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Abstract. In this paper, we explore the effects of the introduction of localised
externalities through interaction structures upon local and global properties of the
simplest market model: the discrete choice model with a single homogeneous prod-
uct and a single seller (the monopoly case). Following Kirman, the resulting mar-
ket is viewed as a complex interactive system with a communication network be-
tween entities. We use an ACE (Agent based Computational Economics) approach
to investigate corresponding market mechanisms and underline in what way the
knowledge of generic properties of complex adaptive system dynamics can enhance
our perception of the market mechanism in the numerous cases where individual
decisions are inter-related. More specifically, we discuss analogies between simu-
lated market mechanisms and classical phenomena in the physics of disordered
systems such as phase transition, symmetry breaking, avalanches and long range
dependence. Various network structures are taken into account: as regular network
(lattices) and random networks represent two limiting cases of localised interaction
structures, the so-called “small-world” networks are an intermediate form between
these two extremes. The first and second sections are devoted to the local and
global dimension of the related dynamics, while the third section is dedicated to
first investigations into the incidence of externalties and network structure upon
the optimal asymptotic price for a monopolist.
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1 Introduction

In this paper, we explore the effects of the introduction of interaction struc-
tures (structured externalities) upon local and global properties of the sim-
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plest market model: the discrete choice model (Anderson et al. [2]) with a
single homogeneous product and a single seller (the monopoly case).

Following Kirman [55–57] such a market is viewed as a complex interactive
system with a communication network. From this perspective, ACE (Agent
based Computational Economics - [94,95,91,110]) is a promising approach
to investigate market mechanisms (cf. for instance among others: Vriend
[100]; Kirman and Vriend [61]; Wilhite [108]). That is, following Mirowski
and Somefun [73], markets will be viewed “as evolving computational enti-
ties”. In such a system, buyers as well as sellers may be represented by a
suitable software agent. Each agent is then linked by communications struc-
tures to other entities of the system. In our model, the market embodies
communications between customers and seller, and the neighbourhood em-
bodies communications customers. In this way, such an agent may exchange
information with his environment, to adapt his behaviour given this infor-
mation (individual learning). As a consequence, each agent thus contributes
to the adaptation of the whole system (collective learning, following Dosi et
al., [31]). The resulting system may be viewed as a complex adaptive system
[105,90] involving social dynamics (Durlauf and Young, [37]). In this paper,
we underline in what way the knowledge of generic properties of complex
adaptive system dynamics can enhance our perception of the market mech-
anism in the numerous cases where individual decisions are inter-related.
Simulations are supported by the Moduleco ACE Lab [83–85,112].

1.1 Motivation: the role of individual interdependence in market
behaviour

While the market is given as the main object of economic science, few authors
have really discussed the definition and ontology of the market, as underlined
by Hodgson [48] or Auerbach [7]. The market appears to be both the central
institution for coordination within capitalism and also an organisation which
can take many different forms [71]. Nevertheless, numerous formal works con-
centrate upon questions such as the existence, stability and efficiency of the
equilibrium, neglecting both the processing and the informational dimension
of the market underlined by Hayek [47]. As a result, informational, cognitive,
organisational and institutional dimensions of the market are eliminated from
this traditional perspective. In order to overcome some of these limitations
Kirman [57–59]) points out, in particular, the role of networks in market
organisations. This theoretical point of view, putting together Networks and
Markets, joins other approachs followed by some sociologists showing interest
in interdisciplinary cooperation [87,39].

That is, economic sociology puts the emphasis on the diversity of organ-
isational forms of markets, as well as on the role of network relationships.
More specifically, the structural method [65] is devoted to the study of the
relationship between a stylised form of the social system of relationship (the
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structure) and the behaviour of the members of such a system. Various au-
thors put the emphasis on different structures of networks like, for instance,
Burt ([23]: “structural hole”) or Granovetter ([43]: “weak ties”). For the later,
the effects of group membership on economic decisions, are marked with the
concept of “ embeddedness” . The approach suggested by Granovetter [45,46]
shows that economic action is based on the networks of relations between
people. In other words, economic action is localised socially and cannot be
explained by merely individual causes.

1.2 Dynamic behaviour

More specifically, following [36,86] we discuss analogies between simulated
market mechanisms and classical collective phenomena studied in statistical
physics, especially in the case of disordered (heterogeneous) systems. The
macroscopic properties of a physical system composed of a large number of
interacting units (atoms, molecules, etc.) can be summarised in a phase dia-
gram in the space of the control parameters (e.g. temperature, external field,
etc.). This space can be decomposed into domains, each domain correspond-
ing to a phase (e.g. liquid or solid, ferromagnetic or paramagnetic, etc.). The
phase transitions, occurring at points or lines separating these domains, cor-
respond to the emergence of a different order, associated with the restoring or
the breaking of a symmetry (see e.g. Anderson and Stein, [1]). For instance,
a ferromagnetic state will appear below some critical temperature Tc, with
the breaking of the symmetry “ up/down” in a system of magnetic moments
(“spins”). The phase transitions themselves can be classified in categories,
each class corresponding to a same qualitative set of properties. In the case
of a “first order transition”, a jump occurs in the macroscopic quantity which
characterises the new order, and the transition occurs at different values of
the control parameter, depending on whether the latter is continuously in-
creased or lowered (hysteresis effect). Moreover heterogeneity may produce
avalanche phenomena and more complex hysteresis effects (see e.g. Sethna et
al., [92]). Such behaviour will be described more precisely in section I, for the
microscopic (local) dynamics, and section II, for the resulting macroscopic
dynamics.

According to physics’ results, when individual actions are made to be
interdependent, complex dynamics may arise. That is the case, for instance,
when agents locally interact over a specific network. In such cases, Axtell [9]
has underlined the effects of distinct agent interaction structures in multi-
agent models. In this paper, we review the effect of various network structures.
Regular network (lattices) and random networks represent two limit cases,
the so-called “small-world” networks [77,101–103] being an intermediate form
between these two extremes.

The first and second sections are devoted to the local and global dimen-
sion of the market dynamics, while the third section is dedicated to first
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investigations into the incidence of externalties and network structure upon
the optimal asymptotic price for a monopolist.

2 Local Behaviour

The question of social influence over individual choice, or, in other words, the
trade-off between “Individual Strategy and Social Structure” (Young, [109])
is now on the economist’s agenda [6,37,62]. This question has been addressed
for a long time in other fields of social science (Schelling [88,89]; Granovet-
ter, [45]; see also: Kindermann and Snell [53,54]; Weidlich and Haag, [104],
for formal aspects). In order to introduce market dynamics linked with both
individual idiosyncratic preference and network social influence, we will first
borrow from social science the notions of individual and collective thresholds.
After a short overview of economists’ formal contributions to this question,
we propose two typologies: a typology of the interactions between individual
choices and demand dynamics, and the Watts and Strogatz [103] typology
of network structures. After introducing a family of formal models of indi-
vidual choice, we qualitatively explain the local dynamics and the avalanche
phenomenon with an example.

2.1 Individual choice and social structure

In agents’ models with an individual threshold such as in Schelling [89] or
Granovetter [44], the individual threshold of adoption gives a definition of the
number of adopters each agent considers sufficient to modify his behaviour.
The equilibrium is fully determined from the knowledge of the distribution
of individual thresholds. In the example of a riot [44], each agent has an
individual threshold which corresponds to the number of people in the riot
that he considers necessary for him to choose to join it. For a population of
100 people, the distribution of thresholds is uniform (an agent with threshold
0, an agent with threshold 1, an agent with threshold 2, and so on, the last
agent having threshold 99). The individual with threshold 0 is the instigator of
the dynamic. He decides to adopt deviant behaviour and, for example, breaks
a window. Consequently, the agent with threshold 1 joins him and he acts
in an illegal way, which influences another agent and so on (chain reaction).
Gradually, the riot grows and reaches the equilibrium with all the population
affected. This mechanism is called a “domino effect” or a “bandwagon effect”.
It corresponds to what is called an “avalanche” in the physics literature. Here,
because the distribution is uniform, the avalanche size is equal to the total
population, as we will see below. If the threshold distribution is modified, the
equilibrium changes. Let us suppose that the individual with threshold 1 is
replaced by an individual with threshold 2, so the dynamic is limited to one
person. The revision of the situation of only one person in the population
leads to a profond modification of the global behaviour. There is no chain
reaction and thus no avalanche.
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In the context of these models, there is no “local network” in the sense that
individuals are only sensitive to the percentage of the total population which
has previously adopted (a behaviour, product, etc.). The neighbourhood of
each agent is composed of the set of all other agents. These are called global
interactions. Valente [99] stresses the importance of the structures of inter-
personal relations in the propagation phenomenon (innovations, opinions,
goods) by distinguishing for each agent, the “ collective behaviours thresh-
old” and the “ threshold of exposure” . The threshold of collective behaviour
corresponds to the threshold such as it is defined in the models of global in-
teractions: the number of previous adopters in the total population before
the agents adopt it themselves. By opposition, the threshold of exposure is
based on the localized interactions (i.e. the interpersonal relations between
agents, including both local (short distance) interactions and long distance
interpersonal interactions). The threshold of exposure of an individual is de-
fined by the proportion of adopters in his personal network (neighbourhood)
when he changes his behaviour. Taking into account the network of individ-
ual relations is essential because it makes it possible to distinguish the agents
who are conservative or resistant (high threshold of exposure) and those who
are innovators (small threshold of exposure) and exposed only tardily to the
product.

Such considerations can be completed in a more formal way. In the math-
ematical sociology field, Weidlich and Haag [104] propose, in the global per-
spective, a generic model of opinion formation based upon a master equation
and Fokker-Plank approximation approach. Kindermann and Snell [54] iden-
tify a social network as an application of a Markov random field. Galam et
al. [42] propose another application of statistical mechanics tolls to sociology
in a work qualified as “sociophysics”. In economics, the pioneering work of
Fölmer [40] applies local stochastic interactions by the way of Markov random
fields in a general equilibrium model with uncertainty.

In the 90’s, new stochastic models were introduced in order to take into
account informational phenomena in financial markets, such as informational
cascades [14] and correlative bubbles. Similarly, the master equation and the
Fokker-Plank approximation are used by Topol [96] and Orléan [79–81]. Such
methods in the social sciences were inspired by Weidlich and Haag [104] but
also by Aoki [3].

At the local level, the pioneering work of Ellison [38] in the field of evolu-
tionary games theory, followed by the contributions of Blume [15,16] and the
early works of Durlauf on interdependent growth phenomena [32–34] again
introduce a statistical mechanism tool as a way to take into account interac-
tion phenomena in economics (see syntheses by [35,21,17,50,86] among oth-
ers); for a discussion of the relationship with mechanical physics, see [36,86].
More generally Young [109] proposed an essay on Individual Strategy and
Social Structure, and the collective works edited by Durlauf and Young [37]
provide useful new developments.
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In Europe, similar programs emerged, e.g. in [68,24,62,20] among others.
The example of the analysis of the fish market in Marseille [60,58] opens
some other opportunities to make use of methods and concepts taken from
statistical mechanics (see for instance [75,106]) as well as ACE (Kirman and
Vriend, [61]).

Finally, beyond the papers cited, social influence as well, like in the
ACE approach, is widely used to model financial markets (for a survey, see:
LeBaron, [66,67]).In recent years, a growing field of so-called “econophysics”
has developed a complementary approach within the physicists’ community
(see for instance [111,70]). Within the important part of this literature de-
voted to mathematical finance, several models address the effect of interac-
tions between agents [70,26,25] on the market.

In the present paper we focus on the effect on market behaviour of inter-
dependencies between customers, and we thus consider a single seller - the
case of a monopoly market. We propose and study an economic model which
allows us to highlight the economic effects of the structure on the global level
of demand. Three situations are possible (Table 1).

Table 1. A typology of interactions and demand dynamics

Neighbourhood (a) No relations (b) Localised relations (c) Generalised relations

(Moduleco*) (empty) (neighb2, neighb4,...) (world)

Level of interactions (independent agents) Localized interactions Global interactions

Demand sensitivity

to the network Null Strong Null

topology

Avalanches No Possible Possible -not localised

(localised in the network) in the network)

* on neighbourhoods in Moduleco, see Table 2 below

In the first extreme case (a), there are no relations between agents (Mod-
uleco: “empty” neighbourhood). In this case, the aggregate demand is inde-
pendent of the structure and no external effect (local or global) is present.
The agents are independent one from the other.

In the second extreme case (c), all agents are connected by direct relations
in the system (Moduleco: “world” neighbourhood). All agents are equivalent
in the network and they interact by means of global interactions. In this way,
the aggregate demand is sensitive to the global external effect initiated by
the sensitivity of agents to the choices of others, but remains independent
of the topology of the network (because the neighbourhood of each agent is
composed of all the other agents). Thus, avalanches are not localised on the
network but appear in a dispersed way within the system.

Finally, the intermediate case (b) corresponds to situations where agents
have specified relations (regular neighbourhood or not). The agents are not all
directly connected, one to the other. Interactions are local and the topology of
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the interpersonal network influences the aggregated demand on the market.
This local interdependence gives rise to localised avalanches on the network.

Table 2. Neighbourhood in Moduleco [112]

In Moduleco, all relationships between agents are supported by specific Medi-
ums. Such classes define how agents interact and how they are connected to-
gether. For example, NeighbourMedium allows Moduleco to define the set of
neighbours an agent can have. Once his neighbourhood defined, an agent can
invoke the services of his neighbours, such as getting specific information, for
instance. Neighbours have specific subclasses for each specific topology such as
WorldZone (all agents in the grid), NeighbourVonNeuman (North, South, East
and West agents of the current agent on a grid) and Neighbour8 (the 8 closest
agents on a circle). As a result, the communication topology is defined by the
Neighbourhood. The grid is just an easy way to represent agents on a screen
(that is offered by default, but that can be changed, as usual). For heuristic
purposes, a circle representation is available, useful for the one-dimensional,
periodic lattice.

WorldZone NeighbourVonNeuman NeighbourMoore BoundedRandomZone

A random neighbourhood is also available like with, for instance, a Bounde-
dRandomZone topology. A dynamic neighbourhood is also available, for in-
stance with random pair-wise coupling at each step or neural network acti-
vation of virtual links. Finally, it is possible to perturb a regular network by
rewiring some links, in the way of the so-called “small-worlds”

2.2 Network structure: regular, random and “small-world”

Following an important body of literature in the field of socio-psychology
and sociometrics, initiated by Milgram [72], the “six degrees of separation”
paradigm of a “small-world”, Watts and Strogatz [103] proposed a formal-
isation in the field of disordered systems. The original Watts and Strogatz
(WS) small-world starts from a regular network where n agents are on a cir-
cle (one-dimensional, periodic lattice) and each agent is linked with his 2k
nearest neighbours.

In the WS rewiring algorithm, links can be broken and randomly rewired
with a probability p. In this way, the mean connectivity remains constant,
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Fig. 1. Regular, random and “small-world” networks

(a) Regular network (b) Regular network (c) Random network (d) Small-world
connectivity k = 6 full connectivity connectivity constrained k = 4; 3 links rewired

but the dispersion of the existing connectivity increases. For p = 0 we have
a regular network and for p = 1 a random network. Intermediate values
between 0 and 1 correspond to the mixed case, where a lower p corresponds
to a more local neighbour-dependent network. The version of the algorithm
implemented in Moduleco took h nodes, broke i links for each of these nodes
and randomly rewired the broken links with other nodes. The parameter
q = hi

n here plays a role analogous to the one of p.
A large range of small-world properties is now well known [101,102,77].

Barthelemy et al. [12] provide a typology of small-worlds, with related proper-
ties, including both Watts-Strogatz and some varieties of “scale free” topolo-
gies [10,11].

Following Watts [101], Barthelemy et al. [12] and Holme [49], two main
structural indicators characterise a network through both the local and global
dimensions of its connectivity. These indicators use the language of graph
theory [13,18]. Accordingly, each node (agent) is called a “vertex” and each
link an “edge”. The connectivity of a vertex is the number of edges attached
to the vertex.

The first indicator is the clustering coefficient C, defined as the average
ratio of the number of existing edges between neighbours of a vertex to the
maximum number of possible edges. In a fully connected network C = 1;
in a random network C �< k > /n. In contrast, small-world networks have
values of C of the same order of magnitude as those of regular lattices.

The second important indicator is the characteristic path length L. This is
the average value of the shortest path length d(i, j) between all possible pairs
of vertices (i, j). For a random network and a small-world (with 0.001 <
p < 0.01), the value of L behaves as L ∼ ln(n)/ ln(k), while for a regular
lattice L ∼ n/(2k), where n is the number of vertices and k is the average
connectivity of the network.

Watts et Strogatz [103] have underlined that many real networks have a
small characteristic path length as in the “six degrees of separation” of Mil-
gram, and a high clustering coefficient (Table 3). In the Kevin Bacon Graph,
vertices are actors in IMDb (http://www.imdb.com); an edge between two
actors means that both have acted in a specific movie. In the Western States
Power Grid, edges are high-voltage power lines and vertices are transformers,
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Table 3. “Small-world” in the real world: social, technical and biological networks

Kevin Bacon W.S.Power Grid C.Elegans Graph

225 226 4941 282

k average connectivity 61 267 14

L characteristic path length 3,65 18,7 2,65

C clustering coefficient 0,79 0,02 0,08 0,28
Source: [49] http://www.tp.umu.se/∼holme/seminars/swn.pdf

generators, etc. The C. Elegans Graph describes the neural network of the
Caenorhabditis Elegans worm, with nerves as edges and synapses as vertices
[49].

In economics, the small-world architecture has been applied by Jonard to
bilateral games [51,52], and to knowledge and innovation diffusion processes
(with Cowan et al. [28,29]). Market models have been developed by Wilhite
[108], among others.

2.3 Modelling the individual choice in a social context

This model deals with the simplest discrete choice problem (Anderson et al.,
[2]): binary choice. Analytical results presented below follow a companion
paper by Nadal et al. [74] 1. The present paper focuses more specifically on
dynamic aspects, including effects depending on the network architecture.

We consider a set ΩN of N agents with a classical linear willingness-to-pay
function. Each agent i ∈ ΩN either buys (ωi = 1) or does not buy (ωi = 0)
one unit of the single given good of the market. A rational agent chooses ωi

in order to maximize his surplus function Vi:

max
ωi∈{0,1}

Vi = max
ωi∈{0,1}

ωi(Hi +
∑
k∈ϑi

Jikωk − P ), (1)

where P is the price of one unit and Hi represents the idiosyncratic preference
component. Some other agents k, within a subset ϑi ⊂ ΩN , such that k ∈ ϑi,
hereafter called neighbours of i, influence agent i’s preferences through their
own choices ωk. This social influence is represented here by a weighted sum
of these choices. Let us denote Jik the corresponding weight i.e. the marginal
social influence on agent i, of the decision of agent k ∈ ϑi. When this so-
cial influence is assumed to be positive (Jik > 0), it is possible, following
Durlauf [35,36], to identify this external effect as a strategic complementarity
in agents’ choices [22,27].

Formally, if we define the social influence component by a continuous C2

function: S(ωi, ω−i) where ω−i is the vector of the neighbours’ choices :

S(ωi, ω−i) ≡ ωi

∑
k∈ϑi

Jikωk (2)

1 available at: http://www-eco.enst-bretagne.fr/∼phan/papers/npgweiha2003.pdf
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the social influence component in specification (1) appears to be a restriction
of (2) at binary arguments {0, 1}. In the continuous case, the marginal social
parameter Jik appears to be the second order cross-derivative of S(ωi, ω−i)
with respect to ωi and ωk, according to the definition of strategic comple-
mentarity:

∂2S(ωi, ω−i)
∂ωi∂ωk

= Jik > 0 (3)

For simplicity, we consider here only the case of homogeneous influences,
that is, identical positive weights Jik = Jϑi for all influence parameters in
the neighbourhood of i. That is, if Nϑi denotes the number of neighbours of
agent i, we have :

Jik = Jϑi ≡ J/Nϑi > 0 ∀i, k ∈ ΩN (4)

For a given neighbour k taken in the neighbourhood (k ∈ ϑ), the social
influence is Jϑi if the neighbour is a customer (ωk = 1), and zero otherwise.
Individual influence is inversely proportional to the size of the neighbour-
hood. As the cumulated social effect is the sum of individual effects over the
neighbourhood, social influence depends on the proportion of customers in
the neighbourhood. In a regular network (Nϑi constant and equal to Nϑ for
all i ∈ ΩN ), all individual effects have the same magnitude over the network
(equal to: Jϑ ≡ J/Nϑ). Conversely, in a small-world network or in a random
network, the magnitude is inversely proportional to the size Nϑi of the given
neighbourhood.

Depending on the nature of the idiosyncratic term Hi, the discrete choice
model (1) may represent two quite different situations 2. In this paper, each
agent is assumed to has a willingness to pay that is invariable in time, but
may differ from one agent to the other. As consequence, private idiosyncratic
terms Hi are randomly distributed among the agents at the beginning, but
remain fixed during the period under consideration. It is useful to introduce
the following notation:

Hi = H + θi, (5)

2 Following the typology proposed by Anderson et al. [2]), we distinguish a “psy-
chological” and an “economic” approach to individual choice. Within the psycho-
logical perspective (Thurstone (1927- the TP case -), the utility has a stochastic
aspect because: “there are some qualitative fluctuations from one occasion to the
next ... for a given stimulus” [97]). In this paper, our approach is closer to the
McFadden [69] one, in which each agent have an idiosyncratic willingness to pay
that is invariable in time, but non observable by the seller. In a “risky” situation
the seller knows the statistical distribution of this characteristic over the popu-
lation before social influence (McF case). However, stochastic utility is closer to
the BBD generic model of interaction [35,17,21]. For a comparison between the
TP case and the McF case, see [74,86,98]
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and to assume that the θi are logistically distributed with zero mean and
variance σ2 = π2/(3β2) over the population. This assumption implies:

lim
N→∞

1
N

∑
i

θi = 0 and lim
N→∞

1
N

∑
i

Hi = H (6)

For a given distribution of choices in the neighbourhood and for a given price,
the customer’s behaviour is deterministic. An agent buys if :

θi > P − H − Jϑ

∑
k∈ϑi

ωk, (7)

In the full connectivity case (global externality), it is convenient to iden-
tify a marginal customer, indifferent between buying and not buying. Let
Hm = H + θm be his idiosyncratic willingness to pay. This marginal
customer has zero surplus (Vm = 0), that is:

θm = P − H − J

N − 1

∑
k∈ϑ

ωk. (8)

In this case, an agent buys if: θi > θm and does not buy otherwise.
As underlined by Nadal et al. [74] and Phan et al. [86] this model is for-

mally equivalent to a “Random Field Ising Model” (RFIM), intensively stud-
ied in statistical physics [41,92], and several variants of it have already been
used in the context of socio-economic modeling (Galam et al. [42]; Orléan [78];
Bouchaud [19], Weisbuch and Stauffer [107]). This model, which describes the
properties of many different physical systems, has been studied for various
network architectures. It is also very interesting for its non equilibrium prop-
erties, with avalanches as described below.

2.4 Local interdependence, avalanches and long range correlation

The term “avalanche” is associated with a chain reaction when the latter is
directly induced by modifying the behaviour of one or several other agents
and not directly by the variation in price. The price influence is only indirect.

For example, if a price variation (p1 to p2) induced a simultaneous but
independent change of two agents i and j (connected one to the other or
not), the mechanism is directly related to the price and is independent of
the network. If on the other hand the price variation induces the behaviour
change of agent i, and therefore, because of the behaviour change of agent i
(price does not change), agent j changes his behaviour too, in that case the
mechanism is an avalanche (domino effect).

Results of numerical simulations permit us to illustrate the difference
between localised avalanches and non-localised avalanches. In a system com-
posed of 36 agents, the evolution of the number of customers is studied for
different forms of neighbourhood. In the case where agents are isolated one
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Table 4. Direct and indirect effect of prices upon individual choices

Direct effect of price Indirect effect of price
(social influence: avalanche)

from the other (Moduleco: “empty” neighbourhood), the dynamic of the sys-
tem is limited to 36 avalanches made up of only one agent. The social effect
is null and the term “avalanche” does not seem very appropriate. If agents
are connected to two other agents (Moduleco: “neighbour 2” neighbourhood),
the network is a circle. In this numerical simulation, 12 cascades are observed
and composed of the following agents: {{15}, {16}, {9, 10}, {14, 13, 12, 11},
{17}, {18, 19, 20}, {8, 7, 6, 5, 4, 3, 2}, {0, 1, 35}, {29, 28, 30}, {23, 24,
25, 26, 27}, {21, 22}, {34, 33, 32, 31}} (see Fig. 2). If the neighbourhood is
composed of 4 agents (Moduleco: “neighbour 4” ), the numerical simulation
shows 10 cascades: {{15}, {16}, {9, 10, 12, 11, 14, 13}, {7, 8}, {5, 6, 4, 3, 2,
0}, {35, 1}, {17, 19, 18, 20}, {29}, {23, 21, 24, 22, 25, 26, 27, 28, 30}, {33, 31,
32, 34}}. In these two cases, the localised effects of the avalanches are very
clear because in each one, agents who modify their behaviour are in direct
relation with the agent that precedes them.

Fig. 2. Avalanches in a periodic, one dimensional lattice with two neighbours
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In the other cases, that is, in the situation where all agents are connected
one to the other (Moduleco: “world” neighbourhood), the agent composition
of the 8 avalanches is dispersed on the network: {{15}, {9}, {10, 12, 16}, {7},
{0}, {5, 23, 29, 35, 19}, {20, 2, 3, 4, 24, 13, 14, 25, 28, 6, 17, 18, 26, 33, 8, 11,
30, 32, 1, 27, 21}, {22, 34, 31}}. The local interdependence is replaced by a
global interdependence.

It should be noted that the size of the largest avalanche is more signifi-
cant in the last case (21 agents) where all the agents are connected one to the
other. In fact, the number of cascades decreases with the size of the neigh-
bourhood, while the size of the largest cascade increases. By widening the
interdependence, the communities of agents belonging to the same avalanche
tend to join and thus to extend.

The widening of the neighbourhood has several effects when the agent
has an average willingness to pay:

. . . If, in his initial neighbourhood, he is surrounded by agents with a
small willingness to pay, he is likely to purchase the goods late (relatively
small price). Increasing the number of neighbours decreases the risk of ap-
pearance of this kind of “frozen zone” . The mechanism is similar to that of
the threshold of exposure of Valente (1995), mentioned above. In his initial
neighbourhood, the agent buys only tardily because he is not exposed enough
to the social effect produced by his neighbours.

. . . If, in his initial neighbourhood, he is surrounded by agents who have
a very strong willingness to pay, he will buy the product rapidly (relatively
high price). Increasing the size of his neighbourhood decreases the degree of
social influence to purchase. Indeed, it is possible that his new neighbours
may not have bought the product and come to dilute the very strong influence
of the preceding neighbourhood (e.g. if the neighbourhood is composed of two
agents who both bought, then the social influence is 100% and falls to 50%
if the two new neighbours did not buy it).

Thus, the negative effects localised on the structure (frozen zone) are less
frequent when the size of the neighbourhood increases in a regular network.
On the other hand, the local positive effect can be diluted by this widening
of the neighbourhood. The distribution of individual characteristics (willing-
ness to pay) and the structural properties of the network of relations will
influence the relative importance of these two effects. Thus, to determine the
global impact, it is necessary to study the profit evolution according to these
characteristics. To isolate the structural effects, this paper concentrates on
the effect of the various forms of network (regular network and small-world)
with a logistic distribution of individual characteristics.

Figure 3 shows the evolution of the number of customers for several con-
figurations of the network. Figure 3-a shows the positive and negative effects
of local interdependence on demand. The line “world” shows the number of
customers if there are no particular local relations (all agents are connected
one to the other). The situation for isolated agents is represented by the line
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Fig. 3. Network structure and the evolution of demand

a - regular neighbourhood: positive and negative effect on the demand

b - rewired network (small world): positive and negative effect on the demand
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“empty”. Points to the left of the line “ world” correspond to cases where the
demand is higher. Conversely, points to the right are associated with lower de-
mand. Therefore, the widening of the neighbourhood has a positive effect on
demand for relatively high prices because the number of customers is higher
than for the world neighbourhood. The existence of local interdependence
has a negative effect for relatively small prices because the number of cus-
tomers is smaller than for the world neighbourhood. The existence of frozen
zones slows down the purchasing process. Nevertheless, the situation remains
better in comparison with total independence (empty) and it improves as the
neighbourhood is extended.

In figure 3-b, the existence of rewired links between agents (see Figure
4) again improves the number of customers for relatively high prices. This
small-world shape has a positive impact on demand because it decreases the
negative impact of local frozen zones via long links.

Fig. 4. Rewired networks in the numerical simulation of figure 3

a - Rewired network with neighbour = 2) b - Rewired network with neighbour = 4

(5 nodes with 1 link rewired)

Different effects of the rewired network are detailed in the case of figure 5.
The comparison is made with the situation of the regular associated network
(“neighbour2” ):

The fact that agent 29 concentrates three of the rewired links has a great
impact. In the regular network, agent 29 buys at p = 1.081, and induces
a simultaneous adoption of 28 and 30. Agents 25, 26 and 27 purchase the
product at p = 1.0767. In the rewired network, the adoption of agent 18 at
p = 1.1389 (higher price than previously) induces purchasing by agent 29
who induces the simultaneous change of 25, 26 and 28, and then, of agents
24 and 27.
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3 Aggregate demand and collective dynamics.

In this class of models, as just seen, the adoption by a single agent in the
population (a “direct adopter”) may lead to a significant change in the whole
population through a chain reaction of “indirect adopters” As a result the ag-
gregate demand dynamics present singular behaviour at the collective level,
according to those observed in RFIM studied in statistical physics. This sec-
tion first reviews such dynamic results obtained by the way of simulations
and then provides some analytical features in the special case of ”global” ex-
ternality, which corresponds to the “mean field” approximation in statistical
physics.

3.1 Avalanches and hysteresis loops in aggregate demand

In the presence of externality, two different situations - or “phases” - may
exist, depending on the price: one with a small fraction of adopters and one
with a large fraction. By varying the price, a transition may be observed
between these phases. The jump in the number of buyers occurs at different
price values according to whether the price increases or decreases (hysteresis),
leading to hysteresis loops as presented below.

If the external fields were uniform, Hi = H , for all i, the model would
be equivalent to the classic Ising model in an external field: H −P . In such a
case, one would have a first order transition, with all the population abruptly
adopting as H passes through zero from below (and vice versa). In figure 5, the
initial (decreasing) price threshold is: P = H , where the whole population
abruptly adopts. After adoption, the (decreasing) price threshold is: P =
H + J , where the whole population abruptly leaves the market. When all
customers are adopters, price variations between P = H and P = H + J
have no effect on demand.

In the presence of quenched disorder (non uniform Hi), the number of
customers evolves by a series of cluster flips, or avalanches. If the disorder is
strong enough (the variance σ2 of Hi is large - or β is small - compared to the
strength of the coupling J), there will be only small avalanches (each agent
following his own Hi). If σ2 is small enough (β large), the phase transition
occurs through a unique “infinite” avalanche, like in the uniform case. In
intermediate regimes, a distribution of avalanches of all sizes can be observed.

From the theoretical point of view, there is a singular price Pn, which
corresponds to the unbiased situation, that is, the situation where the will-
ingness to pay is neutral on average: there are as many agents likely to buy
as not to buy (η = 1/2).

Suppose that we start with a network in such a neutral state. Then, on
average, the willingness to pay of any agent i is Hi + J/2 − P , its average
over a set of agents great enough being: H +J/2−P . Thus, the neutral state
is obtained for

Pn = H + J/2. (9)
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Fig. 5. Hysteresis with uniform idiosyncratic willingness to pay

For P < Pn, there is a net bias in favour of “ buy” decisions (H+J/2−P > 0),
whereas for P < Pn, there is a net bias in disfavour of “ buy” decisions.
The main question for P = Pn, is to know whether, in this a priori neutral
(unbiased) situation,

. . . either this symmetry will reveal itself in the dynamics: starting from,
say, a majority of “ buy” decisions, the dynamics will drive the system towards
a symmetric state, with as many buyers as non buyers (where essentially every
agent follows his own bias, ωi = 1 if Hi − p > 0);

. . . or if there is symmetry breaking, where, e.g. a majority of agent will
buy even if one starts with an initial state with as many buyers as non buyers.

One result is that, in the “ mean field” analysis (valid for long range in-
teractions - or full connectivity), for a symmetric distribution of the centred
idiosyncratic willingness to pay θi, one will necessarily observe the first situ-
ation if the distribution of the θi, has a maximum at θc = 0, (Hc = H), and
the second situation may be observed for distributions showing a minimum
at θc = 0. At P not equal to Pn, it is the hysteresis phenomenon which will
be the most interesting

It is useful to consider a simple example of a simulation, using the multi-
agent framework Moduleco [83–85]. For the simulations presented below, we
have H = 1 and J = 0.5. For a given variation in price, it is possible to observe
the resulting variation in demand. The most spectacular result arises in the
case of global interactions (complete connectivity) when nearly all agents up-
date their choices simultaneously (synchronous activation regime,Modumeco
: “world”).

Figure(s) 6 shows the set of equilibrium positions for the whole demand
system over all prices, incremented in steps of 10−4, within the interval
[0.9, 1.6] under the synchronous activation regime. The relevant parameters
are: H = 1, J = 0.5, β = 10. One observes a hysteresis phenomenon
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Fig. 6. Hysteresis in the trade-off between prices and customers under synchronous
activation regime (Moduleco: Logit pseudo-random genrator, seed = 190)

a - global externality, neigh. = world b - circle, neighbours = 2

c - circle, neighbours = 4 d - circle, neighbours = 8

parameters: H = 1, J = 0.5, β = 10 - upstream (black)and downstream (grey) trajectories

with phase transitions around the theoretical point of symmetry breaking:
Pn = H + J/2 = 1.25. Figure 6a shows the details of straight hysteresis
corresponding to the “global” externality (complete connectivity). In this
case, the trajectory is no longer gradual, like in the local interdependence
case (Figure 6b-d). A succession of growing avalanches arises for P = 1.2408,
driving the system from an adoption rate of 30% towards an adoption rate
of roughly 87%, along the upstream equilibrium trajectory (with decreas-
ing prices). Along the downstream trajectory (with increasing prices) the
externality effect induces a strong resistance of the demand system against
a decrease in the number of customers. The phase transition threshold is
here around P = 1.2744. At this threshold, the equilibrium adoption rate
decreases dramatically from 73% to 12,7%. Figures 6(b-d) deal with local ex-
ternality (one-dimensional periodic lattice: the circle case) with 2 to 8 nearest
neighbours with the same parameters as in case (a) of global’ externality.

Figure 7a shows the chronology of avalanches in the case of the upstream
branch of the equilibrium trajectory, for P = 1.2407. The evolution follows
a smooth path, with a first period of 19 steps, where the initial change of
one customer leads to growing avalanches from size 2 to size 81 (6,25% of
the whole population). After this maximum, induced changes decrease in 13
steps, including 5 of size one only. Figure 7b shows a different case, with more
important avalanches, both in size and in duration (seed 40). The initial
impulsion is from a single change for P = 1.2415 with a rate of adoption
of 19,75%. The first wave includes the first 22 steps, where induced changes
increase up to a maximum of 11 and decrease towards a single change. During
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Fig. 7. Chronology and sizes of induced adoptions in the avalanche at the phase
transition under global externality

a - the avalanche for p = 1.2408 (seed = 190) b - avalanche for p = 1.2415 (seed = 40)

parameters: H = 1, J = 0.5, β = 10 Moduleco: synchronous activation regime ).

this first sub-period, 124 people change (9,6% of the whole population). After
step 22, a new wave arises with a growing size in change towards a maximum
of 94 agents both in periods 48 and 49. The total avalanche duration is 60
steps, where 924 induced agent changes arise (71% of the population - 800 in
the second wave).

As suggested previously, the steepness of the phase transition increases
when the variance σ2 = π2/(3 β2) of the logistic distribution decreases (that
is, increasing β). The closer the preferences of the agents to each other, the
greater is the size of avalanches at the phase transition (Figure 8a-c). Figure
8d shows a set of upstream trajectories for different values of β taken between
20 and 5 in the case of global externality. For β = 8, the scope of the hysteresis
is very limited, and finally, for β < 5 there is no longer any hysteresis at all.
Figure 8e shows a narrow hysteresis loop for a regular (periodic) network in
dimension one, with eight neighbours, for β = 5, while Figure 8f exhibits a
larger one (see also Figure 6c). Notes that with the same dispersion of agents,
one observes weak hysteresis for localised externality, but no hysteresis at
all with global externality (in this case with a finite number of agents ).
Finally, following results by Sethna [92], inner sub-trajectory hysteresis can
be observed in the case of this Random Field Ising Model (Figure 8f). Here,
starting from a point on the upstream trajectory, an increase in price induces
a less than proportional decrease in the number of customers (grey curve).
The return to the exact point of departure when the prices decrease back
to the initial value (black curve) is an interesting property of Sethna’s inner
hysteresis phenomenon.

3.2 Demand function for the global externality case (mean field):
analytic issues

In this subsection we restrict our investigation to the “global” externality
case with homogeneous interactions and full connectivity, which is equivalent
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Fig. 8. The trade-off between prices and customers (synchronous activation regime)

a - large hysteresis for β = 20 b - narrow hysteresis for β = 9

c - localized narrow hysteresis for β = 8 d - upstream branch with 20 ≥ β ≥ 5

e - Weak hysteresis, β = 5 f - Sethna’s inner hysteresis

sub-trajectory: [1.18 − 1.29]

Fig. (a-d): total connectivity (world) ; Fig. (e-f): circle with neighbourhood = 8

to the mean field theory in physics. Consider the penetration rate η, defined
as the fraction of agents that choose to buy at the given price, (i.e. those
with θi > θm in 8). In the large N limit, we have

∑
k∈ϑ ωk/(N − 1) ≈ η, so

that: θm ≈ z(η), where :

z(η) ≡ P − H − J η. (10)

This approximation of (8) allows us to define η as a fixed point:

η = 1 − F (z(η)) (11)

where z depends on P , H , and η. Using the logistic distribution for θi,
we have :

η =
1

1 + exp (+ β z)
(12)
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Fig. 9. Fixed points for the penetration rate (market demand for a given price):
1 − F (z) vs. η.

a - equation (12) for β = 20 b - equation (12) for β = 6

As just observed with the hysteresis loop in the previous subsection, for
given J , H and P , a multiple equilibrium value of η may appear for high
values of β (low value of σ). In figure 9a, for β = 20, we can observe the two
equilibria zones, which are included, roughly speaking, between P = 1.15 and
P = 1.35. Pn = 1.25 is the unbiased price. Within this zone, we have two
equilibria (and resulting hysteresis loop), while for a price lower than 1.15 (a
price higher than 1.35), we have a single equilibrium. In figure 9b, β = 6, we
have a single equilibrium for all values of P .

Equation (11) allows us to define the penetration rate (an index of the
global demand in proportion, without any dimension) as an implicit function
of the price

Φ(η, P ) ≡ η + F (P − H − J η) = 1 (13)

η(P ) + F (P − H − J η(P )) = 1 (14)

The shape of this (implicit) demand curve can be evaluated using the
implicit derivative theorem:

dη(P )
dP

=
−∂Φ/∂P

∂Φ/∂η
=

−f(z)
1 − J f(z)

(15)

where z defined by equation (10), is linked by (14) and f(z) = dF (z)/dz
is the probability density.

Given equations (11) and (14) , the global level of demand is :

Qd(P ) ≡ N η(P ) (16)

The resulting elasticity-price of the demand is not related to size N of the
population :

−ε(P, η) =
dη(P )
dP

P

η(P )
=

−f(z) P

(1 − J f(z)) η(P )
(17)
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Since for a given P , equation (12) finally defines the penetration rate η as
a fixed-point, inversion of this equation gives a dimensionless inverse demand
function:

P d(η) = H + J η +
1
β

ln
1 − η

η
(18)

4 The distribution of optimal asymptotic prices for a
monopolist: first investigations

On the supply side, we consider a monopolist facing heterogeneous customers
in a risky situation where this seller has perfect knowledge of the functional
form of the agents’ surplus functions and their related maximisation be-
haviour (1). He also knows the size of the population and the statistical
(logistic) distribution of the idiosyncratic part of the reservation prices (Hi).
But, in the market process, the monopolist cannot observe any of these indi-
vidual reservation prices. He observes only the result of the individual choices
(to buy or not to buy). Assume the simplest scenario of “global” external-
ity, where the interactions are the same for all customers, as in equation (4).
Thus, hereafter we limit ourselves to this case of full connectivity (n = N−1).
Then, as just seen with equation (11), the greater N is, the closer to J η is
the social influence on each individual decision. Because the monopolist ob-
serves the number of buyer, he also know η (the fraction of customers) in the
whole population. As a consequence, in the case of constant marginal cost
the monopolist can maximise indifferently the total expected profit or the
per unit expected profit, with an expected demand given by equation (11).

4.1 The global externality case

Let C be the monopolist constant cost for each unit sold, so p is his profit
per unit:

p ≡ P − C (19)

Since P − H = (P − C) − (H − C), defining:

h ≡ H − C, (20)

we can rewrite z in (10) and(11) as:

z = p − h − J η. (21)

Hereafter we write all the equations in terms of p and h.
Since each customer buys a single unit of the good, the monopolist’s total

expected profit is p N η. Thus, in this mean field case, the monopolist’s profit
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is proportional to the total number of customers. He is left with the following
maximisation problem:

pM = arg max
p

Π(p), (22)

Π(p) ≡ p η(p), (23)

where Π(p) is the per unit expected profit, and η(p) is the solution to the
implicit equation (11). pM satisfies: dΠ(p)/dp = 0, which gives:

dη/dp = −η/p (24)

Using the implicit derivative (15), we obtain at p = pM :

f(z)
1 − Jf(z)

=
η

p
, (25)

where z, defined in (21), has to be taken at p = pM .
After some manipulations, using equation (17), condition (25) is equiva-

lent to the classical Lener index of monopolist’s power:

P − C

P
=

(1 − Jf(z)) η

f(z) P
=

1
ε(P, η)

, (26)

Because the monopolist observes the demand level η, we can use equa-
tion (11) to replace 1 − F (z) by η. With a logistic distribution, we have :
f(z) = β F (z) (1 − F (z)); therefore, after some manipulations, equation
(25) gives an inverse supply function ps(η):

ps(η) =
1

β (1 − η)
− J η (27)

We obtain pM and ηM at the intersection between supply (27) and demand
(18):

pM = ps(ηM ) = pd(ηM ). (28)

The (possibly local) maxima of the profit are the solutions of (28) for which

d2Π

dp2
< 0. (29)

After some manipulations, one gets the expression for the second derivative
of the profit:

d2Π

dp2
= −2

η

p

[
1 +

2η − 1
2βp(1 − η)2

]
(30)

It is clear from this expression that any solution with η > 1/2 is a local
maximum. For η < 1/2 condition (29) reads

1 − 2η

2βp(1 − η)2
< 1. (31)

Making use of the above equations, this can also be rewritten as

2βJη(1 − η)2 < 1. (32)
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4.2 Equilibrium analysis and comparative statics

In this section we analyse and discuss the solution of the static supply-demand
equilibrium, that is, the solutions of equations (28) and (32).

To illustrate the behaviour of these equations, we represent several exam-
ples of inverse supply and demand curves in Figure 10. These curves corre-
spond to different market configurations, obtained for different distributions
of the idiosyncratic willingness-to-pay. In the absence of externality (J = 0,
dashed lines) the case h = 2 corresponds to a strong average of the popula-
tion’s willingness-to-pay. The population is neutral for h = 0, and h = −1
means that, on average, the population is not willing to buy. In all three
cases, the supply curve shrinks for increasing values of the external effect J .
When the penetration rate is low, the monopolist must lower the price to
attract new customers: the second term in the inverse supply function (27)
dominates over the first one, and the supply curve bottoms-out. Conversely,
when the penetration rate is strong, the positive effects of the externality are
dominant and the supply curve grows faster than proportionally to the price
decrease. In the same figures we represent the inverse demand and supply
curves for the threshold value β J = 4 (in the figure, β = 1, J = 4), beyond
which the demand curve has a minimum at η = 0.5. For larger values of the
external effect, the supply curve is discontinuous, with a decreasing part for
low penetration rates and an increasing one for large penetration rates. For
h = −1.9 (strong aversion to the product) equation (12) has several fixed
points, with two stable equilibria.

Fig. 10. Inverse supply and demand curves, for different values of H and J

As might be expected, the result for the product βpM depends only on
the two parameters βh and βJ . Indeed, the variance of the idiosyncratic part
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of the reservation prices fixes the scale of the important parameters, and in
particular of the optimal price.

Let us first discuss the case where h > 0. It is straightforward to check
that in this case there is a single solution ηM . It is interesting to compare the
value of pM with the value pn corresponding to the neutral situation on the
demand side (9). For this, it is convenient to rewrite equation (18) as

β(p − pn) = βJ(η − 1/2) + ln[η/(1 − η)]. (33)

This equation gives p = pn for η = 0.5, as it should. For this value of η,
equation (27) gives p = pn only if β(h + J) = 2: for these values of J
and h, the monopolist maximises his profit when the buyers represent half
of the population. When β(h + J) increases above 2 (decreases below 2),
the monopolist’s optimal price decreases (increases) and the corresponding
fraction of buyers increases (decreases).

Fig. 11. Fraction of buyers η, optimal price βpM and monopolist profit ΠM , as a
function of social influence, for βh = −2. The upperscripts − and + refer to the
two solutions of equations (28) that are relative maxima (Source: [74])
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Consider now the case with h < 0, that is, on average the population
is not willing to buy. Due to the randomness of the individual’s reservation
price, Hi = H+θi, the surplus may be positive but only for a small fraction of
the population. Thus, we would expect that the monopolist will maximise his
profit by adjusting the price to the preferences of this minority. However, this
intuitive conclusion is not supported by the solution to equation (28) when the
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social influence represented by J is strong enough. The optimal monopolist’s
strategy shifts abruptly from a regime of high price and a small fraction of
buyers to a regime of low price with a large fraction of buyers as βJ increases.
This behaviour is analogous to what is called a first order phase transition
in physics [93]: the fraction of buyers jumps at a critical value of the control
parameter βJc(βh) from a low to a high value. Before the transition, above
a value βJ−(βh) < βJc(βh) equation (28) already presents several solutions.
Two of them are the local maxima of the monopolist’s profit function, and
one corresponds to a local minimum. The global maximum is the solution
corresponding to a high price with few buyers for βJ < βJc, and that of a
low price with many buyers for βJ > βJc. Figure 11 presents these results
for the particular value βh = −2, for which it can be shown analytically that
βJ− = 4, and βJc ≈ 4.17 (determined numerically).

The discussion of the full phase diagram in the plane {βJ, βh} is presented
in [74].

4.3 Local neighbourhood: the case of h > 0 and constrained
rewiring

The preceding discussion only considers fully connected systems. The the-
oretical analysis of systems with finite connectivity is more involved, and
requires numerical simulations. The simplest configuration is the one where
each customer has only two neighbours, one on each side. The corresponding
network is a ring, and has been analysed numerically by way of Moduleco.

Preliminary simulations hold for the case of h > 0. Results in Table 5
show that the optimal monopolist’s price increases both with the degree of
the connectivity graph and the range of the interactions (in particular in the
case of small worlds). Different sets of buyers’ clusters may form, so that it
is no longer possible to describe the externality with a single parameter, like
in the mean field case. Further studies in cognitive economics are required in
order to explore the possible behaviour of monopolists in such situations.

5 Conclusion

In this paper, we assume a positive (additive) effect of the social influence
upon willingness to pay. Heterogeneous agents have a fixed idiosyncratic part
in this willingness to pay, unobservable by the monopolist. Numerous mod-
els of social interaction often used in economics have an additive random
(logistic) part in their willingness to pay [35,21,17,50,86], which corresponds
for physicists to a case of ’annealed’ disorder. With fixed agent’s hetero-
geneous idiosyncratic characteristic, the model is equivalent to the ’Random
field Ising model’, belonging to the class of ’quenched’ disorder models widely
studied by physicists. These two classes of models generally differ, except in
the special case of homogeneous interactions with global interactions. In this
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Table 5. Average distribution of optimal equilibrium pricing (downstream) over
100 simulations

1296 Agents optimal price customers profit penetration rate q

no externality 0,8087 1135 917,91 87,61%

Neighbour2 1,0259 1239 1 271,17 95,62%

Neighbour 4 1,0602 1254 1 329,06 96,74%

N.4 - 130x2 1,0725 1250 1 340,10 96,43% 5%

N.4 - 260x2 1,0810 1244 1 344,66 95,98% 10%

N.4 - 520x2 1,0935 1243 1 358,86 95,89% 20%

N.4 - 780x2 1,0959 1242 1 361,43 95,86% 30%

N.4 - 1296x2 1,1017 1237 1 362,35 95,42% 50%

Neighbour 6 1,0836 1257 1 361,48 96,96%

N.6 - 130x2 1,0941 1253 1 370,91 96,70% 3%

N.6 - 260x2 1,0997 1252 1 376,78 96,61% 7%

N.6 - 520x2 1,1144 1247 1 389,05 96,19% 13%

N.6 - 780x2 1,1210 1240 1 389,53 95,65% 20%

N.6 - 1296x2 1,1308 1241 1 403,03 95,74% 33%

N.6 - 1296x4 1,1319 1240 1 403,02 95,65% 66%

Neighbour 8 1,1009 1255 1 381,89 96,86%

Neighbour 8 130 x 2 1,1049 1251 1 381,92 96,52% 3%

N.8 - 260 x 2 1,1169 1249 1 395,43 96,41% 5%

N.8 - 520 x 2 1,1306 1245 1 407,20 96,05% 10%

N.8 - 780 x 2 1,1370 1243 1 413,27 95,92% 15%

N.8 - 1296x2 1,1461 1238 1 419,28 95,56% 25%

N.8 - 1296x4 1,1474 1239 1 421,97 95,63% 50%

N.8 - 1296x6 1,1498 1238 1 423,84 95,56% 75%

world 1,1952 1224 1 462,79 94,44%
Scale-free Small-world added in an updated version of this paper available at:

http://www-eco.enst-bretagne.fr/∼phan/papers/ppn2003.pdf

special situation, which corresponds to mean-field approximation in physics,
the static (long run) optimal solution is the same in both models [74,86].

In the Random field case, studied here, since the distribution of agents
over the network is random, the resulting organisation is complex. ACE Com-
putational Laboratories Moduleco provides a useful and friendly framework
for to model, investigate and understand the dynamics of such complex adap-
tive systems. The strategy followed here is to use ACE as a complement to
the mathematical theorising, rather than a complete substitute [8].

In the model presented here, the optimal asymptotic monopolist price
is known analytically in two polar cases: without externality or with global
externality. Analytical results may be possible for the homogeneous regular
case, but in more general cases (including the so-called “ small world”, char-
acterised by both highly local and regular connections and some long range,
disordered connections), numerical (statistical) results are often the only pos-
sible way. In this preliminary paper, in silico experimentation is closer to
classical Monte-Carlo simulation than real cognitive multi-agent modelling,
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but this limitation will be overcome in the future. However, present results
allow us to observe numerous complex dynamics on the demand side, such
as hysteresis, avalanches or Sethna’s inner loop hysteresis. As a result, in
the case of regular networks and a fortiori in the case of small worlds, the
seller’s problem is generally non trivial, even in the case of risk, where the
seller knows all the parameters of the customer’s program and the initial
distribution of the idiosyncratic parameters.

Given this results, ACE will allow the basic model to be extended in dif-
ferent way beyond this preliminary study, in particular by including belief
revision in the agents’ capacities, on both the demand and supply side. Inter-
esting challenges in this learning program include network structure learning
by the monopolist and evolving networks, dynamic pricing with exploration-
exploitation arbitration, which raises the question of the non-stationary en-
vironment of both the upstream and downstream trajectory, and Coase con-
jecture in the case of durable goods (non-repeated buying) among other in-
teresting economic questions.
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