 =

∫ 1

0

B(u)B(u)du.

where B(u) is an r-dimensional standard Brownian bridge (r = n − k), W ∗(u) =

W (u) −
∫ 1

0
W (s)ds (u ∈ [0, 1]) and W (u) is a K-dimensional standard Brownian

motion.

Nyblom and Harvey call the distribution in (E-3) the Cramér-von Mises (CvM(k,n))

distribution and provide critical values obtained by simulation.

To account for serial correlation in εt, S can be substituted by a non-parametric

estimate of the spectral density at the zero frequency

S(m) =
m∑

j=−m

wjΓj, (E-4)

where w is some weighting function (e.g. w = 1− j/(1+m)) and Γj = T−1
∑T

t=1(yt−
ȳ)(yt−j − ȳ).

F Monte Carlo evidence

In section 3 it is asserted that likelihood ratio tests for the comparison of hypotheses

with different numbers of common cycles, but the same number of common trends

have limiting χ2 distributions. A more rigorous proof of this statement, based on the

autocovariance generating function of the Kalman filter, is work in progress. This

appendix provides evidence from a Monte-Carlo simulation of tests for the null H0 :

M(1, 1) (1 trend and 1 cycle) versus the alternative H1 : M(1, 2) (1 trend and 2

cycles). This is equivalent to a comparison between model 4 and model 3 in the

empirical part (section 4). The data was generated under the null with parameters

σ2
η = 0.64, σ2

ε = 3, σηε = −0.3, φ1,1 = 0.7, φ1,2 = −0.2, γ = [1, 1.4]′, and γ̃ = [1, 0.5]′.

The sample size was set to T = 100. Because there are 4 additional parameters
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under H1 compared to H0 (see table 1), the expected limiting distribution is χ2(4).

A comparison shows that empirical and theoretical critical values are close, however

the empirical distribution is slightly leptokurtic. Since the fat tails may be caused

by the relatively small sample size, χ2
100(4) provides critical values of a ”small sample

χ2” distribution, generated from squared sums of random variables drawn from a

t-distribution with 100 degrees of freedom19.

significance level χ2(4) χ2
100(4) empirical

10 % 7.78 7.94 7.80

5 % 9.49 9.72 9.77

1 % 13.28 13.73 13.84

Number of replications: 15.000.
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Figure 1: Per-capita private GDP and private consumption from the dataset of King

et al. (1991), NBER recessions are shaded.
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Table 1: Regression Results for Models 1 to 4

Model 1 Model 2 Model 3 Model 4

M(2, 2) M(1, 2) M(2, 1) M(1, 1)

cycle

φ1,1 1.55 (0.03 ) 1.06 (0.07 ) 1.40 (0.11 ) 1.13 (0.06 )

φ1,2 -0.76 (0.09 ) -0.26 (0.07 ) -0.59 (0.13 ) -0.26 (0.06 )

φ2,1 1.47 (0.06 ) 1.23 (0.10 ) - - - -

φ2,2 -0.72 (0.12 ) -0.49 (0.16 ) - - - -

σ2
ε1

0.52 (0.33 ) 2.35 (0.76 ) 0.92 (0.45 ) 2.93 (0.79 )

σ2
ε2

0.20 (0.23 ) 0.36 (0.40 ) - - - -

σε1ε2 0.29 (0.18 ) 0.82 (0.56 ) - - - -

trend

σ2
η1

1.12 (0.71 ) 0.92 (0.54 ) 1.10 (0.60 ) 0.64 (0.42 )

σ2
η2

0.91 (0.43 ) - - 0.82 (0.26 ) - -

ση1η2 0.43 (0.42 ) - - 0.53 (0.32 ) - -

cross-terms

ση1ε1 -0.27 (0.55 ) -0.91 (0.65 ) -0.41 (0.51 ) -1.04 (0.58 )

ση2ε1 -0.36 (0.45 ) - - -0.59 (0.36 ) - -

ση1ε2 -0.17 (0.23 ) -0.47 (0.45 ) - - - -

ση2ε2 -0.36 (0.45 ) - - - - - -

γ - - 1.15 (0.17 ) - - 1.41 (0.28 )

γ̃ - - - - 0.54 (0.10 ) 0.50 (0.07 )

parameters 14 11 9 7

log L -438.26 -441.00 -443.07 -445.19

Standard errors are given in parentheses.
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Table 2: Tests for Common Trends and Common Cycles

H0 H1 Type Stat Dist 10% val. 5% val. 1% val.

M(1, 2) M(2, 2) NH 0.136 CvM(1,2) 0.162 0.218 0.383

M(1, 1) M(2, 1) NH 0.117 CvM(1,2) 0.162 0.218 0.383

M(2, 1) M(2, 2) LR 9.608 χ2(5) 9.236 11.070 15.086

M(1, 1) M(1, 2) LR 8.375 χ2(4) 7.779 9.488 13.277

NH = Test by Nyblom and Harvey (2000), LR = Likelihood Ratio Test

Table 3: Out of Sample Mean Squared Prediction Errors

Model 1 Model 2 Model 3 Model 4

M(2, 2) M(1, 2) M(2, 1) M(1, 1)

income 6.396 1.185 3.917 5.256

consumption 9.290 4.586 5.022 0.486

|MSE| 13.686 4.938 8.505 1.494

Table 4: Evaluation of Forecast Performance

Model 2 Model 3 Model 4

M(1, 2) M(2, 1) M(1, 1)

Model 1 M(1, 2) 0.0016 0.0544 0.0000

Model 2 M(1, 2) 0.9104 0.0676

Model 3 M(1, 2) 0.0043

p-values based on the boostrap test by White (2000).

Null hypothesis: Model i outperforms model j (i < j).

Evaluation metric: |MSE|, 50000 stationary bootstrap resamples.
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Table 5: Forecast Error Variance Decompositions for Income

Proportion of Permanent Shocks

Horizon M(2,2) M(1,2) M(2,1) M(1,1) K IV

1 67 0 59 16 45 32

4 48 3 50 17 58 38

8 68 29 67 16 68 51

12 77 50 78 25 73 58

16 82 63 83 38 77 67

20 85 70 86 48 79 76

24 87 76 88 56

28 89 79 90 62

32 90 82 91 67

36 91 84 92 71

∞ 100 100 100 100 100 100

Percentage of the forecast error variance attributed to the orthogonalized trend inno-

vation.

K and IV represent the results of King et al. (1991) and Issler and Vahid (2001),

respectively.
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Table 6: Forecast Error Variance Decompositions for Consumption

Proportion of Permanent Shocks

Horizon M(2,2) M(1,2) M(2,1) M(1,1) K IV

1 85 77 67 42 88 65

4 73 79 51 42 89 77

8 92 93 79 68 83 85

12 96 96 88 81 83 88

16 97 97 91 87 85 90

20 97 98 93 91 87 93

24 98 98 94 93

28 98 99 95 94

32 98 99 96 95

36 99 99 96 96

∞ 100 100 100 100 100 100

Percentage of the forecast error variance attributed to the orthogonalized trend inno-

vation.

K and IV represent the results of King et al. (1991) and Issler and Vahid (2001),

respectively.

42



Q1−50 Q1−55 Q1−60 Q1−65 Q1−70 Q1−75 Q1−80 Q1−85
−10

−5

0

5

10
Cycles

income
consumption

Q1−50 Q1−55 Q1−60 Q1−65 Q1−70 Q1−75 Q1−80 Q1−85
−520

−500

−480

−460

−440

−420

−400
Trends

income
consumption

Figure 2: Model 1 (2 trends and 2 cycles).
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Figure 3: Model 2 (1 trend and 2 cycles).
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Figure 4: Model 3 (2 trends and 1 cycle).
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Figure 5: Model 4 (1 trend and 1 cycle).
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Figure 6: Spectra (left) and cross-spectra (right) of cyclical component (rows 1-4

correspond to models 1-4).
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(2,2)   2 trends, 2 cycles
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Figure 7: Model selection for a time series of dimension 2 (top) and 3 (bottom).

Tests between nested alternatives are only possible on a vertical level (indicated by

connecting lines), but not on a horizontal level.
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Figure 8: Out of sample forecasts with 95 percent confidence intervals.
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