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Abstract 
The objective of data mining is the derivation of knowledge from databases, for example to 
produce decision rules. In practice one often encounters difficulties with models that are 
constructed purely by search, without incorporation of knowledge about the domain. In 
economic decision making like for example credit loan approval, or risk analysis one often 
requires models that are monotone with respect to the decision variables involved. If the 
model is constructed by a blind search on the data it does mostly not have this property even 
if the underlying data are monotone. In this paper we present methods to enforce 
monotonicity of decision models. We propose measures to express the degree of monotonicity 
of the data and an algorithm to clean non-monotone data sets. In addition we show that the 
performance of the models obtained in this way is better. This is illustrated using artificially 
generated data and a real case study.  
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1. Introduction 
Data mining has attracted a lot of interest in recent years due to the growing amount of data 
collected in business and the need to turn this data into useful knowledge. The objective of a 
data mining system is to derive valuable knowledge implicitly present in large databases. 
Although, in data mining literature, the main emphasis is put on the analysis and 
interpretation phase, there are more aspects such as data selection and data pre-processing, 
which determine the successful implementation of any data mining system. The right 
description of the domain as well as data cleaning, data integration and data transformation 
can significantly improve the efficiency of the data mining process. 
 
Apart from limitations regarding data quality there are also problems in the application of the 
model if knowledge discovery is conducted by blind research. Frequently the models are 
incompatible with business regulations. When the rules must be enforced in the business 
process it can be a problem if knowledge is derived using data mining algorithms.  
Another problem is the lack of interpretability of the model. In general, human decision 
makers require that the model is easy to understand and do not accept black box models.  
Finally, data mining algorithms may produce models, which are hard to manage by human 
decision makers due to their huge complexity. 
Therefore, there is a need for integration of the knowledge discovered by standard data 
mining algorithms with the knowledge based on intuition and experience of the domain 
experts.  
 
In this paper, we explicitly consider the implementation of a special form of a prior 
knowledge that is typical in economic decision problems, namely the monotonicity of 
relationship between the dependent and explanatory variables.  
 
In recent years, several researchers have become interested in incorporation of monotonicity 
constraints in different data mining methods. In ([Dan, 99]) a class of a neural network that is 
monotone by construction is described. This class is obtained by considering multilayer 
neural networks with non-negative weights. In ([Wang, 94]) the monotonicity of the neural 
network is guaranteed by enforcing constraints during the training process.  
Also data analysis methods have been developed for classification problems with 
monotonicity constraints. In ([Ben-David, 95]), a new splitting measure for constructing a 
decision tree was proposed including a non-monotonicity index and standard impurity 
measure such as entropy. In this way, Ben-David balances monotonicity and classification 
error. Potharst ([Pot, 99]) provides a study for building monotonic decision trees using only 
monotonic data sets. He presents algorithms for construction monotone tree by adding the 
corner elements of a node with an appropriate class label to the dataset as well as by repairing 
any minor local non-monotonicities. Rather than enforcing the monotonicity during the tree 
construction, Potharst and Feelders ([Pot, 02]) consider an alternative approach that generates 
many different trees by resampling the training data and selects a monotonic tree. This 
approach allows the use of a standard tree algorithm except that the minimum and maximum 
elements of the nodes have to be recorded during tree construction, in order to be able to 
check whether the final tree is monotone.  
 
In practice the data recorded for some transactions can be non-monotone, even if the 
underlying business process is supposed to be monotone. This is due to the noise in the data 
recorded, for example human or computers errors at data entry, inconsistencies after merging 
datasets, discrepancies due to the change of data over time, etc. Noisy data can cause 
confusion for the mining procedure, resulting in unreliable output. Particularly, in monotonic 
classification problems, this result could be incompatible with policy rules and business 
regulations. 
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Therefore, a pre-processing step is necessary to “clean” the data by removing the noise and 
resolving the inconsistencies. In the present paper we propose a technique for dealing with 
noisy data in a non-monotonic dataset in order to change it into monotonic one. This is an 
algorithm for relabeling the dependent variable in a dataset. Furthermore, we derive measures 
for the degree of non-monotonicity of arbitrary datasets. In this way randomly generated 
datasets can be used as benchmarks for real datasets with the same structure.  
The algorithm is applied to artificially generated data and to a case study of predicting house 
prices. Using the artificially generated datasets we show that the algorithm is capable of 
removing noise. In the real case study we show that the monotonic datasets produce models, 
which are more reliable and outperform the models derived from raw data. 
 
In the next section, we formulate the monotonicity constraints in regression and classification 
problems. A measure for the degree of non-monotonicity in a randomly generated dataset is 
derived in section 3 using it later as a benchmark for comparison with real datasets. The 
algorithm for transformation of a non-monotonic dataset into monotonic one is introduced in 
section 4. In section 5, we provide some simulation results received after implementation the 
algorithm on artificially generated datasets. In order to determine the effect of using a 
monotonic dataset in real problems, in section 6, we consider a case study of house pricing 
where we implement the algorithm and compare the performance of the decision models 
obtained from the original and transformed datasets. Conclusions and final remarks are given 
in section 7. 
 
2. Monotonicity 
In many economic classification and regression problems it is known that the dependent 
variable has a distribution that is monotonic with respect to the independent variables. 
Economic theory would state that people tend to buy less of a product if its price increases 
(ceteris paribus), so there would be a negative relationship between price and demand. The 
strength of this relationship and the precise functional form are however not always dictated 
by economic theory. Another well-known example is the dependence of labour wages as a 
function of age and education ([Muk, 94]). In loan acceptance the decision rule should be 
monotone with respect to income for example, i.e. it would not be acceptable that an applicant 
with high income is rejected, whereas another applicant with low income and otherwise equal 
characteristics is accepted. Monotonicity is also imposed in so-called hedonic price models 
where the price of a consumer good depends on a bundle of characteristics for which a 
valuation exists ([Har, 78]). 
 
The mathematical formulation of the monotonicity rule is straightforward. We assume that y 
is the dependent variable and takes values in Y and the vector of independent variables is x 
and takes values in X. In the applications discussed here, Y is a one-dimensional space of 
prices or classes and X is a n-dimensional space of characteristics of products or customers 
for example. Furthermore we assume that we have a dataset (y p , x p ) of points in Y*X, which 
can be considered as a random sample of the joint distribution of (y, x). In a regression 
problem we want to estimate E(y | x). E(y | x) depends monotonically on x, if 
 

x1 ≥  x2 � E(y | x1) ≥ E(y | x2)       (1)
        

where x1 ≥  x2 is a partial ordering on X defined by 21
ii xx ≥  for i = 1, 2, …, n. 

 
In cases where we are dealing with a classification problem we have an classification rule r(x) 
that assigns a class to each vector x in X. Monotonicity of r is defined by: 
 

x1 ≥  x2 � r(x1) ≥ r(x2)        (2) 
 



 4 

3. Measure and benchmark for the degree of non-monotonicity in a dataset 
Several researchers propose various measures to check the degree of monotonicity/non-
monotonicity in different data mining tools. In [Dan, 99], Daniels and Kamp define a 
monotonicity index to measure the degree of monotonicity of a neural network with respect to 
each input variable, xi as follows:  
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where I+ (z) = 1 if z > 0 and I+ (z) = 0 if z ≤ 0 and I- (z) = 1 if z ≤ 0 and I- (z) = 0 if z=0, n is 
the number of observations, xp is the pth observation (vector) and ƒ denotes the neural 
network solution. The value of this index is between zero, indicating a non-monotonic 
relationship, and 1, indicating a monotonic relationship. The value of sign indicates whether 
the relation of f with respect to x is increasing or decreasing.  
To test whether a given decision tree is monotone or not, Potharst [Pot, 99] proposes an 
approach using the maximal and minimal elements of the leaf nodes of the decision trees. For 
all pairs of leaves, t1 and t2, it is checked whether there is a pair that satisfies one of the 
following conditions: 

r(t1)>r(t2) and min(t1) ≤ max(t2)    or r(t1)<r(t2) and max(t1) ≥ min(t2). 
In case there exists such a pair the decision tree is called non-monotonic. The degree of the 
non-monotonicity of the tree is computed as percentage non-monotonic leaf nodes of the total 
number of leaves.  
The non-monotonicity index proposed by Ben-David ([Ben, 95]) is another measure for the 
degree of non-monotonicity, which gives equal weight to each pair of non-monotonic leaf 
nodes. A modification of this measure, given in [Pot, 02] is to weight the different leaves 
according to their probability of occurrence. The idea behind this is that when two low-
probability leaves are non-monotonic with respect to each other, this violates the 
monotonicity of the tree to a lesser extent than two high-probability leaves. 
All these measures for the degree of monotonicity/non-monotocity are rather based on the 
models derived from data mining tools such as neural networks and decision trees than on the 
dataset itself. In this section, we derive a benchmark for the degree of non-monotonicity in a 
given dataset considering a randomly generated dataset. Using this benchmark we can 
compare it with the degree of non-monotonicity in a real dataset computed as the proportion 
of the number of non-monotonic pairs from the total number of pairs. If the latter is 
significantly less than the benchmark this implies the presence of monotonicity in the dataset 
and one suitable tool for transformation the non-monotonic dataset into monotonic one could 
be the algorithm introduced in the next section. 
 
Lemma 1: 
For a randomly generated dataset with points drawn from uniform distribution, k- 
independent variables and L uniformly distributed labels, the expectation value of the fraction 
of non-monotonic pairs, denoted by Nm, is: 

{ }
L

1L
2NmE k −= −         (3) 

Proof: It will be provided in the final version of the paper 
 
 
4. Algorithm for relabeling 
A dataset is defined to be monotone if for all possible combinations of data points the relation 
defined in (2) holds. The objective of the algorithm is to transform a given non-monotonic 
dataset into monotonic one by changing the value of the dependent variable. This process is 
called relabeling. The idea is to reduce the number of non-monotonic pairs by relabeling one 
data point in each step. In order to do this we choose a data point for which the increase in 
correctly labelled points is maximal (this is not necessarily the point which is involved in the 
maximal number of non-monotonic pairs). The process is continued until the dataset is 
monotone.  
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The correctness of the algorithm is proved by Lemma 2 and Lemma 3. In Lemma 2 we show 
that it is always possible to reduce the number of non-monotonic pairs by changing the label 
of only one point as long as the dataset is non-monotonic. In Lemma 3 it is shown that there is 
a canonical choice for the new label for which a maximal reduction can be obtained. There 
may be more than one label for which this can be achieved but these are all smaller or all 
larger than the current label of the point.  
Let us first introduce some notations. The initial dataset of n points is denoted by D = (xn,�n), 
where xn is a vector of independent variables and �n is a label (dependent variable) with range 
1,2,…,L. For each dataset D, Q(D) denotes the set of all points that participate in at least one 
non-monotonic pair.  
For each data point x ∈ Q(D), we define  

Ai(x) = {y < x | label (y) = i},  
Bi(x) = {y > x | label (y) = i},  
ai  and bi denote the number of points in Ai(x) and Bi(x), respectively 
N� denotes the total number of points correctly labelled with respect to x for the current 
label of x, �, i.e.  
N� = a1+a2+…+a�+b�+…+bL 

 
Remark 1:  
We assume that all data points in the dataset D are unique i.e. no points are represented twice.  
 
For each data point x ∈ Q(D) we compute the label �′ for which there is a maximal increase 
in the number of correctly labelled points with respect to x, if the label of x is changed into �′. 
The maximal increase is denoted by Imax. In case there is more than one label with one and the 
same maximal increase in correctly labelled points, we choose the closest label to the current 
label of x. In the next step we select a point x ∈ Q(D) for which Imax is the largest and change 
its label.  This process is repeated until the dataset is monotonic.  

 
Algorithm 
Step 1 – Initialisation:   

Compute Q(D)  on the basis of the dataset D 
Step 2 – Main program  
Step 2.1 As long as Q(D) ≠ ∅  
  For each data point x ∈ Q(D) compute 

  2.1.1 Imax = max { N�′ - N� | 1≤ �′<L} 
2.1.2 � - set of indices �′ for which N� ′ - N� is maximal 
2.1.3 Form a triple (x,Imax,�) where �∈� is the closest label to �, (in Lemma 3 

it is shown that � is unique). 
Step 2.2 From all triples choose the one where Imax is maximal and change the label into �′. 
Step 2.3 Update Q(D) on the basis of the modified dataset D. 
 
Remark 2:  
In general, the points correctly labelled with respect to x are all points incomparable to x as 
well as the points in A1 ∪ A2 ∪…∪ A� and B� ∪ B�+1 ∪…∪ BL. Since the number of the 
points incomparable to x is constant and it does not contribute to Imax, we may completely 
ignore it during the computation. 
 
Lemma 2: 
Let Dk denote the dataset D after k-iterations. If Q(Dk) ≠ ∅ there is at least one point x∈Q(Dk) 
that can be relabelled such that the number of non-monotonic pairs is reduced. 
 
Proof: It will be provided in the final version of the paper 
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Lemma 3:  
Suppose that the maximal increase Ix

max in correctly labelled points w.r.t. x can be obtained by 
at least two labels r and s, r < s. Then  

r < s < �x or �x < r < s 
where �x is the label of x. 
 
Proof: It will be provided in the final version of the paper 
 
Correctness of the algorithm 
In each step the number of points participating in non-monotonic pairs is reduced by at least 
one (Lemma 2). Since the algorithm can only terminate when Q(D)=0 the resulting dataset is 
monotonic. By Lemma 3 it follows that there is only one canonical choice for the new labels. 
 
 
5. Simulation results 
In order to check to what extend noise added to a monotone dataset can be removed by the 
algorithm, we conducted the following experiment. We firstly generated a dataset with 
random points uniformly distributed between 0 and 1 and computed the label of each point by 
applying a monotonic function on the independent variables. Then the continuous dependent 
variable (label) was discretized into finite number of classes. In the next step, we turned the 
monotonic dataset into non-monotonic one by adding random noise to the discrete labels. 
After that we applied the algorithm and compared the labels by computing the percentage of 
correctly restored labels. This experiment was repeated 10 times with different number of 
points, independent variables and labels as well as different noise levels. The results are 
summarized in Table 1 below: 
 

# points in a 
dataset 

# independent 
variables # labels Noise Restoration (%) 

100 2 3 15 % 99 % 
100 2 3 15 % 98 % 
100 2 4 11 % 96 % 
100 3 4 15 % 94 % 
100 5 3 15 % 88 % 
200 2 3 15 % 97 % 
200 3 4 16 % 92 % 
200 3 5 16 % 92 % 
200 5 4 15 % 89 % 
200 7 5 15 % 88 % 

 
Table 1: The results of data cleaning 

 
The results show that the algorithm restores to a large extend the original dataset (7 of 10 
times the restoration is above 90%). In the rest cases the restoration is less due to the increase 
of the number of independent variables and labels.  
 
In order to determine the performance of the original non-monotonic dataset and the 
transformed monotonic dataset we applied them in a tree-based algorithm presented in      
[Pot, 02], that is in many respects similar to the CART program as described in ([Bre, 84]). 
The program only makes binary splits and uses the Gini-index as splitting criterion. 
Furthermore cost-complexity pruning is applied to generate a nested sequence of trees from 
which the best one is selected on the basis of test set performance. During tree construction, 
the algorithm records the minimum and maximum element for each node. These are used to 
check whether a tree is monotone.  



 7 

 
On the basis of this algorithm we repeated the following experiment 50 times with the first 
dataset given in Table 1 using both the original and transformed datasets. Each dataset was 
randomly partitioned (within classes) into a training set of 50 observations and test set of 50 
observations. The training set was used to construct a sequence of trees using cost-complexity 
pruning. From this sequence the best tree was selected on the basis of error rate on the test set 
(in case of a tie, the smallest tree was chosen). Finally, it was checked whether the tree was 
monotone and if not, the upper bound for the degree of non-monotonicity was computed by 
giving a pair t1, t2 of non-monotonic leaf nodes weight 2* )()( 21 tptp ∗ , where p(ti) denotes 
the proportion of cases in leaf i.  
 
The results show that the model yielded from the monotonic dataset has better performance 
than that yielded from the non-monotonic dataset considering the average error on the trees – 
the average error rate on monotonic and non-monotonic trees for monotonic dataset is almost 
twice less that that for non-monotonic dataset. Also the average degree of non-monotonicity 
for monotonic dataset is very low in comparison with the result for the non-monotonic 
dataset. All the results are summarized in Table 2 below: 
 
 Monotonic dataset Non-monotonic dataset 
# monotonic trees 45 41 
# non-monotonic trees 5 9 
Average error rate on monotonic trees 0.147 0.283 
Average number of leaf nodes on 
monotonic trees 5.6 3.6 

Average error rate on non-monotonic trees 0.156 0.293 
Average number of leaf nodes on  
non-monotonic trees 8.4 12.1 

Average degree of non-monotonicity 0.003 0.062 
 

Table 2: Comparison of the results received from monotonic and  
non-monotonic datasets 

 
 
 

6. Case study - Hedonic price model 
The basic principle of a hedonic price model is that the consumption good is regarded as a 
bundle of characteristics for which a valuation exists ([Har,78]). The price of the good is 
determined by a combination of these valuations: 

),...,,( 21 nxxxPP =  
In the case study presented below we want to predict the house price given a number of 
characteristics. So, the variables nxxx ,...,, 21  correspond to the characteristics of the house. 
The dataset consists of 119 observations of houses in the city of Den Bosch, which is a 
medium sized Dutch city with approximately 120,000 inhabitants. The explanatory variables 
have been selected on the basis of interviews with experts of local house brokers, and 
advertisements offering real estate in local magazines. The most important variables are listed 
in Table 3. 
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Symbol Definition 
DISTR 
SURF 
RM 
TYPE 
 
 
 
 
 
VOL 
GARD 
GARG 

Type of district, four categories ranked from bad to good 
Total area including garden 
Number of bedrooms 
1. Apartment 
2. Row house 
3. Corner house 
4. Semidetached house 
5. Detached house 
6. Villa 
Volume of the house 
Type of garden, four categories ranked from bad to good 
1. No garage 
2. Normal garage 
3. Large garage 

 
Table 3: Definition of model variables 

 
 
Of all 7021 distinct pairs of observations, 2217 are comparable, and 78 are non-monotonic. 
For the purpose of this study we have discretized the dependent variable (asking price) into 
three classes with labels ‘1’, ‘2’ and ‘3’. After the discretization of the dependent variable the 
number of the non-monotonic pairs was reduced to 25 i.e. the degree of non-monotonicity is 
0.36% (number of non-monotonic pairs divided by the total number of pairs). Comparing this 
result with the result from the benchmark (3) for 3 labels and 7 independent variables, which 
is 0.52%, we can conclude that the monotonicity is present in the dataset.  
 
Therefore, in the next step, we applied the algorithm for relabeling described above, which 
led to the label change of 5 points.  
 
Again, in order to determine the performance of the original non-monotonic dataset and the 
transformed monotonic dataset, we applied them in a tree-based algorithm and repeated 100 
times the experiment described in section 5. The results are shown in Table 4:  
 
 Monotonic dataset Non-monotonic dataset 
# monotonic trees 57 49 
# non-monotonic trees 43 51 
Average error rate on monotonic trees 0,247695 0,289519 
Average number of leaf nodes on 
monotonic trees 4,47 4,16 

Average degree of non-monotonicity 0,012339 0,022985 
 

Table 4: Comparison of the results received from monotonic and  
non-monotonic house pricing datasets 

 
In the next step, we held a two-sample t-test of the null hypothesis that average error rate on 
monotonic trees is one and the same for the monotonic and non-monotonic datasets against 
one-sided alternative that the former is less than the latter. The test yielded a p-value 
0.00000452, which leads to rejection of the null hypothesis and respectively to the conclusion 
that the average error on monotonic trees for the monotonic datasets is significantly less than 
that for non-monotonic datasets.  
Furthermore, the average degree of non-monotonicity for monotonic datasets is almost twice 
less than that for non-monotonic datasets, which along with the result that monotonic datasets 
yield more monotonic decision trees than non-monotonic datasets, shows that the model 
yielded from the monotonic dataset has better performance and produces more reliable model. 
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7. Conclusion 
In the present paper, we have shown that the incorporation of prior knowledge can 
significantly improve the effectiveness of a data mining process. We explicitly consider a 
very common form of domain knowledge, which is present in many economic problems, 
namely the monotonic relationship between dependent variable (label) and explanatory 
variables. Usually the data sets used for solving monotonic classification problems are non-
monotonic due to the noise in the data, which can result in unreliable output and 
incompatibility of the model with policy rules and business regulations. Therefore, in this 
paper, we introduce an algorithm for relabeling the dependent variable in a non-monotonic 
dataset and thus transform it into monotonic one. Using the algorithm in a real case study of 
predicting house prices, we show that the models derived from the cleaned data show better 
performance than those derived from the original data.  
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