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Abstract: Multi-fracta processes have been proposed as a new formalism for modeling the time series
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formdizations as they are essentidly one-parameter families of stochastic processes. The aim of this paper
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gpproaches discussed in the literature), to estimate the parameters of this modd and to use these estimates
in forecadting financid volatility. We use the auto-covariances of log increments of the multi-fractal
process in order to estimate its parameters consgently via GMM (Generdized Method of Moment).
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1. Introduction

While so-caled uni-fractal or sdf-smilar processes, such as fractiona Brownian motion, have been
known for quite some time in empirical finance, more generd multi-fractal processes have been considered
only very recently. After some earlier atempts at recovering traces of multi-fractal behavior (Vasslicos,
Demos and Tata, 1993, Ghasghaie, S. et al., 1996) thistopic has aso been taken up in a couple of recent
papers. Among these contributions, Schmitt, Schertzer and Lovejoy (1999) and Vandewadle and Audoos
(19984, b) concentrate on Satistica anayses suggesting the multi-fractal nature of various financid records.
Mandelbrot, Fisher and Calvet (1997), Mandelbrot (1999) and Calvet and Fisher (2002a) proceed one
step further by proposing a compound stochastic process as a generating mechanism of stock returns and
exchange rate changesin which amulti-fractal cascade plays the role of atime transformation. The message
of these papers is unequivocd in indicating thet the data under congderation consstently exhibit festures
that have been found to characterize multi-fractdity in other environments (eg. datistical andyses of
turbulence’). However, the methods employed by these authors differ quite fundamentally from the usua
techniques used to estimate and evauate time series modds in economics. Although a comparison of
amulated multi-fractal processes with empirical data (Fisher, Cavet and Mandebrot, 1997; Mandelbrat,
1999) suggests that they are, in fact, able to reproduce to a large extent the empirical characteritics of
financia returns, no assessment of goodness-of-fit is provided in these early papers. A comparison of the
performance of multi-fractals with, for example, GARCH processes as a candidate aternative, was
particularly hampered by the fact, thet ‘time series of this firgt vintage of multi-fractal processes have been
generated by dgorithmsthat are of a combinatorial nature rather than by truly iterative mechanisms.

The purpose of this paper is to go one (modest) step towards such an assessment of the empirica
performance of multi-fractal cascade modds. Following similar gpproaches by Breymann et al. (2000) and
Calvet and Fisher (2001,2002b), we first set up a causa counterpart of one variant of the combinatoria
multi-fractal model andyzed by Cavet and Fisher (2002a). The iterative nature of this process alows
amulaions of arbitrary length. We show that this process preserves the scding laws of moments
characterizing its combinatoria predecessor, so thet we can aso apply the *scaling estimator’ of Cavet and
Fisher for esimating the parameters of the causa process. As an dternative, potentidly more efficient
framework for parameter estimation we consder Generdized Method of Moments (GMM) estimation.
We discuss under what circumstances GMM might be gpplicable to this new class of long-memory
modds. For a certain selection of moment conditions, we explore the finite- sample properties of the GMM
esimators via Monte Carlo amulations. As it turns ou, the root mean-squared error (RMSE) from this
procedure is much smaller than that of the standard heuristic estimation method. Furthermore, the decresse
of RMSE under incressing sample size nicdly exhibits TV consistency for al parameter choices and sets of
moment conditions we have explored. When increasing the number of moment conditions, we find a

! The similarities in the time series characteristics of financial data and data from turbulent flows has
stimulated a dscussion about potential smilarities in the underlying data generating mechanisms among
physicists, cf. Vasslicos, 1995; Gashghaie et al., 1996, and Mantegna and Stanley, 1996.



continuous improvement in terms of mean squared errors of parameter estimates abeit with decreasing
margind returns from additional moment conditions. As concerns the digtribution of the datistic used in
Hansen's related test of overidentifying redtrictions, we found dmost no variation with sample sze,
parameter values and number of moment conditions. Unfortunately, the distribution of p-values seems to
have too much mass on the extreme left-hand Sde even for reativey large samples up to 1000
observations, and, therefore, too often regjects the underlying modd.

Equipped with these results, we estimate the parameters of the causal multi-fractal process for daily
variations of various financid data: two stock market indices (the German DAX and the New Y ork Stock
Exchange Composite Index), an exchange rate (Deutsche Mark/U.S$), and the daily price of gold from the
London Precious Metd Exchange. Since the multi-fractl model dlows to capture the long-term
dependence of volatility and the scaling of various moments, one might also expect that it can be used asa
tool for forecadting the time development of voldtility over short and medium time horizons. The use of the
multi-fractal (MF) modd to this end is, however, hampered by the lack of identification of the individua
volatility components (this unsolved task is known as the inverse multi-fractal problem in physics).
Neverthdess, even without being able to identify the ruling individual components of the volatility dynamics,
we can devise a best linear predictor using the aggregate information available in our time series. To this
end, we congtruct best linear forecadts for future volatility within time horizons ranging from 1 day to 100
days. For comparison, we compute smilar forecasts based on higtorica volatility (HV), GARCH and
FIGARCH modeds. Overdl, the peformance of the MF modd compares quite well to that of its
competitors. It bests all other forecasts for the U.S.$-DEM exchange rate, while in forecasting the volatility
of the gold price, it comesin second in a very narrow race with one specification of the HGARCH modd.
Furthermore, while the gain in MSEs is probably negligible for svall forecasting horizons in these cases, the
gap between the multi-fractdl (or the multi-fractal and the FIGARCH modd) and dternative methods adso
widens with increasing time horizon and becomes quite Szable for larger forecasting horizons. For the two
dock indices, results from HV, GARCH, FIGARCH and the multi-fractd modd ae amost
indistinguishable, which might be explained by the tremendous increase of volatility in our out-of-sample
period 1997/98.

Our ams of condructing iterative multi-fractal cascades and developing rigorous estimation methods are
shared by three other recent entries in the literature. Breymann et al. (2000) have developed amodd very
amilar to the present one and explore some of its scaling characteristics. Another closdy related version of
a causd multi-fractal mode is studied in Calvet and Fisher (2001, 2002b). In contrast to the present entry,
they assume that the multipliers are drawvn from a Binomid digtribution which dlows maximum likelihood
estimation based on the Hamilton filter for Markov-switching processes. Mogt interestingly, they have aso
been the fird to investigate the performance of a multi-fractal modd in forecasting volatility. However, for
the one-day forecasting horizons considered in their paper, they were unable of finding an advantage of MF
againg standard GARCH modes. We will point to the smilarities and differences between our gpproach
and results and theirs repeatedly over the course of the presentation.



The paper proceeds as follows. sec. 2 introduces both the origind combinatoria multi-fractal mode with
Lognorma multipliersaswell asits causal counterpart used in the present study. Sec. 3 presents the scaling
estimator introduced by Cavet and Fisher (2002a) while sec. 4 develops our dternaive GMM estimator
and provides a comparative Monte Carlo study of the performance of both estimators. Sec. 5 dedls with
some problems of empirical implementation of the GMM gpproach and reports the results of estimating the
multi-fractdl mode for four different financia time series. Sec. 6 continues with the forecasting competition
between the MF modd and three aternative approaches. Sec. 7 concludes. The Appendix contains
derivations of various andyticad moments of the multi-fractal process used in both GMM estimation and
forecasting as well as details on our GARCH and FIGARCH estimates used in sec. 6.

2. The Multi-Fractal Modd: Combinatorial and Causal Versions

The multi-fractal model put forward in Mandelbrot, Calvet and Fisher (1997) and Calvet and Fisher
(20024) postulates that returns{ x(t) } follow a compound process:

(D) x(t) = B+[a(t)]-

In this notation, B4[ ] isafractionad Brownian maotion with index H, and q(t) is the ditribution function of
a mult-fractl messure which plays the role of a time-deformation. Both component processes are
assumed to be independent of each other. With a time-homogeneous Brownian process By, the multi-
fractd measure q(t) is responsble for changes in the scde of the fluctuations which generate
heteroskedadticity of the overdl dynamics. In contrast to the GARCH and stochastic volatility models and
their descendants, the above cascade mode is scale-free and, therefore, one and the same specification
can be gpplied to data of different sampling frequencies. This fegture is highlighted by Cavet and Fisher in
their andysis of both high-frequency and daily returns of the Deutschmark/U.S.$ exchange rate.

In our gpplication, we smplify the generd compound modd by setting H = 0.5. This means we restrict
the price process assuming that (in transformed time) the logs of prices follow a (Wiener) Brownian mation
ingtead of fractd Brownian motion with arbitrary H. The reason is that empirica evidence in favor of H 1
0.5 iswesk: datigtica tests can usudly not rgect the null hypothesisH = 0.5 for raw returns (cf. Lo, 1991,
Goetzman, 1991; Mills, 1993),> while absolute and squared returns have vaues of H significantly
exceeding 0.5. Hence, the picture from the literature (as wel as from a preliminary andyss of our time
sies) is that long-term dependence (which shows up in an esimate H > 0.5) is confined to various
powers of returns, but is dmost absent in the raw data. In order to modd long-term dependence in the

2 |t is also well-known that the R/S and other estimation methods are positively biased around H = 0.5 which
may explain some (seemingly significant) findings of H in excess of one hdf in the earlier literature (cf.
North and Haliwell, 1994).



powers, we do not need to assume afractional Brownian motion of returns. This feature of the data can be
accounted for by the introduction of the multi-fractd time-transformation aone.

Inspired by the multi-fractd models for turbulent flows in physcs severd modds of multiplicative
cascades have been applied for modeling the time-transformation q(t). Mandelbrot, Calvet and Fisher
focus on the so-caled Binomid and Log-norma cascades, while Schmitt, Schertzer and Loveoy (1999)
estimate the parameters of the Log-Levy modd for a number of foreign exchange rates. To get abasic idea
of this gpproach, it is useful to first have alook a one of the Smplest cases, the Binomia mode.

In their origind form, multi-fractal cascades are operations performed on probability measures. * The
‘cascade arts with assigning uniform probability to the interval [0,1]. In the first Sep, thisintervd is plit
up into two subintervals of equa length, which receive a fraction my and 1 - n, respectively, of the tota
probability mass. In the next sep, each subinterva is again solit up into two subintervas, which agan
recelve fractions my and 1 - my of the probability mass of ther ‘mother’ intervas. In principle, this
procedure is, then, repeated ad infinitum.

It is easy to envisage more or less complicated variants of this generdl procedure: first, the probabilities
could be assigned in a sysemdtic fashion (e.g. dways assgning probability my to the left hand descendant
and 1 - my to the right-hand descendant of a mother interval). Alternatively, this assgnment could be made
randomly. Going beyond the Binomia modd, one could think of more than two subintervas to be
generated in each step (which leads to multinomia cascades) or of generating random numbers for my in
each iteration instead of using the same congtant vaue throughout the formation of the cascade. The Log
normal and Log-Levy modds mentioned above are examples of the latter type of multi-fractal measures.

In the resulting find stage of the creetion of a combinatorial cascade process consisting of, say, k such

operations, the remaining subintervas dl have size 2% and do possess mass identical to the product of their
k multipliers chosen at different levels of the cascade:

X (i)
@ Qj:Omj )
i=1

with j a patition of the unit intervd, i.e j is an index of subintervds with condant mass
{oj=d(j- D2 ¥ 2 1], =12..,2.

% Tel (1988), Falconer (1990) and Evertz and Mandelbrot (1992) are recommendable introductory sources to
multi-fractal measures.



Depending on the type of process, the m(ji) may represent independent draws from a Binomid,

Lognorma or any other distribution one considers useful in this context. The defining characteritic of these
measures is their non-linear scaling of moments, i.e.

(3) Elqf] = (2- k)‘(q)+1

with 6(g) a non-linear function of g. Various scding functions for different underlying distributions of the
multipliers can be found in Calvet, Fisher and Mandelbrot (1997). Defining t(q) = qxHq - 1, we can

highlight the key difference between uni-fractd and multi-fractal processes: for the former H, is a constant
and, hence, t(q) islinear in g. For multi-fractal processes, on the contrary, the nonlinear shape of t(q)
implies non-constant H,. It is this feature which makes the later formaism an atractive modd of financia
returns. In fact, variability of H over various powers has been found to be a pervasive feature of financid
data. The firs systematic inquiry into the behavior of various measures of long-term dependence with
varying powers q has been contributed by Ding, Engle and Granger (1993) and their findings have been
confirmed in a number of other studies recently (Lux, 1996; Mills, 1997). The consensus now is that this
feature appearsin virtudly dl financid prices (Anderson and Bollerdev, 1997; Lobato and Savin, 1998). It
is noteworthy that, athough the above authors did not refer to multi-fractdity in their papers, they did
aready point to empirica regularities of the type depicted in eqg. (3) that are consstent with the multi-fractal
model. Their basic message is, therefore, very smilar to that of the recent contributions by Fisher, Calvet
and Mandelbrot (1997), Schmitt, Schertzer and Lovejoy (1999), and Calvet and Fisher (2001, 20023, b).
The progress made by the later papers is, however, to go beyond a description of stylized facts and to
propose anew class of models that genuinely alows to capture these facts.

The approach proposed by Calvet and Fisher (2002a) consists in interpreting the order of the subsets of
amulti-fractd measure within theinterva [0, 1] as an ordering dong the time axis o theat g j can be used as

a transformation of homogenous clock-time or, in an equivdent interpretation, as the loca volaility of the
process governing stock price changes. It is immediately obvious that one important limitation of this
gpproach is the finite support of the resulting compound process. Although one congtructs atempora order
of the subintervals, the whole ‘time path’ is till obtained (or smulated) in one act which leaves no room for
predicting the likey future devedlopment after the end of the current cascade. Furthermore, with an
underlying cascade extending over k steps, we have exactly 2 different subintervals at our disposa and,
therefore, could lodge only time series which are no longer than that. It is not clear how one should
proceed when reaching the end point T = 2, since starting with a new cascade, for example, would
amount to a structurd break at T without any dependence between the parts of the time series before and
dter that point* This underscores the need for an iterative framework instead of the traditional
combinatorial gpproach.

* Muzy et al. (2001) construct an iterative ‘multi-fractal random walk’ assuming a finite depth of its
underlying volatility cascade and extract the number of valid multipliers, k, from the ‘zero-crossing’ of the



Expanding on a recent proposa by Breymann et al. (2000) and a similar gpproach found in Calvet and
Fisher (2001, 2002b), we replace the non-causa congruction outlined above by an iterative mechanism
that preserves its essentid features. This approach conserves the hierarchica nature of the volatility process
but allows for sochastic changes of itsindividua components over time. The volatility components, mg) at

time t (chronologicd time t now replacing the ordering j within the unit intervd), are, then, replaced over
time by new multipliers with certain probabilities. To replicate the structure of a binary cascade, the
probability of replacement would have to be:

(4) Prob (new mg) )= o)

Thisimplies that the last multiplier would be replaced with probability Prob (new m(%)) = 1 & each time
step, while thefirst, i = 1, would be replaced with probability Prob(new m®) = 2. Keeping in line with

the spirit of the origind non-causd modd, replacement of an eement mgp) would dso have the

consequence of replacement of dl subordinated multipliers p+1, p+2, ..., k a t. Thisisin contrast to the
gpproach of Cavet and Fisher (2002b) who assume independent replacement operations at dl levels of the
cascade.

The condruction of our iterative cascade process is illustrated in Fig. 1. The first and second pand
exhibit the devdopments of the multipliers of levels 2 and 6. The badc difference with respect to the
combinatorid models is that their renewd occurs in irregular intervas determined as random events. For
example, in a amulaion of the same length the second levd multiplier would have exactly four different
redizations of exactly equad duration in the framework of Cavet and Fisher (2002a), while here it has 5
redizations of very different duration. The third pand shows the overal volatility process resulting from the
superimpostion of dl active multipliers, while the bottom pand exhibits the dynamics of returns as a
compound process with an incrementd Wiener Brownian motion sampled a unit time intervas. This
illugration is, in fact, amilar to Fig. 1 in Cdvet and Fisher (2001) dthough the modd presented there is
based on a continuous-time Poisson process governing the  replacement of multipliers. In its discretized
verson, the later is equivalent to the process studied here.

Insert Fig. 1 about here
As a consequence of our construction, on average 2! adjacent time steps share the same multiplier at

level 1, 22 the same multiplier et level 2 etc. Note that in the non-causal binary cascade modd, there are
(with a process congisting of k iterations) exactly 2¢* adjacent subintervals with the same multiplier a leve

auto-correlation function of absolute returns. However, under ‘true’ long-memory, autocorrelations should
remain positive over al lags. In any case, even if their were a finite correlation length, the ‘ zero-crossing’
might be hard to identify due to the noisiness of the autocorrelation function at long lags



1, 2% subintervas with the same multiplier et level 2 etc. The iterative process, therefore, preserves the
average duration of hierarchica components but allows for sochadtic fluctuations in their redlized durations.
Like in the standard mode, many choices for the sdlection of the mg) are possible. For the sake of
comparability, a particularly well-known modd is chosen here, the Lognorma modd. This means that
when a new multiplier is needed a any leve, it will be determined via a random draw from a Log-Normal
digtribution:

) mi) ~ LN(— | |n(2),s,2|n(2)2),

where the normaization of the parameters of the Lognorma  digtribution via multiplication by In(2) sems
form congderation of binary intervas in the combinatoria process. To facilitate comparison with earlier
literature, we keep this convention in our causa setting.

Note, that in (5), the scale parameter, €, of the Lognorma digtribution must be determined from the
restrictio® E[M] = 0.5, which in the combinatorid mode is necessary to preserve average mass of the
interva [0, 1] during the evolution of the cascade, and, therefore, prevents nongtationarity of the multi-
fracta cascade dynamics (explosion to infinity or collapse to zero upon addition of further volatility
components). With this restriction, we can subgtitute $? = 2(1 - 1)/In(2) and the Lognormd volatility
process therefore, boils down to a one-parameter model which isfully defined by the parameter | .

To see the smilarity to the modd andyzed in Manddbrot, Cavet and Fisher (1997) and Cdvet and

Fisher (2002a), we compute the unconditionad moments of the resulting process. Let us denote by i, the
causal multi-fractal process:

k.
©® m=0m"
i=1

with replacement rule (4). Its g-th moment is given by:
2 2 Ku_ & ¢keau
7) E[rr{t:‘] = Eg(mgl)mg )...m§ ))qu: Eg(mg'))( u
<] ua € a
gncedl the mgi) are independent. For the Log-norma mode, this leads to:

@ Enfl=eplkl- o (2)+q%1 - i)

> Note that without such restriction E[M] = exp(-l In(2) + 0.5 & (In(2))?)



which can be transformed into:
Sk @+
) E[m?]=(2 ")t with: t(q) =gl - g?(l - - 1.

Since 0(q) is the cdebrated scding function of the Log-Norma mode for turbulence first proposed in
Mandelbrot (1974), the behavior of unconditiond moments is identical to that of the traditiond
combinatorial modd. Since the unconditiond moments of the resulting volatility model are not affected by
our randomization of replacement times, we can gpply the traditiond ‘scaling estimator’ built upon this
relaionship to estimate the parameters of the causal modd (cf. Calvet and Fisher, 20024). However, we
will see that this estimator has relatively large bias and root mean squared error in finite samples and is
dominated by a GMM estimator to be introduced in section 4 below.

Usng the iterdtive versgon of the multi-fracta model instead of its combinatoria predecessor in the
process (1), and confining attention to unit time intervas, the resulting dynamics can aso be seen as a
particular verson of a stochastic volatility modd. Rescaing the volatility dynamicsin away to preserve a
mean value equa to 1 of the cascade, we can write returns over unit time intervals as the product of local
volatility and Normaly distributed increments:

kK
(10) x¢ = /2"0 m{) s wuy
i=1

in which the factor 2 compensates for the mean value equa to 0.5 of the k multipliers, u is a standard
Norma random variate u ~ N(0,1), and 0 is the standard deviation of the incrementa process.

3. Egtimation of the Multi-Fractal Parameters. The Scaling Approach

In the physics literature, multi-fracta behavior is usudly identified via andyss of the so-cdled partition
function S(Dt,q) of atime series. Dencting by p(t) the logarithm of the asset price a time't, it summarizes

the behavior of moments q of increments (returns) computed over various time horizons At:

int[T/Dt]

q
(12) SoLa) = &{pt+Dy- p(v) 3~ DtH(
t=1

In the pertinent literature, the parameters of multi-fractal cascades are usualy not estimated directly from
the scaling function 6(q), but rather from its Legendre transformation:
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(12) f(a) = argmin[ga - t(q)] -
q

The resulting function f(a) can be interpreted as the distribution of so-called locad Holder exponents a
(which as a continuum of loca scaing factors replaces the unique Hurst exponent of uni-fractal processes
such as fractiond Brownian motion). In the case of the Log-norma model, both the 6(q) and f(4) functions
depend on one parameter, the location parameter | of the Lognorma digtribution
LN(- 1In(2),2(0 - 1)In(2)) from which the volatility components are drawn. The pertinent fracta

spectrum is given by (cf Cavet and Fisher, 2001a):

_, (a-1)?
(13) ff{a)=1 D

In esimating the multi-fractal spectrum of returns time series, we note that under the assumption of
Brownian motion of price changes in transformed time the spectrum of the compound process x(t) =
Bu[q(t)] is rdated to the spectrum of the multi-fractal time-transformation nt) in the following way (cf.
Mandelbrot, Calvet and Fisher, 1997):

(14) fy(a) =f{aH) =f{al/2).

Fg. 2 illugtrates the traditiona method of estimating the key parameter | of the multi-fractal modd. One
darts with the empirica partition functions S(Dt,q) which are, then, used to estimate the scaling function
t (q) from regressons in log co-ordinates. The upper pand of Fig. 2 shows a selection of partition functions
for some low (left-hand side) and higher moments (right-hand side) for the German stock market index
DAX.® As can be observed, the empirica behavior is very close to the presumed linear shape for moments
of smal order, while the fluctuations around the regression line become more pronounced for higher
powers. This is, however, to be expected as the influence of chance fluctuations is magnified with higher
powers g. The resuting scaing function for moments in the range [-10, 20] is exhibited in the lower |eft
pand of Fig. 2" For comparison, the broken line shows the behavior expected with Wiener Brownian
motion, i.e. scaling according to ¢/2 - 1. There is a clear deviation from pure Brownian motion. The
quaitative picture is the same found by Manddbrot et al. as well as Schmitt, Schertzer and Lovegoy.
Findly, the last sep conssts in computing the multi-fractal f(a) spectrum. The lower right-hand pand of
Fig. 2 isa visudization of the Legendre transformation. The spectrum is obtained by drawing lines of dope
g and intercept -t (q) for various g. If the underlying data indeed exhibits multi-fractal properties, these lines
would turn out to conditute the envelop of te didribution f(a). As can be seen, a convex envelope
emerges from our scaling functions. It seems worthwhile to emphasize that this outcome is shared by al

® Plots from the other three time series are almost identical.
” Negative moments are only shown for illustration, but are discarded in the ensuing statistical analyses.
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other studies available hitherto, which may suggest that such a shape of the spectrum is a robust feature of
financia data

Insert Fig. 2 about here

For fitting the empirica spectrum by its theoreticd counterpart, the inverted parabolic shape of the
Lognormal cascade (13), we have to keep in mind, that the cascade modd is used for the volatility or time
deformation n(t) and that the returns themselves result from the compound process B s[nt)]. We,
therefore, have to take into account the shift in the spectrum as detailed in eg. (14). In order to arrive at
parameter estimates for | , the common gpproach pursued in physica applicationsis to compute the best fit
to (14) for the empirica spectrum using aleast square criterion. To this end, we redtrict our attention to the
positively doped, left-hand part of the spectrum. The reason is, that the right-hand arm is computed from
partition functions with negative powers and is, therefore, strongly affected by chance fluctuations due to
the Brownian process. In fact, performing experiments with synthetic data from multi-fractal processes, we
find that the location of the downward doping part is strongly biased and, even with a symmetrica
theoretical spectrum, often shows the same skewness as our empirical spectra. As a consequence, a fit
based on the left-hand arm aone seems preferable® Empirical results from this procedure are exhibited
below in Table 4.

The physics literature notes biases and other problems of the scaling method (cf. Ouillon and Sornette,
1996; and Veneziano et al., 1995), but to our knowledge, no systematic inquiry into the rdiability and
performance of the resulting estimates is available. In order to arrive at an assessment of the qudity of the
estimates and, in particular, to be able to compare it with that of the upcoming GMM estimates, we
performed Monte Carlo experiments with smulated data. For these experiments, the set-up was as
follows: 1,000 replications were run for six vaues of & ( running from 1.05 to 1.30 in increments of 0.05)
and sample szes T equa to 2,000, 5,000 and 10,000. Each data set has been obtained as a random
subsample from alonger smulation run with 10° iterations and underlying k = 15. A visua comparison with
the upcoming results for the GMM estimator is provided in Fig. 3. Detailed results are shown in Table 1.
Because of the amilarity of our results from different parameter values, we only provide data for three
entriesof | : 1.1, 1.2, and 1.3. As can be seen, for al parameter vaues, the estimates of & are postively
biased, while the reduction of the RMSE is often much sower than T2 (the more so, the higher the true
parameter é).

81t may be added that fits with both arms gave inferior results throughout and sometimes even led to violations
of the redtrictions of the underlying model. Note also that a bias towards skewness on the right implies aso
that our empirical f(a) shape does not necessarily speak against the symmetric shape implied by the Log-
norma modd.
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Insert Table 1 and 2 about here
4. GMM Estimation of Multi-Fractal M odels

Unfortunatdy, no results on the congstency and asymptotic digtribution of the f(a) estimates seem to be
available in the relevant literature. This gpproach adso does not provide us with estimates of the standard
deviation 6 of the incrementa Brownian motion nor of the number of steps k to be used in the cascade.
The later omission is somewhat natural Snce the underlying physica models assume an infinite progresson
of the cascade which is aso the reason for their initialy scale free gpproach.

Besides that, the 6(q) and f(8) fits aso require judgmenta selection of the number and location of steps
used for the scaling estimates of the moments and the non-linear least- square fit of the spectrum. However,
in principle, the fitting of the spectrum amounts to matching the moments of the theoretica process. This
may lead to the question whether one could not resort to the methodology introduced under the heading of
Generalized Methods of Moments by Hansen (1982). The advantage of this later approach consgsin
the availability of results on the asymptatic digtribution of the estimates as well as the possibility of testing
well specified null hypotheses. We will discuss shortly, under what conditions we are dlowed to apply
GMM for the estimation of the multi-fractal modd.

In the GMM approach, the vector of parameter estimates of amodel, say | , isobtained as

(16) |t =agmnfr()Atfr(),
iTw

where W is the parameter space, f(j ) is the vector of differences between sample moments and
andytica moments, and Ar is a postive definite and possbly random weighting matrix. Under ‘ suitable
regularity conditions, detailed, for example in Haris and Métyés (1999), j 1 is consstent and

asymptoticaly Normd with
(15) T2(7 1 - | o) ~ N(O,X), with covariance matrix X = (Fr'V 1 Fr)L

and j ( the true parameter vector, \7{1 =Tvafr( 1) thecovariance matrix of the moment conditions,

Fr( )=% the matrix of first derivatives d the moment functions, and V1 and FT the congtant
J

limiting matrices to which \7T and Fr converge. Knowledge about this asymptotic distribution can be used
to congtruct atest of the null hypothesis that the modd is the true data- generating process. With the number
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of moment conditions (say ) exceeding the number of modd parameters (say p), we can test the model
usng Hansen's datidtic: Iy =T X1 (")’ Af1+ ("), which under the null hypothess can be shown to

converge to a c? digtribution with g-p degrees of freedom.

Now turn to the question of applicability of the GMM procedure. For models incorporating long-term
dependence, applicability of the ‘usua regularity conditions of GMM and other esimators is often
questionable or smply not known. In fact, to the best of our knowledge, no rigorous proof of gpplicability
of GMM to stochedtic volatility models (even without the long-memory feature) has been provided in the
literature so far.® To see what kind of difficulties one encounters in the present framework, consider the
following sets of conditions for consstency and asymptotic Normality of GMM estimators (cf. Harris and
Matyés, 1999). First, weak consistency can be shown to hold if: (i) E[f1(j )] exigsfor dl j andisfinite,
(i) thereexitsaj o suchthat E[f1(j )] =0ifandonly if j =] o, (iii) fr(j ) satisfies awesk law of large
numbers, and (iv) the sequence of (random) weighting matrices converges to a constant meatrix AT . For
strong consistency, the assumed convergence in probability in (iii) and (iv) would have to be replaced by
convergence amogt surely. Furthermore, asymptotic Normality requires the following additiona or sharper
conditions: (v) fr(j ) needsto be continuoudy differentiable, (vi) the matrix of first derivetives Fr (j ) should
converge to a constant matrix Fr forj ® j o, and(vii) fr(j ) now needsto satisfy acentra limit theorem
(cf. Harris and Matyas, 1999).

Immediate problems may arise with (vii) and (iv): firg, given the genuine long-memory festures of the
process under consideration, the moment functions will probably not satisfy a centrd limit law. In fact,
whether or not a centra limit law holds depends on the degree of dependence (cf. Beran, 1994, c. 3).
Unfortunately, the estimated parameters for the long-term dependence in, for example, absolute returns
usudly fdl into the range of non-applicability of these centrd limit laws. If thet is true, the usud esimators
for the covariance matrix Vr do dso not fdl into the classes for which consstency is guaranteed and will
possibly not converge to a congtant limiting matrix. One may circumvent this problem by resorting to other
choices of the weighting matrix, eg. a condant matrix, in order to guarantee consgstency. However,
abandoning the usud weighting according to the precison of the individua entry in the vector of moment
conditions would greetly reduce the intuitive apped of GMM.

A posshble way out of this dilemma is provided by differencing the data. As shown in the technicd
Appendix, log differences of ether the multi-fractal process itself or the compound process for (absolute)
returns yield a dationary stochastic process which definitly has no long memory. As is shown in the
Appendix, this process, in fact, only has non-zero autocovariances a the first lag. For our GMM estimation
approach, we, therefore, select moments of the transformed process™

¥ Mélino and Turnbull (1990) note difficulties in evoking the usua large sample limit.

1911 an earlier version of the paper, moments of raw differences instead of log differences have been used
for GMM estimation. However, closer insgpection showed that this transformation did still preserve the long-
memory property of the multi-fractal model. Similar moment conditions have also been used for SMS
(smulated method of moment) estimation in Calvet and Fisher (2002b).
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(17) Xt,T = |n|Xt| - |n|Xt_ T| .

From (10), this transformation amounts to:

— ) — )
(18) x¢1 = Ingefzk_(“) m{) > >1ut|g- Ingefzk_() mi) s Au. TE:
&l = s &l = ]

k(. : , .
0.5 (eg') - e§'_)T)+In|ut|- Inug. 7|, with &) =In(m{")
i=1

With dl the entries on the right- hand sde stemming from random Normal variates drawn a timest and t-T,
it is dmogt obvious that this is a particularly harmless process which should be unproblematic in terms of
the regularity conditions of GMM. One drawback (Smilar to the f(& methodology) is that this
transformation only alows to estimate the parameter € of the Lognorma distribution while the standard
deviation from the Normally distributed increments drops out when computing log differences, and the
depth of the cascade, k, as a discrete parameter is not amenable to GMM estimation anyway.
Neverthdess, as shown in our smulation, this gpproach provides a tremendous reduction of bias and root
mean squared error S0 that it seems worthwhile to pursue this avenue. In practica applications, the
sandard deviation of the time series can be used as an etimate of 6. As concerns the number of
multipliers, k, we will try to extract a rough estimate from a chain of GMM egtimates for é as detailed
below.

Our choice of moment conditions tries to exploit the scaling properties of the multi-fractal processes. Like
the origind scding estimator, our dternative GMM estimator, therefore, uses information over various time
horizons, dbeit for the log differenced process instead of the origind one. In particular, we sdect
covariances of the powers of i; 1, i.e,, moments of the following type:

(19) M(T,q) = E[x% - - xx%_] for different Tandq=1,2.
t+T,T "7, T

Andytica expressons for al the relevant moments are to be found in the Technica Appendix. In order to
assess the quality of the GMM estimates, we performed achain of Monte Carlo smulaionsusing lags T =
1,5,10, and 20. We started with a set of two moment equations, M(T=1,g=1) and M(T=1,0=2), i.e.
autocovariances of the absolute and squared values of log differences computed over one lag. In order to
see the influence of the number of moment conditions, we have subsequently enlarged the set of moments
by including M(T=5,0=1) and M(T=5,0=2) when using four moments, M(T=10,g=1) and M(T=10,0=2)
when using sx moments, and finaly, M(T=20,0=1) and M(T=20,0=2) when using eight moments.
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Now turn to the results of our Monte Carlo smulations. The design of our experimentsiis as follows we
have again chosen three sample sizes. T = 2,000, 5,000, and 10,000 in &l cases. Each sample is again
generated as a fandomly drawn subsample from a longer smulation with k = 15 (with a length of 10°
observations). As with the f(a) Monte Carlo experiments, the parameter | was dlowed to vary from 1.05
to 1.30 using increments of size 0.05. Again, we only show thecases| =1.2, 1.2, and 1.3 in Table 2 since
behavior of the other cases is dmost identical. Note that increasing the parameter | amountsto generating
more pronounced burds of volatlity. As is routindy done in the literature, we computed the optimal
weighting matrix from the covariance matrix for which we applied the Newey-West autocorrelation and
heteroskedadticity consistent estimator (which should be a consstent estimator for the covariance matrix of
the moments of the transformed process). Furthermore, we used the iterative GMM in which a new
weighting matrix is computed and the whole estimation process repested until one gets convergence of
both the estimates and the weighting matrix (cf. Hansen, Heaton and Y aron, 1996).

As it turned out, results were amost identical over parameter values in terms of biases and root mean

squared errors. One only recovers a very dight tendency towards increesng RMSEs with higher | .
Furthermore, we found a continuous reduction of both the bias and the mean-squared error when
increasing the number of moment conditions, abeat with a decreasing rate of return in terms of relative
improvement per added moment. Hence, at least from our chosen et of up to eight moments, there seems
to be no reason for redtricting the number of moment conditions to be used in GMM estimation. Thisisin
contrast to the results on GMM estimation of the stochastic volatility mode, for which it has been shown by
Andersen and Sgensen (1996) that usng too many moment conditions leads to deterioration of the
results™

Unfortunately, the results with respect to the p-vaues of Hansen's test of overidentifying redtrictions were
rather disgppointing (cf. Table 3). In particular, over dl sampling horizons, parameter values, and moment
conditions, apronounced skewness on the left-hand sde of the distributions of p-values was found. Closer
ingoection of the histograms, in fact, reveds, tha the largest deviaion from the expected Chi-square
digribution dways occurs in the leftmost ten or so percent of the data, while the remainder of the
didribution is rather well-behaved. It, therefore, seems that with respect to Hansen's test, asymptotic
theory does not provide a good guidance for samples as large as 10,000 data points. One of the reasons
for this poor behavior might be the influence of the borderline solution € = 1 a which the iterative GMM
typicdly stops and failsto reinject the parameter estimates into the sensbleregion é> 1

" Results of our earlier anaysis of moments of raw differences were different in many respects: (i) similar to
the f(4) estimates, the former GMM estimates of & had large biases which were increasing in the underlying
true parameter value, (ii) there was definitely no indication of TV2 consigtency, (iii) RMSEs were smaller
(larger) than the present ones for smal (large) & (iv) best results were found with only few moment
conditions with results deteriorating with an increase of the number of moments (smilar to the findings of
Andersen and Saensen for stochastic volatility models)
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Insert Fig. 3 about here.

In summary, our Monte Carlo experiments suggest the following conclusons

()] GMM by far outperforms the f(a) methodology in al cases. Fird, while the f(a) estimates have a
large bias for al parameter values and sample szes, the GMM estimates are essentidly unbiased
even with smdl sample size and few moments to match. Second, the RMSE of GMM estimates is
adso dways amdler than thet of the (8 etimaes at dl sample Szes. When using only two moments,
the RMSE can aready be reduced by about 30 to 50 percent with GMM compared to that of the
scaing estimator. When using more than two moment conditions, the retio of the RM SEs becomes
even higher. In the case of eight moments, the RMSE of the GMM estimates is only of the order of
10 percent or less of that of the scaling estimator. It is worth emphasizing that this occurs despite the
use of even more information in thef(a) approach since the later estimate is based on amuch higher
number of scaling laws for various powers g. Note dso that GMM with eight conditions is till by
far faster than the scaling approach.

(it) The decrease in RMSE  with sample size for the Binomia mode is in good overdl harmony with
T2 congstency: proceeding from 10,000 to 5,000 and further to 2,000 observations, the root
mean-squared error, in fact, increases roughly with factors of aout+2 and /2.5, respectively.
Reduction of the (generdly much larger) RMSEs from f(a) often occurs more dowly (particularly so
for high vaues of the parameter &).

(i)  Turning to the digtribution of pvaues, we found that in dl our scenarios, the GMM estimators
uffer from skewness on the left-hand sde (i.e, too many rgections of the null hypothess).
However, in contrast to the findings of Andersen and Sgensen (1996) for stochadtic voldility
models, there seems to be no trade-off between the preferred number of moments for RMSE
(small) and specification tests (Somewhat larger) in our setting.

(iv) It aso seems worth noting that in contrast to the case of stochadtic volatility modedls, problems of
non-convergence of the estimates were atogether absent in the present setting. On the contrary, it
could be observed that the iterative GMM procedure very rdiably converged to the same set of
edimates with different doices of initia conditions. For extreme initid conditions, the number of
iterations sometimes became relaively large (> 10) before the process eventualy found its way to
the gpparent globad minimum.

5. Parameter Estimation and Forecasting of Volatility

Equipped with these encouraging findings we proceed to empirica gpplications. Our empirica analyss
uses data from four different financid markets: the New York Stock Exchange Composite Index, the
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German share price index DAX, the U.S. $Deutsche Mark exchange rate and the price of gold. The
stock market series were obtained from the New Y ork and Frankfurt Stock Exchanges, the exchange rate
and precious metad series were obtained from the financia database a the University of Bonn. Our sample
covers twenty years starting on 1 January 1979 and ending on 31 December 1998. For in-sample
estimates we use the years 1979 to 1996 and leave the two remaining years for out-of-sample forecasts of
voldility. This gives a number of in-sample observations of about 4,400 and 500 out-of-sample entries
(with dight variations of the numbers between markets depending on the number of active days).

Following the results of the Monte Carlo smulations, we attempt to estimate the parameter & from the
largest st of eight moment conditions after demeaning the data and filtering out linear dependence. In
egimeting the multi-fractal model with empirical data, the question of gppropriate selection of the depth of
the cascade, i.e. the number k of multipliers, emerges. Of course, one would like to have some data- driven
section of k. Since multi-fractal processes with varying k can be viewed as nested dternatives, the
following procedure seems a naturd choice: estimate | with varying k and record the value of Hansen's
satisic J; =T %1 (7))’ A1fr(). From this chain of estimates, choose the one with the minimum
which gpparently seems to provide the best fit of the underlying moments. Unfortunatdly, Monte Carlo
amulations indicate that this agorithm would not work properly. We tried this method with ‘true K's
ranging from 4 to 14, adata sze of T = 5000, and 500 replications for each k. ‘Estimation” was done in
eech trid with k ranging from 1 to 20. Unfortunately, the J- minimizing choice showed no corrdaion at dl
with the ‘true parameter k but was strongly atracted towards the extreme ends of the admissible
spectrum. In al cases consdered we found a concentration at small vaues (k £ 3, accounting for about
sxty percent of dl experiments independent of true k) and at k = 20 (about twenty percent).

Since we found no indication of revelaion of the true k with this approach, we resorted to heurigtically
choosng k from a chain of GMM estimates (again ranging from k = 1 to 20) as the vaue from which
onward the estimated | practicaly remains congtant. In fact, we typicaly found large variations of | when
initialy increasing the number of cascade steps darting a k = 1, but after a number of steps, the outcome
of the estimation did remain practicaly unchanged with addition of cascade branches. This could be taken
as an indication of the number of relevant steps the agorithm could find in the data, and so we have chosen
to sdlect k asthat value a which the estimated | did not change by more than 0.001 compared to its vaue
at k-1. Of course, one could imagine that the underlying process has a much larger number of volatility
branches, but due to the limited size of the available time series, most of the higher multipliers are constant
so0 that their nfluence remains invisble. However, in such a stuation, it would probably be useful to only
rely on the number of multipliers whose influence can be detected in the data when, for example, trying to
forecast volatility. Luckily, misspecification of the nodd in the sense e of usng the wrong number of
cascade steps, seems to be relatively harmless within arather large range of choices for k. This can be seen
in another Monte Carlo experiment whose results are shown in Table 3. Smilarly like in Tables 1 and 2,
the underlying data are generated from amode with ‘true’ k = 15, but now | has been estimated under the
assumptionsof k =5, 10, and 20. As can be seen, the misspecifications k = 10 and k = 20 do amost no
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harm to the resulting estimates we have generated. Ironicaly, the misspecified modd with k = 20 even
comes out marginaly better with | = 1.1 and 1.2 than the true modd. For the very different k = 5, the
RMSE with eight moment conditionsis in the range of what one gets from the true moded with two or four
moments. However, both the bias and mean squared error are sill much smdler than those of the scaling
method.*

Insert Table 3 about here

These results seem encouraging enough to proceed with empirical estimation whose results are given in
Table 4 together with the estimates produced from the f(a) estimator.

With the scaling estimator, results show quite some variation ranging from a very low vaue of 1.02 for
the U.S. $DEM exchange rate to the high 1.57 obtained for the NY SE index. Admittedly, our estimates
are obtained by mechanical implementation of the scaing estimator based on (11) to (14) with a fixed
number of moments and time steps used. In physica gpplications, typicaly much emphasis is laid on
checking the visua appearance of the scaing behavior. However, while the visud gppearance asillustrated
in Fg. 1 seems in harmony with what one expects, different set-ups, in fact, sometimes lead to wide
variations of the results. Comparison with the estimates obtained by Calvet and Fisher (1997) for the
Lognorma mode with the DM/U.S.$ exchange rate shows quite a big gap between our | = 1.016 and
their estimate of 1.09 for the case H = 0.5. The sources of this remarkable differences could only be
recovered by a re-investigation of their data set. However, the large root mean-squared errors that we get
in our Monte Carlo smulations for the esimates of the multipliers from the f(a) method may provide a
partia explanation of the differences.

With the GMM approach, a certain difficulty was encountered with the German stock index DAX for
which a dl k, the iterative GMM converged to an estimate of | =1.We conjecture that thisis one of the
cases where the GMM falls to reinject the estimate into the sensble parameter region after it had hit the
lower boundary. In order to be able to report an estimate different form the degenerate and useless | =1
for this case as well™®, we used two different approaches: first, we reduced the number of moment
conditions until we eventudly obtained convergence to some | > 1with only two moment conditions left,
second, we aso report results obtained with aweighting matrix equa to the identity matrix (snce thisis not
redly aGMM estimation, the reported objective function isrelatively large in the later case).

12 | nterestingly, for this grossly misspecified model, RMSE also declines much slower than T, while for k =
10 and k = 20, TY2 consistency is nicely preserved. Note that we also checked for the influence of the
choice of k (and pertinent estimate of |) in our forecasting exercise reported below. Results paralleled
those exhibited in Fig. 3 in that practically no differences in MSEs were obtained for dternative k’sin the
vicinity of the origina choice

13 Note that according to eq. (10), | = 1 effectively implies that returns are drawn from a standard Normal
digtribution.
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Comparing the numerical estimates obtained from the scaling and GMM  estimator, we find that they
differ more for the stock indices, but are relatively smilar for the exchange rate and the price of gold.
Remarkably, Hansen's test is not able to rgect the multi-fractal modd as the underlying data generating
process for any of our time series (except for the case of the identity matrix as the ‘weighting’ matrix used
for the DAX) a any conventiond level of sgnificancel This good fit is the more remarkable as we have
seen that the test of overidentifying redtrictions produces a large number of fase rgections of the null in
Monte Carlo smulations. It shows that the MF modd provides a reasonable fit of the chosen moment
conditions. It isinteresting to note, that Lux (2001) was aso unable to regect the MF modd in tests of the
Kolmogorov- Smirnov type for identity of the hypothesized unconditiona distribution from the combinatoria
MF modd and the empirica didribution, for the same underlying time series. Comparing the results with
those obtained from the standard GARCH(1,1) modd and a GARCH mode with Student-t innovations,
he aso found the MF model to dominate in terms of the Kolmogorov-Smirnov distance.

Insert Table 4 about here

6. Forecasting Volatility: A Competition between MF, GARCH, FIGARCH and Historical
Volatility

According to the above results, the multi-fractal model gppears capable of producing good fits to both
the unconditiona distribution and the conditional moments of empirical data'* However, estimating the
parameters of a new mode aone does not proof that it might be a useful addition to the existing tool- box
of empiricd financid. Since the main motivaion of the multi-fracta model is to capture the supposed
hierarchical dructure of the voldility dynamics, one of its contributions should be an improved ability to
forecast financid volatility. In order to see how our estimates perform on this task, we have carried out a
competition between forecasts of volatility derived from the Lognorma multi-fracta mode with a number
of well-known dternatives. Given that one of the virtues of the multi-fractal mode is incorporation of long
memory found in various powers of returns, we found that we should test its forecasting performance over
relatively long time horizons. Like many forecasting competitions, we start with 1 day and 5 day forecadts,
but then proceed via 10 day increments to forecasts up to 100 periods ahead.

The competitors of our multi-fractal forecasts are (1) the nai ve forecasts formed on the base of
higorica voldtility, (2) forecasts computed from the standard GARCH(1,1) modd and (3) forecasts
derived from the FIGARCH(1,d,1) mode first proposed by Balllie et al. (1996). Incluson of the later
seems sengble since it dso has built-in long memory of volatility and, therefore, should be the main riva of

4 Of course, it remains to be shown whether estimates produced from different sets of moments are in
harmony with each other.
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the new multi-fractl moddl. While the derivation of efficient forecasts from GARCH and FIGARCH

modds is well-known, it is not clear how to congtruct efficient predictors from the new multi-fractal modd.
In principle, one would like to identify the ruling multipliers within the observable redizations of the process
(in fact, identification of the multipliers within the last available entry of the time series would be sufficient),
and from this knowledge, could probably compute most efficient forecasts on the base of expected future
replacements of individud volatility components. Unfortunatdly, this identification problem (known as the
inverse multi-fractal problem in physics) is 4ill unsolved for the combinatorid models. Of course, our

approach aso provides no solution to this problem for the more complicated causal dructures analyzed
here. What one can do, however, is deriving forecasts based on best linear predictors for the multi-fractal
model. The later only need andyticd solutions for the autocovariances of xtz which are provided in the

Technicd Appendix.

With this information, forecasts of future volatility can be computed following the standard approach for
best linear forecasts outlined, for example, in Brockwell and Davis (1991, ¢.3). Assuming that the data
under scrutinity follow a gtationary process{ X; } with mean zero, h-step forecasts are obtained as:

R n
(190 Xnsn=a f(n*:) X pap = 6 =X,
i=1

with the vector of weights 6™ = (f, 1, f110.f )’ being ay solution of A6 =a

éﬁh) = (g(h),g(h +2),...,g(n + h - 1)) being the autocovariances for the data generating process of X; at
lags h and beyond, and A, =[g(i - i j=1,...n the pertinent variance-covariance matrix. It is well known,

that this is the best linear estimator under the criterion of minimization of mean squared error. It is dso
known that for long-memory processes, one should use as much information as available, i.e., the vector
Xy should contain dl past redizations of the process under study. In our gpplication, the redizations X; are

given by:

(20) X = xZ - E[x?] = x? - §2

with § the standard deviation of the time series which as an dementary estimate for the standard
deviation of the incrementa process enters besides our above estimates of € and k. Note that he HV
predictor can be interpreted as a specia case of (19) and (20) which emerges if weights of al past
observations are identica equa to zero and, hence, one assumes absence of tempora dependency in the
volatility dynamics. The computationa burden of these predictors is immensdy reduced by using the
generdized Levinson-Durbin dgorithm developed in Brockwell and Dahlhaus (2002, particularly their
dgorithm 6).
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GARCH and FIGARCH egtimates are obtained on the base of (quasi-) maximum likelihood estimates of
the parameters of the following sandard fomalizations:

(2) x¢ =mHr X1 +heg with e, ~ N(O, 1)

and

(22) hy =w+ax? {+bihy 1, w>0,a1,R 20
or

(23) hy =w+bshq +@- byl - (-] 4L)@A- L))ef

for the GARCH(1,1) and FIGARCH(1,d,1) specification of the volatility dynamics, respectively. In
GARCH and FIGARCH estimation, we have dso demeaned the raw data and removed linear dependence
(through eg. 20) as we did when developing the MF and HV forecadts.

With respect to the FIGARCH mode, we should note that the underlying concept and implementation
has been extensvely discussed in recent literature (cf. Chung, 2002; Zumbach, 2002). Despite certain
recently emphasized ambiguities of their parameterization, we gick to the origind framework of Balllie et
al. in our empirica implementation. With respect to the infinite number of lags incorporated in the fractiona
difference we followed most of the available literature by using a truncation lag of 1000 past observationsin
both estimation and forecasting (together with 1000 presample values st equd to the variance of the in-
sample obsarvations). Alternatively, we dso tried estimation and forecagting usng dl available past data
(again with 1000 presample observations), but results were practicaly identical.

Before consdering the results of our competition in detail, a short review of available empirica evidence
on the forecasting performance of long-memory processesisin order. To our great surprise, despite the
immense literature on volatility forecasting (surveyed recently by Poon and Granger, 2003), entries
comparing the forecasts from FIGARCH and more traditiond GARCH models are extremely scarce and
those available do not yield a clear indication for the long-memory variant to provide an advantage in this
respect. Basically, only two papers with a direct comparison of FIGARCH and GARCH seem to be
available a present: Vilasuso (2002) and Zumbach (2002), both consdering forecasting of volatility in
foreign exchange markets. While Vilasuso uses daily data of five currencies againg the U.S. dallar,
Zumbach's data base consgts of intra-daily variations of the Swiss Franc againg the U.S. dollar. The later
finds, that the origind FIGARCH modd as well as a \ariety of cosdy rdaed specifications of long-
memory models have a higher log-likelihood than the basic GARCH(1,1) model, but provide only very
modest gains in forecasting daily volatility on the order of 1 to 2 percent of MSE. Vilasuso, on the other
hand, does not report figures for modd sdection criteria, but notes relatively large reductions of both mean
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squared error and mean absolute errors for al currencies over forecasting horizons of 1,5, and 10 days.
The advantage of FIGARCH versus GARCH (as wdl as EGARCH) reported in this paper increases with
forecasting horizon with the difference ranging between 8 and 37 percent at the 10 day horizon. To dete,
this study appears to be the only entry in the literature reporting a clear advantage of the FIGARCH mode
over smpler specifications (however, we were unable to replicate his results for the U.S. Dollar-DEM
exchange rate). Another interesting comparison in our context is that by Cavet and Fisher (2002b)
between GARCH, Markov-Switching GARCH and ore variant of a causd multi-fractal model They find,
that their Binomid modd mostly dominates GARCH and MS-GARCH in terms of AIC and BIC modd
selection criteria (data are again daily returns of four currencies againgt the U.S. dollar). However, when it
comes to forecadting at daily horizons, it mostly does margindly worse than GARCH(1,2).

Under the light of the above review of smilar literature, our ensuing results should be of interest under a
variety of aspects: firgt, what evidence exists concerning the case of GARCH versus FIGARCH (or, more
generdly, short-memory vs. long-memory models), is limited to foreign exchange markets so that the
andysis of stock and precious meta markets would give us some clue on whether the above results are
typical or not. Second, evidence concerning the performance of multi-fractal models versus GARCH is
confined to the recent entry by Cavet and Fisher (2002b), while it is nonexisting for the MF versus
FIGARCH case. The later, should, however, be particularly interesting since both models share the long-
memory property observed in empirical data. Third, we aso do have only comparative evidence on
forecasting competitions for relatively smal horizons (mostly one day comparisons). However, from their
very congruction, long-memory models should be able to play out their advantages more clearly over
longer time horizons. To see whether they have any use, it would, therefore, be of relevance to compare
their forecasting performance for long horizons with that of short-memory (GARCH) or no-memory (HV)
approaches.

With this background, turn to the results of our comparison. GARCH and FIGARCH estimates are
givenin Table Al in the Appendix. We see that AIC and BIC sdlection criteria prefer FIGARCH for both
stock indices as well as the price of gold, while for the exchange rate, GARCH seems more gppropriate. A
particularly interesting case, is, however, that of gold. For this time series, we actualy could find two
maxima of the FIGARCH log-likdihood: one globd maximum at a corner solution with d = 0.999 (i.e.
precticdly identical to an EGARCH specification) which dominates an interior locd maximum with d =
0.41." In our forecasting experiments, we report results from both specifications.

The forecasting results are conveniently summarized graphicaly in Figs. 4 ato d. for the mean squared
errors obtained for the four (five) models over forecasting horizons ranging from 1 day to 100 days. Results
for absolute errors are quditatively smilar so that we dispense with a detailed congderation of this quantity

1> Parameter estimation was carried out under the restriction 0 < d [ 0.999, and repeated ten times with
different starting values. Except for gold, we found only apparently unique maxima
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here.'® Starting with the NY SE composite index, we find a mixed picture; while FIGARCH and MF seem
to dominate over GARCH and HV over short horizons. However, from about 30 days onward, HV
comes in best followed by MF, GARCH, and FIGARCH, dthough differences appear to be negligible.
The picture is only dightly different for the second stock index, the German DAX: here the time series
models have dso amog indigtinguishable performance, but are uniformly somewhat better than historica
voldtility.

More interesting differences gppear with the two remaining series: For the U.S. dollar-DEM exchange
rate, the MF seems to dominate over al time horizons with the gap between its forecasts and those of all
dternative modes continuoudy increasing with forecasting horizon. Second comes FIGARCH which in
turn isby far better than GARCH at long horizons (athough the smpler GARCH would have been favored
by model selection criteria). HV first provides the weskest forecasts, but from a horizon of about 30 days,
dominates GARCH and eventualy aso gets a dight advantage against FIGARCH at the 100 day horizon.
If we look a some of the details, we see that initidly dl the time series models have very smilar MSEs
which provide an improvement against HV of about 11 percent. However, while the advantage of GARCH
is fading away quite quickly, FIGARCH and particularly MF manage to keep a certain advantage against
HV for rather long forecasting horizons. In the case of MF, the difference is declining very dowly and says
in the range between 5 and 6 percent for al time horizons between 20 and 100 days. Taking into account,
that HV uses the same edtimate of the unconditiona variance, this advantage has to be attributed to a
successful extraction of long-memory features'’

The case of gold aso speaks in favor of the value added by long-memory modes abet with some
differences in its details. Firg, the dominant FIGARCH1 specification performs very poorly and is the
worst of dl time series modds congdered, while the loca maximum of FIGARCH2 is head to head with
(and, in fact, dightly better than) MF. Both are again much better than GARCH and HV. Here, the use of
time series models in fact, leads to dramatic reductions of MSE againg the nai ve HV model. Initidly, a
the 1 day horizon, al models have M SEs as smdl as about 37 percent of that of HV. Although some of the
advantage is mdting away with higher time horizons, a lag 100 we 4till have 8 percent difference between
GARCH and HV and as much as 40 and 45 percent difference between MF and FIGARCH2, and HV,

18 We also computed R?'s from regression of actual volatility on its various forecasts. Asit turned out, results
were amost uncorrelated with the very clear picture that emerged from comparisons of MSE and MAE.
Inspection suggests that the obvious violation of the linear model invalidates any inference drawn from this
popular measure of forecasting accuracy.

171t should also be mentioned, however, that we were unable to replicate the dramatic reductions of MSE and
AME from the FIGARCH model against GARCH at 1, 5, and 10 day horizons reported for the same data
by Vilasuso (2002). Note that we have chosen exactly the same in-sample and out-of-sample periods.
Although our time seriesis from a different source, we would not expect thisto exert such alarge influence
on empirical results. One difference in specification is that Vilasuso only uses a truncation lag of 250 past
observations. We have repeated our exercise with this choice. What we found was, on the one hand,
parameter estimates closer to the ones reported in his study, but, on the other hand, no change in forecasting

qudity.
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respectively. Agan, thisis a clear indication of the potentid usefulness of long-memory modds for long-
term volatility predictions™

Our results for the exchange rate and the price of gold underscore the vaue of long memory models for
volatility predictions. Although it seems very naturd that these modes should play out their advantage at
relatively long forecasting horizons, little supporting evidence had been brought forward for this conjecture
in the available literature so far. The falure of both FIGARCH and MF to improve on the forecasting
accurateness of GARCH and HV for the two stock market indices calls for more comparative research
aong the previous lines. The driking difference in the results is the more puzzling since the huge body of
time series literature on volatility models did find only minor differences in the voldility dynamics of stock
markets and foreign exchange markets. One potential reason for the lack of improvement for the NY SE
and DAX indices might be a structurd bresk occurring near the beginning of our out-of-sample period. In
fact, volatility has increased dramaticaly for both markets in 1997/98 while it remained much closer
earlier periods for the exchange rate and for gold (this difference in out-of-sample periods can already be
seen in the behavior of HV inFigs. 4a —d.).

As concerns the multi-fractal model as the main focus of this paper, we see that in those cases where we
find any remarkable differences in forecasting performance at al, its forecasts come out very favorably. It
dominates dl other forecasts over long horizons for the U.S$-DEM, and is only dight worse than
FIGARCH2 for gold (however note that the later would have been discarded in favor of the poorly
performing FIGARCH1 when sdecting according to information criteria). This outcome seems the more
promising taking into account, that for GARCH and FIGARCH we have used the most efficient forecasts
under these data generating processes, while we have used only best linear forecasts for MF. There seems,
thus, even scope for improvements on the performance of the new MF model.

Insert Fig. 4 about here

7. Conclusion

This paper has been concerned with estimation of a particular causa variant of the recently proposed

'8 One might ask, how the estimates obtained from the scaling estimator would have performed when used
for forecasting future volatility. Somewhat ironicaly, results are not much different from those obtained with
the GMM estimates. This similarity may have different sources: in the case of the stock markets, MSEs are
gpparently dominated by the increase in volatility in 1997/98 which al nethods have difficulties to cope
with. Hence, another MF estimator adds another time series model which is similarly insufficient to make
any gain compared to its competitors. In the case of the exchange rate and the price of gold, the particular
parameter estimates are not too different between the scaling estimator and GMM, so that forecasts are
rather smilar.
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new multi-fractd modd for financid returns and its application in forecagting future volatility. From ther
very condruction, multi-fractal processes account for the pervasive finding of long-memory effects in
volatility. They also capture a broader spectrum of dependence structures than modds of the uni-fractd
type in that different degrees of auto-correlation in various powers of returns can be explained within these
models.

One of the contributions of this paper consisted in the development of consastent GMM estimators for
the key parameter characterizing the underlying digtribution of the multipliers. 1t could be shown that this
esimator had much better smal sample properties than the traditiona scaing method adopted from
datistical physics. It should be straightforward to develop smilar GMM estimators for various dterndive
multi-fractal models, eg., the Binomiad and Log-Levy types discussed in the literature. Our estimation
method till shares one of the drawbacks of the scaling method: it does not deliver a GMM estimate of the
number of cascade steps together with the digtributional parameter. In order to complement our estimated
parameter set, we, therefore, had to resort to a more heuristic gpproach for an assessment of the relevant
number of multiplies. However, Monte Carlo smulations have aso shown that misspecification within a
certain range of the model at this end seems to do be very harmless.

Equipped with these results, we have estimated multi-fractal parameters for four important financia time
series and used these edtimates in out-of-sample forecasting of volatility over various time horizons.
Although results were not uniform, they indicate a certain potentia of improvement over no-memory (HV)
and short-memory (GARCH) approaches. While results for the U.S. and German stock market do not
indicate a clear advantage of any of the four forecadts, for the U.S.$-DEM and gold price, we can see a
clear advantage of long-memory models. Furthermore, at least in one case, MF has the lead against
FIGARCH. As an interesting additiona insght, our results aso indicate that mode choice according to
standard information criteria does not necessarily favor those modes which provide the best forecasting
performance. Note that if we would have only chosen the preferred member of the (FI)GARCH family as
therivas of the MF model, we could have reported a much clearer advantage for the later.

Our results underscore that the new family of hierarchicd volatility modes of the multi-fracta type should
be a useful addition to the tool-box of financid economigts. The early stage of research on these modds
suggests a number of avenues for future work: many dternative multi-fracta modes with different numbers
of dates, different digtributions of the volatility components and different margind ditributions could be
explored dong the above lines. Furthermore, one would like to see whether forecasting performance could
be further improved by developing nortlinear predictors taking account of the hierarchica nature of the
underlying process. One would surely dso like to now in how far our striking differences obtained for stock
markets, on the one hand, and for foreign exchange and precious metd markets, on the other hand, are
reflections of intringc difference or are rather governed by the particular time interval chosen for  out-of-
sample forecagting exercise.
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Table 1. Smulated Biases, Standard Errors and RM SEs for Scalingand GMM Estimators

Method n Bias(| ) SE(1) RMSE(] )
2.000 0.120 0.185 0220
Scding 5,000 0.074 0.125 0.145
10.000 0.067 0.115 0133
2.000 0.007 0.119 0.120
GMM(2) 5,000 0.002 0.083 0.083
10.000 0.002 0.065 0.065
| =11 2,000 0011 0.071 0.072
GMM(4) 5,000 -0.001 0.046 0.046
10.000 0.001 0.032 0.032
2,000 -0.005 0.050 0.050
GMM(6) 5,000 -0.000 0.030 0.030
10.000 0.003 0.021 0.022
2,000 -0.007 0.040 0.041
GMM(8) 5.000 0.001 0.024 0.024
10.000 0.003 0.017 0.017
2.000 0.115 0.240 0.266
Scaling 5,000 0.086 0.199 0216
10.000 0.067 0.147 0.161
2.000 -0.028 0.142 0.145
GMM(2) 5,000 -0.009 0.100 0.100
10.000 -0.003 0.070 0.071
2.000 -0.019 0.082 0.084
| =1.2 GMM(4) 5.000 -0.004 0.052 0.052
10.000 0.003 0.036 0.036
2,000 0015 0.058 0.060
GMM(6) 5,000 -0.003 0.034 0.034
10.000 0.001 0.024 0.024
2,000 0012 0.047 0.049
GMM(8) 5,000 -0.000 0.029 0.029
10.000 0.001 0.019 0.019
Scdling 2,000 0.125 0.263 0201
5,000 0.060 0.208 0.217
10.000 0.044 0176 0181
000 -0.035 0.169 0173
GMM(2) 5,000 0012 0.109 0.109
10.000 0.003 0.072 0.072
| =1.30 2.000 -0.026 0.091 0.094
GMM(4) 5,000 -0.006 0.055 0.055
10.000 -0.002 0.038 0.038
2.000 -0.020 0.065 0.068
GMM(6) 5,000 -0.005 0.040 0.040
10.000 0.000 0.025 0.025
2,000 0017 0.055 0.057
GMM(8) 5,000 -0.004 0.032 0.032
10.000 0.000 0.022 0.022

Note: see main text for the design of the scaling estimator and the moment conditions used for GMM
estimation. The depth of the cascade has been set equa to k = 15, the standard deviation of the increments
iss,=1.
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Table2: Smulated Fractiles of p Valuesfor the Test of Overidentifying Restrictions

Method n 0.05 0.1 0.5 0.9 0.95

GMM(2) 2.000 0.181 0.262 0.623 0.940 0.974

| =11 5.000 0.129 0.184 0.59% 0.939 0.975
10.000 0.120 0.176 0.535 0.906 0.950

GMM(8) 2.000 0.185 0.237 0.500 0.865 0.940

5.000 0.137 0.183 0.458 0.834 0.917

10.000 0.103 0.144 0434 0.843 0.923

GMM(2) 2.000 0171 0.213 0.598 0.917 0.964

| =12 5.000 0.115 0.1%4 0.543 0.915 0.965
10.000 0.102 0.157 0.552 0.914 0.949

GMM(8) 2.000 0.187 0.238 0.520 0.880 0.955

5.000 0.130 0.166 0.475 0.892 0.947

10.000 0111 0.155 0.481 0.869 0.931

GMM(2) 2.000 0.127 0.182 0.575 0.930 0.960

5.000 0.107 0.168 0541 0.901 0.953

| =13 10.000 0.100 0.151 0.550 0.917 0.962
GMM(8) 2.000 0.135 0.176 0.485 0.877 0.932

5.000 0.144 0.200 0.500 0.884 0.938

10.000 0.110 0.145 0.495 0.89%4 0.942

Note: see main text for the moment conditions used for GMM estimation. The results are obtained with the

same Monte Carlo simulations from which the results of Table 2 have been extracted. Hence, the depth of

the cascade is k = 15, and the standard deviation of the increments is s, = 1. Because of the near
homogeneity of the results over different sets of moments, only those for the sets of two and eight moment

conditions are shown.
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Table 3: Estimatingl with the Wrong Number of Multipliers

k usedin n Biag(l ) SE(I') RMSE(I)
GMM
2,000 0013 0.048 0.049
c 5,000 0021 0.030 0037
211 10.000 0023 0021 0031
B 10 2,000 -0.005 0.040 0.041
truek = 15, 5,000 0,003 0,025 0025
10.000 0.004 0017 0018
20 2,000 -0.006 0041 0041
5,000 0.003 0024 0024
10.000 0,003 0016 0017
2,000 0027 0.052 0.058
c 5,000 0.038 0032 0.050
| 210 10.000 0.040 0.024 0.047
B 10 2,000 -0011 0.047 0.048
truek = 15, 5.000 0.000 0.028 0028
10.000 0.003 0019 0019
20 2,000 -0.013 0.046 0.048
5,000 -0.002 0.028 0028
10.000 0.001 0019 0019
2,000 0035 0.061 0070
5 5,000 0.054 0038 0.066
| 213 10.000 0.056 0027 0.062
B 10 2,000 -0015 0.054 0.056
truek = 15, 5,000 -0.004 0.032 0.032
10.000 0.002 0022 0022
20 2,000 -0.020 0.054 0.058
5,000 -0.005 0033 0033
10.000 0.001 0022 0022

Note: in this set of experiments, we investigate the behavior of the estimate of | with misspecified depth
parameter k. The ‘true’ k isequa to 15 in dl experiments, s, = 1, and GMM specification is GMM(8).
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Table 4: In-Sample Parameter Estimates from Scaling Estimator and GMM

Data | from J
| fromf(8) GMM(8) k (p-value)
(t-Satistic)
NYCI 1.567 1.043 9 5.364
(41.441) (0.616)
1.045% 10 9142.815
DAX 1.172 (47.324) (0.000)
1.036 6 0.035
(11.184) (0.852)
US$-DEM 1.016 1.049 10 7.029
(44.082) (0.426)
Gold 1.117 1.123 10 8.387
(43.438) (0.300)

Note: The scaling estimator is implemented in the following way: 25 time increments At ranging from At =
5to At = T/5 (T the length of the time saries) have been used which are equally spaced in logs (i.e. the
next At is computed as At = exp(In(At) + In(T/5)/25), only positive moments are used, q = 0.1,
0.2...(0.1)...3, 35, (0.5),... 10, and the estimate of & is found by minimizing the squared deviation
between the theoretical and empirical spectrum at the a coordinates of the empirical spectrum. For GMM
edimation, the eight moment conditions listed in the main text have been used. In the case of the DAX,
iterative GMM estimation with 8 moment conditions produced only degenerate results (estimated € = 1).
Results reported here have been obtained via the following modifications of the origind set-up: a
esimation with only two moment conditions, M(T=1,0=1,2), and b. edimation with eight moment
conditions, but with the identity matrix used as the ‘weighting’ matrix. The number of volatility
components, K, is estimated via a chain of GMM runs with underlying k ranging from 1 to 20. When the
edimate of | changes by no more than 0.001 in successive steps, we choose the last k as the relevant

number of multipliers | and Jare reported for this particular GMM run. The in-sample entries extend
from 1 January 1979 to 31 December 1996.
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Fig. 1. Smulation of a Causal Lognhormal Cascade and its Use as a Local Volatility Process. For

a cascade with k = 12 levels and parameter & = 1.1, the upper panels of the figure show (from top to
bottom) the time development of the multipliers of level 2 and 6, and the product of al 12 multipliers.
Note that with the origina combinatorid cascade, one would expect evenly spaced change periods of the
multipliers while here we have random surviva times. In the lower pand, a compound process is
illugtrated in which the same cascade is used as a local voldility process. Superimposed is a Wiener
Brownian mation (H = 0.5).
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Fig. 4. Mean squared errors of volatility forecasts based on historical volatility (HV), GARCH
(1,1,), FIGARCH(1,d,1), and the Lognormal multi-fractal modd (MF). Time horizons are: 1 day,
5, 10, 20, ..., 100 days. Estimates are based on the period 01/01/1979 to 12/31/1996 and out-of-
sample forecasts are computed for the time period 01/01/1997 to 12/31/1998.



