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Abstract:«In this paper we show how it is possibleto construct atheory of preference evolution from a
model of economic growth under uncertainty. Our starting point is the Solow-Merton model of growth
under uncertainty. We use stochastic dynamic equations that we derive from this growth model to
construct a model of preference evolution froma von Neumann-Morgenstern expected utility model of
consumption for a representative agent. We show that the dynamics that describe the change in the
representative agent’s preferences, lead to a canonical representation of preference, which is given by
the Fokker-Planck equation for consumption. We then provide a characterization of possible boundary
conditions for the Fokker-Planck equation. We then show how it possible to use some of these
boundary conditions to derive a steady state distribution for consumption from this evolution equation
for preferences. This steady state distribution of consumption can then be used to solve the Ramsey
problem of optimal savings under uncertainty, giving an equivalent result to that derived in Merton’s
paper. Hence, the Solow-M erton Neo-Classical growth model is aspecia case of our model.
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1. Introduction

In an evolving economy new commodities are created with the passage of time.
Preferences for novd commodities will not be defined, unless economic agents have
previoudy imagined these commodities. These commodities will not appear from
nowhere. They must be produced and tey must be produced by labour, which will in
turn eventualy consume some of these novd commodities. Consequently the cregtion
of new commoditieswill depend upon and lead to the evolution of preferences.

This paper begins by re-examining the stochestic extenson of the Solow’s (1956)
exogenous growth modd (Bourguigon 1974, Meton 1975, Chiang and Madliaris
1987). The usud path taken by the deterministic exogenous growth literature is to
characterise which vaues of the growth equation’s parameters lead to stable growth
paths. However, when uncertainty is incorporated into the exogenous growth modd,
the posshle growth paths are redizations given by a sequence of random variables.
Each redization in the growth path is determined by a digtribution that is conditiond
on the prior higory of the growth path. This conditiona digtribution is given by the
Fokker-Planck equation for the capital-labour ratio.

For example in the dochadgtic extenson of the Solow’'s (1956) exogenous growth
model (Bourguigon 1974, Merton 1975, Chiang and Madliaris 1987), the solution of
Fokker-Planck eguation is used to derive the steady <State condition for economic
growth, i.e. the digribution on which the probabilities converge asymptoticaly. The
dandard gpproach is to derive a dochedtic differentid equation describing the
dynamics of cgpitd accumulation in terms of the cepitd-labour ratio. The Fokker-
Planck equation that provides equivaent representation of this stochedtic differentid
equation can then be used to derive asymptotic didributions for income and
consumption.

In this paper, we begin with a one-sector stochastic exogenous growth modd as
formulated by Merton (1975). From this modd, we derive a sochadtic differentid
equation describing the dynamics of capitd accumulation in terms of the capita-
labour ratio as a function of savings and stochastic changes in labour productivity.
This changing nature of labour is captured as a branching process. The intent is to
capture two effects: ahuman capita effect and composition of labour effect.

It is argued that labour is embodied with human cepitd. In this paper certain classes
of labour are “hardwired” with paticular skills, new commodities can only be
generated if the compostion of labour changes in order to imagine novel products.
Innovations to the type of labour employed in production then lead to a stochastic
representation of production and consumption and an interpretation of preferences as
aprobability of consuming a particular consumption bundle.



From this stochadtic differentiad equation describing per-capita change in capita, we
then derive a dochegic differentid equation for consumption The equivdent
representation is then the Fokker-Planck equation describing the probabilistic change
in the consumption path. One interpretation of this Fokker-Planck equation is that in a
dynamic, ever-changing world the probability densty of consumption, captures the
likelihood of consuming a particular consumption bundle in the next time period. The
change in the likdihood of this consumption is in turn driven by changes income via
changes in the compasition of production.

However this explanation does not explan the rdaionship between preference
evolution and the likdihood following a particular consumption path Our darting
point for this is the derivaion of a von Neumann-Morgenstern expected utility model
of consumption for the representative consume. Our main result is a representation
theorem showing that the partid differentid equation describing the change in utility
with respect to time is equal to the Fokker-Planck equation for consumption.

Hence the Fokker-Planck equation for consumption provides a canonica
representation  for the evolution of preferences. In this representation, current
consumption behaviour is conditioned on previous purchases. Our interpretetion of
preference evolution in this representation ascribes the change in current consumption
behaviour as being due to changes in likedlihood to consume, with respect to changes
in key undelying variadles. The change in preferences over time will therefore
describe the likdly path of consumption.

This path of consumption should be subject to boundary conditions on the feasble
consumption set. These boundary conditions will be determined by physcd,
behaviourd, economic and inditutiond condraints. In this paper we provide a
characterization of the Fokker-Planck eguation subject to different boundary
conditions on the feasble consumption set. We explan how these boundary
conditions can be used to place consumption condraints on the consumer. In doing
this the possble impact on economic growth of behavioura phenomenon like fashion
cycles or theimpact of resource congraints on consumption and growth.

In this paper we use the boundary conditions that are proposed by Merton (1975) to
secure a unique solution for the dtationary distribution for the Fokker-Planck equation
of the capitd-labour raio. As is shown by Merton (1975) this asymptotic distribution
on the capita-labour ratio can be used to provide a solution to the stochagtic Ramsey
problem. Moreover, because the solution to the Fokker-Planck eguation is a steady
date solution, it does not depend on time. As a consequence, the dynamic optima
savings problem can be solved using static optimisation techniques.

We show that the deady doate solution of the Fokker-Planck equation, when
ubdtituted into the infinite horizon Ramsey modd, gives an identicd solution to that
provided by Merton (1975). This leads to our conjecture thet the consumption/savings
acribed by the Ramsey (1928) modd under the Solow-Merton exogenous growth



dynamics, is a speciad case of the consumption behaviour that can be described under
our theory of growth with preference evolution.

2 Solow-M erton Model of Growth Under Uncertainty

We begin by deriving a one-sector stochastic Neo-Classica growth model. Production
Y (t)=F(K(t),N(t)) a time tT[0,¥) in the one-sector economy is modelled s a
function of capitd K(t) and labour productivity L(t). Production technology is
defined by the production function F(.,)1 CZ(R2+’ [O,¥)). We follow Merton

(1975) and assume the following:
) R, Fy >0, R, Fyy <0,F >0,

i) F(I K,I N)=1 F(K,N), | >0.

Based on Merton (1975), we assume that the labour force L(t) consigts of a finite
number of individud workers, i=1,..,N(t). A branching process is used to mode
labour productivity of each worker
L (t+h) =nh+sh(t;h) +ne (t;h), i=1..,N(t),tT (0¥]

where n, s and n, are constants and h(t;h) and e (t;h) are random variables. We
asumethat E (h) =E,(n,) =0 and E (h?) = € (n*) = h and that

E(hni):E(ninj):O, it j,i=1,.,m
and h(t; h) is covariance stationary

E (h(th)h(t+knh))=0, k=12,...

The stochadtic differentid equation for labour productivity can be derived as follows
N(1) N(t)
N(t+h)- N(t)=4 L (t+h) = N(t)(nh+sh(t;h)) + & ne (th), tT (0¥].
i=1 i=1

The conditional mean and variance for this equation is given as follows:

£, @{t+h)- N{)g=N(])
ad

var, gN (t +h) - N(t)g:aeN (t)%%N(t)?%n{ niz/N(t)?Sh, t1(0¥].
& &<, %
We asume that the n, ae bounded and approximately the same sze so that

& "nz/N(t)zo().

=1

We can see that under these assumptions labour productivity can be approximated by
the stochadtic differential equation (SDE)

dN (t) = N(t) (ndt +s dw/(t)),



where n is the determinigtic trend component, s governs the rate of diffuson and the
noiseterm W (t) isaWiener process dW (t) ~ N (0,dt), tT [0,¥).

We note that under this framework, a number of dterndaive digtributions could be
used to mode the branching process governing individuad worker productivity. Two
possible examples that could be used are a Poisson birth-death-migration process and
an Ehrenberg urn process. The Poisson birth-death-migration process would capture
the churning effects due to job creation and destruction and worker migration. The urn
process would model path dependence in the hiring process of firms. Both of these
processes could be used to provide a new type of endogenous growth theory.

With respect to the assumptions we have employed in this paper, our interpretation of
the behaviour of the branching process is as follows. This branching process for
individua labour productivity may be interpreted as follows. Labour is embodied with
human cepitd. If labour is “hardwired’ to imagine particular commodities, new
commodities can only be generated if labour somehow changes in order to imagine
novel products. Hence labour productivity will vary over time for each individud and
we can asociae each individud with a particular skill st and ability to imegine
technologica production possibilities

We modd the dynamics of capita accumulation as follows

dK (t) =(1(t)+d K(t)) dt, tT[0¥)
where |(t)dt is the change in the stock of invesment and d K(t)dt is the
depreciation on capita stock.

As the production function F is linear homogeneous, per capita output can be defined
as

y(t)=WF(K(t),N(t))=f(k(t)), t1[0¥)
where k(t)=K(t)/N(t) is the capitd labour ratio. The stochastic dynamics of
k(t), tT[0,¥) can bederived using Ito'slemmato yield the following SDE
ok(t) =(sf (k (1))~ ((d- n)- s2)k(t))ct+sk(t)aw(t), tT [0,¥)
where sl (O]] is the margind propendty to save. This is the Solow-Merton growth

equation. Here we let
m(k(t):s)=(sf (k(1))- ((d- n)- s2)k(t))

s (k(t);s) =sk(t), sT(0,3,t7[0¥).

and

Per capita consumption is defined via the Keynesan demand identity asfollows,

c(t) =c(k(t);s)=(1- §) f (k (1)), tT[0,¥).



When taken together the vector process {(k.g):tT [0,¥)} defies the feasble
growth peth for the economy. Combined with the initid conditions (ko,co), the vector
process gjves defines the admissible growth path subject to Pr{k(0) = k;} > 0.

3 A Canonical Representation for the Evolution of Preferences

In this section we derive a canonicd representation for the evolution of preferences.
This result gives equivaence between the time derivative of expected utility and the
Fokker-Planck equation of the underlying stochastic process. Hence the Fokker-
Panck equation for consumption literdly gives the evolution of preferences in this
stochagtic economy.

We now date our result in the form of a representation theorem for preference
evolution:

Theorem 3.1.(Canonical Representation Theorem) The von Neumann-Morgenstern
expected utility function for the representative agent is defined as follows:

U(c(t) = E @u(c(t) g= ch(x) p(c(t) =x)dx,
where Pr{c(t) = ¥ = p(c(t) =x), xI C with C as the feasible consumption set. If
u()T c*(ci R,),then
)l _T . _
ﬁu (q)—ﬁ(}cu(x) p(c = x| ¢)dx
is equal to the Fokker-Planck equation of the stochastic process {c(t);t T [0,¥)} :

%p(ct:zms):-?é%(k(t);s)n(k(t);s)+1b(k(t);s)32(k(t), ) ‘ﬂlp(ct =z|c,)
2ak:9)s (k(0):9) L ple = 21c).

Proof: We begin by goplying Ito’s lemma to the equation for per capita consumption.
We express this SDE for per capita consumption as follows:

de(t) =§%1(k(t) :s)m(k(t); 9) +%b (k(t);9s2(k(1); s)gdt

+a(k(t):s)s (k(t);s)dw(t), tT[0¥).
The coefficients in this SDE are respectively defined as

a (K(1),a) = ((1- s(k(t).a) (k1)) £(k(})s)
b(k(t).a) =((1- s(k(t).a)) fak(t))- (2 k(1)) s, + F (k( D) 5))-

and



We assume the exigence of a representaive agent. We define an equation for the
representative agent’'s von  Neumann-Morgenstern  expected  utility  function as

follows:
U (c(t) = E &(c(t) g= g u(x) p(c(t) = x) o,
where Pr{c(t) = ¥ = p(c(t) =x), xT C with C asthe feasible consumption st.

The differentid equation describing the evolution of preferences can now be derived
asfollows

%QCU(X)p(Q =X| Q)dx:g&éqcu(x){ p(ct+Dt :X|Cs)' p(q — chs)} dx
Ley §.uple.a =xla = p(s =21q) dr

- Q. u(@p(c =2l¢)dz,
where p(c, =x|c,)=Pr{c =x|c}, x1 C, is the condition probability of consuming
C, = X atimet giventhat c, wasconsumed & times, S£t.

We now divide the integral over x into two regions, |x- z3 e and |x- Z<e We
assume that the utility function u() is twice continuoudy differentisble with respect
to c. Hence for the region |x- z<e this alows us to construct a second-order Taylor
expansion of u(.) with respect to z

u(x) =u(2) +uq 2 (x- 2) +ut(z)(x- 2)* +|x- 2|’ R(x,2),
where R(x,z) denotes the higher order remainder term. We note that |R(x,z)| ® 0 as
|x- z|® 0.

Subgtituting this into the preference evolution equation, we arive a the following
expanded verdgon of this equation:

%ch(x) (c -xlcs)dX—llm—gxglge(u@( )(x- 2)+ue(z)(x- 2]

(Ct+|:x_X|Ct— )p —Zle)dZdX
+ (\]\)|X_ Z|2 R(X’ Z) p(Ct+Dt x|g = Z)D(C = Z|C)dZdX

|x- 4<e

+ @ U(2)p(c.n =xI6 =2)p(c = 2| ¢)dzdx
|x-g<e

+ @D U(¥ (6 =xlq =72 p(q = 2z|c,)dzix
e

-Qu(2)p(c =2l¢)dzl



We note that by assuming uniform convergence we can take the limit ingde the
integrd As a consequence, we get the following

u
lim m> e(Du(I( 2)(x- 2)p(c.p = x| =2)p(c = z|c,) dzaxd
D& 3ec b

= ()G k(1) m{k(0): ) + 50 (k(0):9)s (k(0): 937 ple =zl c)ce

1? 2 u
lim OEQCD ud(z)(x- 2° p(c.o = xlc =2)p(c =z| ¢)dzdxa
B 4<e ¢!

1. |
:ona(z)(a(k(t);s)s (k(t);s))zﬁp(ct = z|c,) dz.
We dso note that the remainder term on the third line of the consumption evolution
equation vanishesas e ® 0 because
1
lim= @ [x- z[ R(x,2) p(c.o =x|c, =2) p(c, = z|c,) dzcix

[x- z|<e

1 u
£eI|m— ® 1x- 2 p(c.q =x|¢ = z) dzdxiimax

gD e gt

R(x,2)|® (b(kt)+O(e)) max

[x- 4<e

R(x,z)|

The remaining three lines of the expanded preference evolution eguation can now be
givenas

0. u( sz (W x|2) p(x|c,)- W(x|z)p(z|cs))dzdx.

Upon integrating by parts, the preference evolution equation then reduces to

10 0P (& =x16) o= ¢y R K():) k(0 + 5 (k{0 )5 (k{0 002
-g(a(k(t):s)s(k(t):s))zﬂ“—;u(z)gp(q:z|cs)dz

+QCU(Z)dZQC(W(X| z) p(x|c,)- w(x|2) p(Z|CS))dzdx,

We then differentiate the preference evolution equation with respect to z and cancel

the utility functions. Following the terminology of Gardiner (1985), we then arive a
adifferentiable Chapman Kolmogorov equation



%D(CFZICS) O cge ()9 m(K(1):9)+ b (k(t): 937 (K(1): 92 p( = 2l

29z
2 k(095 (k)" ple =1c)

+ Q) (w2l p(xlc,)- w(xI2) p(2l ) dx

The third line of the differentiable Chgpman-Kolmogorov equdtion is a Martingde
difference egquation and as the noise w is Brownian, by definition this will be equd to
zero

QC(W(Z|X) p(xlc,)- w(x|2)p(z|c,)) dx=0.

Hence we arrive at the Fokker-Planck equation for consumption

2p(c = z1c.) =- g (k(0): m{Kk(1): 9 +3b(k(1); )5 *(K(1): S Pl =21c)

e le(0: 5 ((0): ) L ple =21c.).

?

4. Boundary and Barrier Conditions on the Feasible Consumption Set

We recdl that for the definition of the von Neumann-Morgendern utility function we
defined a feasible consumption set

xI CI R,.
This st defines a region of sate space that is determined by culturd, legd, economic

physca and behaviourd condraints. In other words, “You can only consume <O
much.”

Given that this is the important question to ask is “How much do we consume?’ The
nature of the barriers on the consumption set will determine this. Hence the barriers
on the consumption set will determine steedy State preferences.

The Fokker-Planck equation for consumption is expressed as

g (6 = 216) = G (k(ts g m{k(0)s] + 5 (K5 * (0l plc =21c)

g9z

2{alk:9)s (k):9) e ple = 21c),

We note that Fokker-Planck equation can aso be written as



where

isapotentid difference equation.

The integrd form of the Fokker-Planck equation is equivaent to a surface integrd on

the feasble consumption set C (see Gardiner 1985, p.119)
1 _ a
ﬁp(R|cS)—-qsn>«/(z,t)dS,

where S is the boundary set of the st Rl C and n” S. Hence another way of

understanding the Fokker-Planck equation is as a net flow of probability across the

consumption set cgpturing the evolution of preferences.

Some examples of boundary conditions that would be of interest to economics are
now given.

Example 4.1. (Reflecting Barrier) Consider the situation where z cannot leave a
region Rl C. Let Sdefine the barrier. Thus we require that
n¥/(z,t)=0, "zl S;n* S

This would the case where there was a budget constraint restricting inter-temporal
consumption. In this case, the orthogonal vector n gives the vector of prices. A similar
condition to this underlies the selection of prices in static consumer choice theory.
Alternatively, a reflecting barrier could be used to find a minimum sustainable
consumption level.

Example 4.2. (Absorbing Barrier) In this situation, when z reaches the barrier S it
is removed from the consumption set, i.e.

p(z,t)=0, "z1 S.
This would be the when the bundle of goods is outside the consumption space.

Example 4.3. (Periodic Barrier) This is the case of periodic consumption cycles. A
typical example is seasonal fluctuations associated wth seasonal goods. A subtler
example is fad goods with long period cycles, such as the yo-yo. These boundary
conditions are expressed as follows

i).lim p(x,t) = lim p(x.t)
X® b x® a*
||).L13rpv(x,t) =XI(|@rl]V(x,t),
where[a,b] 1 C definetheinterval onwhich the boundary is defined.



5. Evolution of Preferences and the Ramsey Model of Optimal Savings

As in the previous section, we define the expected utility derived from consumption at
timet by

Ueft) = Egi(c())d= g, u(x) plc =x) o,
where udc)2 0 and udc)<0 for dl ci C. The stochastic Ramssy problem
(Ramsey 1929, Merton 1975) can be stated as follows:

Jé((t),t,ngg(rtlﬁoéEogqu(c(k(t);s))dta,
subject to a budget constrai nt
ok(t) = (k(t)- ((d- n)- s2)k(t)- c(t))dt+sk(t)aw(t),
where k(t)>0 for dl t1[0T) and the initid and boundary conditions
k(0) =k, >0 and k(T) 3 O with probability 1 respectively.

Following Merton (1975) we solve this problem using the Belman's equation from
dynamic programming. The derivation of the Bdlman function for this optimisation
problem is given asfollows

J[k,t, T] = mex E(@Q U( (k(t).9))dt g+ MaX Eo, gdmu (c(k(t):s)) et H

ctIC

_max[EgJ (o (Kt ),s))Dt8+J[k,t+I1,T]].

At this point, we would like to focus the reader’s attention on the second term in the
lagt line of the Belman equation. We can Taylor expand this equation with respect to
t asfollows

J[k,t+Dt,T]= J[k,t, T]+ J Dk +J,Dt +%(Jkk([]<)2 +Jn(Dt)2)+JktDth+O([1),
where
=s(k,a) f (k)- ((d- n)-s?)k(t) Dt +s kDwW(1)
and DW(t) ~ N(0,Dt). Upon substitution of this term into J[k .t T], we arrive at the
following equation
J[kt,T]= max[ E & (c(k(t).s))e D+ [k t,T]+3,Dk

Ct|C
+JIU+%(Jkk(D<)2 +Jﬁ([1)2)JktDth+O(ll)%.

Upon rearranging this eguation, we arive a the representation of the Belman
optimdity condition

0= maxEéJ c(k, 9)e“Dt+J.Dc+J Dt+;(JCC(D:)2+JH(Dt)2)+JchDt+O(Dt)q

i



We now take the limit of the Belman optimdity conditionas Dt ® O:

o : _ 1 ‘
0= im=-maxE,  [c k(1) s))e*0r+3,0c+3,0 +§(Jkk([1<)2 +3,(Dt)°) +3, Dkt + O(Dt)a

:IDtlggrcr(!%}Eth (c (k(t),s))e““8+Jt+JkéE[ g (t+Dt)- k(t)g
3o oy B (10 k(O + 3, (U 3. (1) - K{dg+ 000y
= maxiE[gJ (c (k(t),s))e““B+Jt+Jk g&iﬁ g (t+Dt)- k(t)g

dijic
20U

+ Jkka?lm E g(t+0)- ()H%-

Dt®O

Upon rearranging the last two terms in this equation HIB equation, we arive a the
following optimdlity condition

-J = rg%xiu (c(k(t), s)) +J km(k(t),t) +%s 2(k(t) ,t) Jkkg
where

m(k,t) _g&iE gk (t+Dt)- k(t)g=s(k(t).s) f (k(t))- ((d- n)- s2)k(t)

and

s?(kt) =i Oéa g (t+0)- k() =(sk(0)’.

To obtain the dynamic programming solution to the stochastic Ramsey problem, we
the first order necessary condition is give by

U ﬁ(c(k*, s)) -J. =0,
where U¢(c)=dU/dc and s = s(k*,T - t) is the optima savings rate as a function of
KandT-t.

In order to solve for s, we subdtitute the firs order condition back into the HJB
equation, to obtain the following PDE

J =- %U (c(k* , s)) + m(k* ,t)U(I(c(k*,s*)) +%s 2 (k* ,t)Jkkg.

We then solve this PDE to obtain a solution for k™ which is then subgtituted back into
the first order condition to solvefor s .

Following Merton (1975), we now examine the limiting case of the Ramsey problem
where T® ¥ . As the stochastic process k(t) is time homogenous and U () is not
time dependent, we have that

3 =-U(1- ' (kT-t)f (k(T-1))).



Mirrlees (1965, 1973) has shown that for an optima policy to exists under
uncertainty, f () must satisfy the Ineda conditions and ((d - n)- s ?)>0. If thisis the
casethen

lims (k,T-t)=5s(Kk)
and, as Merton (1975) as shown, there exists an associated steady State distribution for
K. Thisimplies that

limJ, =-U (1- s (k) f (k))=-B,
where B isthe “bliss-point”.

Subgiituting this into the HIB equation, we have that J mugt stidy the following
ODEasT® ¥

0=U(1- 5 () f (K)- B+Jan(k,s) +3s°k I
where
m(k,s*) =5 f(k)- ((d - n)- 52)k
and the primes denote derivatives with respect to k*. The first order condition is
given by

Je=Ual- s f(k aTl s ) f k) +—f( )Z

Subgtituting for J¢ and J @ in the above ODE, we now arrive at the following ODE
0=(4s2Kk*f UOI)—+(fU¢- 1s%KUGGs +1sk*UE ¢ Ubk+U- B,
where the coefficient b =n- d- s?. We can solve this ODE to get s . We note that

under certainty (i.e. when s 2 = 0) this ODE reduces to
\ B- U
sf-(n-d)k)=——
1+ - 9=
which isthe “Ramsey Rul€’ for optima savings.

6. Conclusion

In this paper, we st out to show how changes in consumer behaviour can impact on
economic growth. Our question differs from the standard gpproach that has been used
by growth theory is embedded in a tradition of supply-sde change impacting on
demand. In both the Neo-Classca and endogenous growth literatures, preferences
over consumables are taken to be stationary over time.

In contrast, we begin by providing a theorem for preference evolution in terms of the
Fokker-Planck equation for consumption. We dso showed that by changing the
boundary conditions on the Fokker-Planck equation we could account for different
demand behaviour like the impact of fashion cycles on preference formation.



Furthermore, we showed that by employing the boundary conditions used by Merton
(1975) we are able to derive the steady-gate digtribution for consumption that he used
to predict the outcome the infinite horizon Ramsey savings modd. Hence our modd
of preference evolution and economic growth encompasses the Merton's model Neo-
Classcd growth under uncertainty.

In addition, by changing the type of noise exhibited by the labour dynamics, we
capture the types of growth paterns due to other types of production/factor
relationships. Hence, we can drive the growth dynamics for other models attributable
to various patterns of job cregtion and destruction or path dependence in hiring. This
could lead to a new endogenous growth theory based on the microstructure of the
economy viathe Theory of the Firm.

References

Chang, FR. (1988) The Inverse Optimdity Problem: A Dynamic Programming
Approach. Econometrica 56, 147-172.

Chang, F.R. and Madliaris, A.G. (1987) Asymptotic Growth under Uncertainty:
Existence and Uniqueness. Review of Economic Studies 54, 375-393.

Gardiner, C.W. (1985) Handbook of Stochastic Methods for Physics, Chemistry,
and the Natural Sciences (2" Ed.). Springer, Berlin.

Malliaris, A.G. and Brock, W.A. (1981) Stochastic Methods in Economics and
Finance. North-Holland, Amsterdam

Merton, R.C. (1975) An Asymptotic Theory of Growth under Uncertainty. Review of
Economic Studies 42, 375-393.

Ramsey, F.P. (1928) A Mathematicd Theory of Savings. Economic Journal 37, 47-
61.

Solow, R.M. (1956) A Contribution to the Theory of Economic Growth. Quarterly
Journal of Economics 70, 65-94.



