
 1

Enforcing monotonicity of decision models: algorithm and
performance

A case study of hedonic price model

Marina Velikova1 and Hennie Daniels1,2

1Tilburg University, CentER for Economic Research,Tilburg, PO Box 90153,
5000 LE The Netherlands, phone: +31 13 466 8721, fax: +31 13 466 3377,
email:M.Velikova@uvt.nl
2Erasmus University Rotterdam, ERIM Institute of Advanced Management Studies,
Rotterdam, The Netherlands.

Abstract
The objective of data mining is the derivation of knowledge from databases, for example to
produce decision rules. In practice one often encounters difficulties with models that are
constructed purely by search, without incorporation of knowledge about the domain. In
economic decision making like for example credit loan approval, or risk analysis one often
requires models that are monotone with respect to the decision variables involved. If the
model is constructed by a blind search on the data it does mostly not have this property even
if the underlying data are monotone. In this paper we present methods to enforce
monotonicity of decision models. We propose measures to express the degree of monotonicity
of the data and an algorithm to clean non-monotone data sets. In addition we show that the
performance of the models obtained in this way is better. This is illustrated using artificially
generated data and a real case study.

Keywords: data mining, domain knowledge, monotonicity, monotonic datasets, decision
trees

 2

1. Introduction
Data mining has attracted a lot of interest in recent years due to the growing amount of data
collected in business and the need to turn this data into useful knowledge. The objective of a
data mining system is to derive valuable knowledge implicitly present in large databases.
Although, in data mining literature, the main emphasis is put on the analysis and
interpretation phase, there are more aspects such as data selection and data pre-processing,
which determine the successful implementation of any data mining system. The right
description of the domain as well as data cleaning, data integration and data transformation
can significantly improve the efficiency of the data mining process.

Apart from limitations regarding data quality there are also problems in the application of the
model if knowledge discovery is conducted by blind research. Frequently the models are
incompatible with business regulations. When the rules must be enforced in the business
process it can be a problem if knowledge is derived using data mining algorithms.
Another problem is the lack of interpretability of the model. In general, human decision
makers require that the model is easy to understand and do not accept black box models.
Finally, data mining algorithms may produce models, which are hard to manage by human
decision makers due to their huge complexity.
Therefore, there is a need for integration of the knowledge discovered by standard data
mining algorithms with the knowledge based on intuition and experience of the domain
experts.

In this paper, we explicitly consider the implementation of a special form of a prior
knowledge that is typical in economic decision problems, namely the monotonicity of
relationship between the dependent and explanatory variables.

In recent years, several researchers have become interested in incorporation of monotonicity
constraints in different data mining methods. In ([Dan, 99]) a class of a neural network that is
monotone by construction is described. This class is obtained by considering multilayer
neural networks with non-negative weights. In ([Wang, 94]) the monotonicity of the neural
network is guaranteed by enforcing constraints during the training process.
Also data analysis methods have been developed for classification problems with
monotonicity constraints. In ([Ben-David, 95]), a new splitting measure for constructing a
decision tree was proposed including a non-monotonicity index and standard impurity
measure such as entropy. In this way, Ben-David balances monotonicity and classification
error. Potharst ([Pot, 99]) provides a study for building monotonic decision trees using only
monotonic data sets. He presents algorithms for construction monotone tree by adding the
corner elements of a node with an appropriate class label to the dataset as well as by repairing
any minor local non-monotonicities. Rather than enforcing the monotonicity during the tree
construction, Potharst and Feelders ([Pot, 02]) consider an alternative approach that generates
many different trees by resampling the training data and selects a monotonic tree. This
approach allows the use of a standard tree algorithm except that the minimum and maximum
elements of the nodes have to be recorded during tree construction, in order to be able to
check whether the final tree is monotone.

In practice the data recorded for some transactions can be non-monotone, even if the
underlying business process is supposed to be monotone. This is due to the noise in the data
recorded, for example human or computers errors at data entry, inconsistencies after merging
datasets, discrepancies due to the change of data over time, etc. Noisy data can cause
confusion for the mining procedure, resulting in unreliable output. Particularly, in monotonic
classification problems, this result could be incompatible with policy rules and business
regulations.

 3

Therefore, a pre-processing step is necessary to “clean” the data by removing the noise and
resolving the inconsistencies. In the present paper we propose a technique for dealing with
noisy data in a non-monotonic dataset in order to change it into monotonic one. This is an
algorithm for relabeling the dependent variable in a dataset. Furthermore, we derive measures
for the degree of non-monotonicity of arbitrary datasets. In this way randomly generated
datasets can be used as benchmarks for real datasets with the same structure.
The algorithm is applied to artificially generated data and to a case study of predicting house
prices. Using the artificially generated datasets we show that the algorithm is capable of
removing noise. In the real case study we show that the monotonic datasets produce models,
which are more reliable and outperform the models derived from raw data.

In the next section, we formulate the monotonicity constraints in regression and classification
problems. A measure for the degree of non-monotonicity in a randomly generated dataset is
derived in section 3 using it later as a benchmark for comparison with real datasets. The
algorithm for transformation of a non-monotonic dataset into monotonic one is introduced in
section 4. In section 5, we provide some simulation results received after implementation the
algorithm on artificially generated datasets. In order to determine the effect of using a
monotonic dataset in real problems, in section 6, we consider a case study of house pricing
where we implement the algorithm and compare the performance of the decision models
obtained from the original and transformed datasets. Conclusions and final remarks are given
in section 7.

2. Monotonicity
In many economic classification and regression problems it is known that the dependent
variable has a distribution that is monotonic with respect to the independent variables.
Economic theory would state that people tend to buy less of a product if its price increases
(ceteris paribus), so there would be a negative relationship between price and demand. The
strength of this relationship and the precise functional form are however not always dictated
by economic theory. Another well-known example is the dependence of labour wages as a
function of age and education ([Muk, 94]). In loan acceptance the decision rule should be
monotone with respect to income for example, i.e. it would not be acceptable that an applicant
with high income is rejected, whereas another applicant with low income and otherwise equal
characteristics is accepted. Monotonicity is also imposed in so-called hedonic price models
where the price of a consumer good depends on a bundle of characteristics for which a
valuation exists ([Har, 78]).

The mathematical formulation of the monotonicity rule is straightforward. We assume that y
is the dependent variable and takes values in Y and the vector of independent variables is x
and takes values in X. In the applications discussed here, Y is a one-dimensional space of
prices or classes and X is a n-dimensional space of characteristics of products or customers
for example. Furthermore we assume that we have a dataset (y p , x p) of points in Y*X, which
can be considered as a random sample of the joint distribution of (y, x). In a regression
problem we want to estimate E(y | x). E(y | x) depends monotonically on x, if

x1 ≥ x2 � E(y | x1) ≥ E(y | x2) (1)

where x1 ≥ x2 is a partial ordering on X defined by 21
ii xx ≥ for i = 1, 2, …, n.

In cases where we are dealing with a classification problem we have an classification rule r(x)
that assigns a class to each vector x in X. Monotonicity of r is defined by:

x1 ≥ x2 � r(x1) ≥ r(x2) (2)

 4

3. Measure and benchmark for the degree of non-monotonicity in a dataset
Several researchers propose various measures to check the degree of monotonicity/non-
monotonicity in different data mining tools. In [Dan, 99], Daniels and Kamp define a
monotonicity index to measure the degree of monotonicity of a neural network with respect to
each input variable, xi as follows:

mon(xi) = ��
�

�
��
�

�

∂
∂ƒ−��

�

�
��
�

�

∂
∂ƒ −

=

+�)()(
1

1
p

i

n

p
p

i

x
x

Ix
x

I
n

where I+ (z) = 1 if z > 0 and I+ (z) = 0 if z ≤ 0 and I- (z) = 1 if z ≤ 0 and I- (z) = 0 if z=0, n is
the number of observations, xp is the pth observation (vector) and ƒ denotes the neural
network solution. The value of this index is between zero, indicating a non-monotonic
relationship, and 1, indicating a monotonic relationship. The value of sign indicates whether
the relation of f with respect to x is increasing or decreasing.
To test whether a given decision tree is monotone or not, Potharst [Pot, 99] proposes an
approach using the maximal and minimal elements of the leaf nodes of the decision trees. For
all pairs of leaves, t1 and t2, it is checked whether there is a pair that satisfies one of the
following conditions:

r(t1)>r(t2) and min(t1) ≤ max(t2) or r(t1)<r(t2) and max(t1) ≥ min(t2).
In case there exists such a pair the decision tree is called non-monotonic. The degree of the
non-monotonicity of the tree is computed as percentage non-monotonic leaf nodes of the total
number of leaves.
The non-monotonicity index proposed by Ben-David ([Ben, 95]) is another measure for the
degree of non-monotonicity, which gives equal weight to each pair of non-monotonic leaf
nodes. A modification of this measure, given in [Pot, 02] is to weight the different leaves
according to their probability of occurrence. The idea behind this is that when two low-
probability leaves are non-monotonic with respect to each other, this violates the
monotonicity of the tree to a lesser extent than two high-probability leaves.
All these measures for the degree of monotonicity/non-monotocity are rather based on the
models derived from data mining tools such as neural networks and decision trees than on the
dataset itself. In this section, we derive a benchmark for the degree of non-monotonicity in a
given dataset considering a randomly generated dataset. Using this benchmark we can
compare it with the degree of non-monotonicity in a real dataset computed as the proportion
of the number of non-monotonic pairs from the total number of pairs. If the latter is
significantly less than the benchmark this implies the presence of monotonicity in the dataset
and one suitable tool for transformation the non-monotonic dataset into monotonic one could
be the algorithm introduced in the next section.

Lemma 1:
For a randomly generated dataset with points drawn from uniform distribution, k-
independent variables and L uniformly distributed labels, the expectation value of the fraction
of non-monotonic pairs, denoted by Nm, is:

{ }
L

1L
2NmE k −= − (3)

Proof: It will be provided in the final version of the paper

4. Algorithm for relabeling
A dataset is defined to be monotone if for all possible combinations of data points the relation
defined in (2) holds. The objective of the algorithm is to transform a given non-monotonic
dataset into monotonic one by changing the value of the dependent variable. This process is
called relabeling. The idea is to reduce the number of non-monotonic pairs by relabeling one
data point in each step. In order to do this we choose a data point for which the increase in
correctly labelled points is maximal (this is not necessarily the point which is involved in the
maximal number of non-monotonic pairs). The process is continued until the dataset is
monotone.

 5

The correctness of the algorithm is proved by Lemma 2 and Lemma 3. In Lemma 2 we show
that it is always possible to reduce the number of non-monotonic pairs by changing the label
of only one point as long as the dataset is non-monotonic. In Lemma 3 it is shown that there is
a canonical choice for the new label for which a maximal reduction can be obtained. There
may be more than one label for which this can be achieved but these are all smaller or all
larger than the current label of the point.
Let us first introduce some notations. The initial dataset of n points is denoted by D = (xn,�n),
where xn is a vector of independent variables and �n is a label (dependent variable) with range
1,2,…,L. For each dataset D, Q(D) denotes the set of all points that participate in at least one
non-monotonic pair.
For each data point x ∈ Q(D), we define

Ai(x) = {y < x | label (y) = i},
Bi(x) = {y > x | label (y) = i},
ai and bi denote the number of points in Ai(x) and Bi(x), respectively
N� denotes the total number of points correctly labelled with respect to x for the current
label of x, �, i.e.
N� = a1+a2+…+a�+b�+…+bL

Remark 1:
We assume that all data points in the dataset D are unique i.e. no points are represented twice.

For each data point x ∈ Q(D) we compute the label �′ for which there is a maximal increase
in the number of correctly labelled points with respect to x, if the label of x is changed into �′.
The maximal increase is denoted by Imax. In case there is more than one label with one and the
same maximal increase in correctly labelled points, we choose the closest label to the current
label of x. In the next step we select a point x ∈ Q(D) for which Imax is the largest and change
its label. This process is repeated until the dataset is monotonic.

Algorithm
Step 1 – Initialisation:

Compute Q(D) on the basis of the dataset D
Step 2 – Main program
Step 2.1 As long as Q(D) ≠ ∅
 For each data point x ∈ Q(D) compute

 2.1.1 Imax = max { N�′ - N� | 1≤ �′<L}
2.1.2 � - set of indices �′ for which N� ′ - N� is maximal
2.1.3 Form a triple (x,Imax,�) where �∈� is the closest label to �, (in Lemma 3

it is shown that � is unique).
Step 2.2 From all triples choose the one where Imax is maximal and change the label into �′.
Step 2.3 Update Q(D) on the basis of the modified dataset D.

Remark 2:
In general, the points correctly labelled with respect to x are all points incomparable to x as
well as the points in A1 ∪ A2 ∪…∪ A� and B� ∪ B�+1 ∪…∪ BL. Since the number of the
points incomparable to x is constant and it does not contribute to Imax, we may completely
ignore it during the computation.

Lemma 2:
Let Dk denote the dataset D after k-iterations. If Q(Dk) ≠ ∅ there is at least one point x∈Q(Dk)
that can be relabelled such that the number of non-monotonic pairs is reduced.

Proof: It will be provided in the final version of the paper

 6

Lemma 3:
Suppose that the maximal increase Ix

max in correctly labelled points w.r.t. x can be obtained by
at least two labels r and s, r < s. Then

r < s < �x or �x < r < s
where �x is the label of x.

Proof: It will be provided in the final version of the paper

Correctness of the algorithm
In each step the number of points participating in non-monotonic pairs is reduced by at least
one (Lemma 2). Since the algorithm can only terminate when Q(D)=0 the resulting dataset is
monotonic. By Lemma 3 it follows that there is only one canonical choice for the new labels.

5. Simulation results
In order to check to what extend noise added to a monotone dataset can be removed by the
algorithm, we conducted the following experiment. We firstly generated a dataset with
random points uniformly distributed between 0 and 1 and computed the label of each point by
applying a monotonic function on the independent variables. Then the continuous dependent
variable (label) was discretized into finite number of classes. In the next step, we turned the
monotonic dataset into non-monotonic one by adding random noise to the discrete labels.
After that we applied the algorithm and compared the labels by computing the percentage of
correctly restored labels. This experiment was repeated 10 times with different number of
points, independent variables and labels as well as different noise levels. The results are
summarized in Table 1 below:

points in a
dataset

independent
variables # labels Noise Restoration (%)

100 2 3 15 % 99 %
100 2 3 15 % 98 %
100 2 4 11 % 96 %
100 3 4 15 % 94 %
100 5 3 15 % 88 %
200 2 3 15 % 97 %
200 3 4 16 % 92 %
200 3 5 16 % 92 %
200 5 4 15 % 89 %
200 7 5 15 % 88 %

Table 1: The results of data cleaning

The results show that the algorithm restores to a large extend the original dataset (7 of 10
times the restoration is above 90%). In the rest cases the restoration is less due to the increase
of the number of independent variables and labels.

In order to determine the performance of the original non-monotonic dataset and the
transformed monotonic dataset we applied them in a tree-based algorithm presented in
[Pot, 02], that is in many respects similar to the CART program as described in ([Bre, 84]).
The program only makes binary splits and uses the Gini-index as splitting criterion.
Furthermore cost-complexity pruning is applied to generate a nested sequence of trees from
which the best one is selected on the basis of test set performance. During tree construction,
the algorithm records the minimum and maximum element for each node. These are used to
check whether a tree is monotone.

 7

On the basis of this algorithm we repeated the following experiment 50 times with the first
dataset given in Table 1 using both the original and transformed datasets. Each dataset was
randomly partitioned (within classes) into a training set of 50 observations and test set of 50
observations. The training set was used to construct a sequence of trees using cost-complexity
pruning. From this sequence the best tree was selected on the basis of error rate on the test set
(in case of a tie, the smallest tree was chosen). Finally, it was checked whether the tree was
monotone and if not, the upper bound for the degree of non-monotonicity was computed by
giving a pair t1, t2 of non-monotonic leaf nodes weight 2*)()(21 tptp ∗ , where p(ti) denotes
the proportion of cases in leaf i.

The results show that the model yielded from the monotonic dataset has better performance
than that yielded from the non-monotonic dataset considering the average error on the trees –
the average error rate on monotonic and non-monotonic trees for monotonic dataset is almost
twice less that that for non-monotonic dataset. Also the average degree of non-monotonicity
for monotonic dataset is very low in comparison with the result for the non-monotonic
dataset. All the results are summarized in Table 2 below:

 Monotonic dataset Non-monotonic dataset
monotonic trees 45 41
non-monotonic trees 5 9
Average error rate on monotonic trees 0.147 0.283
Average number of leaf nodes on
monotonic trees 5.6 3.6

Average error rate on non-monotonic trees 0.156 0.293
Average number of leaf nodes on
non-monotonic trees 8.4 12.1

Average degree of non-monotonicity 0.003 0.062

Table 2: Comparison of the results received from monotonic and
non-monotonic datasets

6. Case study - Hedonic price model
The basic principle of a hedonic price model is that the consumption good is regarded as a
bundle of characteristics for which a valuation exists ([Har,78]). The price of the good is
determined by a combination of these valuations:

),...,,(21 nxxxPP =
In the case study presented below we want to predict the house price given a number of
characteristics. So, the variables nxxx ,...,, 21 correspond to the characteristics of the house.
The dataset consists of 119 observations of houses in the city of Den Bosch, which is a
medium sized Dutch city with approximately 120,000 inhabitants. The explanatory variables
have been selected on the basis of interviews with experts of local house brokers, and
advertisements offering real estate in local magazines. The most important variables are listed
in Table 3.

 8

Symbol Definition
DISTR
SURF
RM
TYPE

VOL
GARD
GARG

Type of district, four categories ranked from bad to good
Total area including garden
Number of bedrooms
1. Apartment
2. Row house
3. Corner house
4. Semidetached house
5. Detached house
6. Villa
Volume of the house
Type of garden, four categories ranked from bad to good
1. No garage
2. Normal garage
3. Large garage

Table 3: Definition of model variables

Of all 7021 distinct pairs of observations, 2217 are comparable, and 78 are non-monotonic.
For the purpose of this study we have discretized the dependent variable (asking price) into
three classes with labels ‘1’, ‘2’ and ‘3’. After the discretization of the dependent variable the
number of the non-monotonic pairs was reduced to 25 i.e. the degree of non-monotonicity is
0.36% (number of non-monotonic pairs divided by the total number of pairs). Comparing this
result with the result from the benchmark (3) for 3 labels and 7 independent variables, which
is 0.52%, we can conclude that the monotonicity is present in the dataset.

Therefore, in the next step, we applied the algorithm for relabeling described above, which
led to the label change of 5 points.

Again, in order to determine the performance of the original non-monotonic dataset and the
transformed monotonic dataset, we applied them in a tree-based algorithm and repeated 100
times the experiment described in section 5. The results are shown in Table 4:

 Monotonic dataset Non-monotonic dataset
monotonic trees 57 49
non-monotonic trees 43 51
Average error rate on monotonic trees 0,247695 0,289519
Average number of leaf nodes on
monotonic trees 4,47 4,16

Average degree of non-monotonicity 0,012339 0,022985

Table 4: Comparison of the results received from monotonic and
non-monotonic house pricing datasets

In the next step, we held a two-sample t-test of the null hypothesis that average error rate on
monotonic trees is one and the same for the monotonic and non-monotonic datasets against
one-sided alternative that the former is less than the latter. The test yielded a p-value
0.00000452, which leads to rejection of the null hypothesis and respectively to the conclusion
that the average error on monotonic trees for the monotonic datasets is significantly less than
that for non-monotonic datasets.
Furthermore, the average degree of non-monotonicity for monotonic datasets is almost twice
less than that for non-monotonic datasets, which along with the result that monotonic datasets
yield more monotonic decision trees than non-monotonic datasets, shows that the model
yielded from the monotonic dataset has better performance and produces more reliable model.

 9

7. Conclusion
In the present paper, we have shown that the incorporation of prior knowledge can
significantly improve the effectiveness of a data mining process. We explicitly consider a
very common form of domain knowledge, which is present in many economic problems,
namely the monotonic relationship between dependent variable (label) and explanatory
variables. Usually the data sets used for solving monotonic classification problems are non-
monotonic due to the noise in the data, which can result in unreliable output and
incompatibility of the model with policy rules and business regulations. Therefore, in this
paper, we introduce an algorithm for relabeling the dependent variable in a non-monotonic
dataset and thus transform it into monotonic one. Using the algorithm in a real case study of
predicting house prices, we show that the models derived from the cleaned data show better
performance than those derived from the original data.

References
[Ben, 95]: Ben-David, A., “Monotonicity Maintenance in Information-Theoretic Machine
Learning Algorithms”, Machine Learning, 19, pp. 29-43, (1995).

[Bre, 84]: Breiman L., Friedman J. H. Olshen R. A. and Stone C. T., “Classification and
Regression Trees”, Wadsford, California, (1984).

[Dan, 99]: Daniels, H. A. M. and Kamp, B., “Application of MLP networks to bond rating
and house pricing”, Neural Computation and Applications, 8, pp. 226-234, (1999).

[Fee, 00]: Feelders, A., Daniels, H. A. M. and Holsheimer, M, “Methodological and practical
aspects of data mining”, Information & Management, 37, pp. 271-281, (2000).

[Har, 78]: Harrison, O. and Rubinfeld, D., “Hedonic prices and the demand for clean air”,
Journal of Environmental Economics and Management, 53, pp. 81-102, (1978).

[Muk, 94]: Mukarjee, H. and Stern, S., “Feasible Nonparametric Estimation of Multiargument
Monotone Functions”, Journal of the American Statistical Association, 89, no.425, pp. 77-80,
(1994).

[Nun 91]: Nunez, M., “The Use of Background Knowledge in Decision Tree Induction”,
Machine Learning, 6, pp. 231-250, (1991).

[Pot, 99]: Potharst, R., “Classification using decision trees and neural nets”, Erasmus
Universiteit Rotterdam, SIKS Dissertation Series No. 99-2, (1999).

[Pot, 02]: Potharst, R. and A.Feelders, “Classification trees for problems with monotonicity
constraints”, SIGKDD Explorations Newsletter, Volume 4 , Issue 1 (2002)

[Wan, 94]: Wang, S., “A neural network method of density estimation for univariate
unimodal data”, Neural Computation & Applications, 2, pp. 160- 167, (1994).

