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I. INTRODUCTION

It is now widely understood how to obtain first-order accurate approximations
to the solution to a dynamic, stochastic general equilibrium model (DSGE model).
Such solutions are fairly easy to construct and useful for a wide variety of pur-
poses. They are likely to be accurate enough to be a basis for fitting the models to
data, for example.

However, for some purposes first-order accuracy is not enough. This is true in
particular for comparing welfare across policies that do not have first-order effects
on the model’s deterministic steady state, for example. It is also true for attempts
to study asset pricing in the context of DSGE models. It is possible to assume
directly that nonlinearities are themselves small in certain dimensions as a justifi-
cation for use of first-order approximations in these contexts; Woodford (2002) is
an example of making the necessary auxiliary assumptions explicit. But the usual
reliance on local approximation being generally locally accurate does not apply to
these contexts.

It is therefore of some interest to have an algorithm available that will produce
second-order accurate approximations to the solutions to DSGE’s from a straight-
forward second-order expansion of the model’s equilibrium equations, and this is
an active area of recent research.

Kenneth Judd pioneered this field by using perturbation methods in solving var-
ious types of economic models1. Jin and Judd (2002) describe how to compute
approximations of arbitrary order in discrete-time rational expectations models.
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They aim at providing a complete set of regularity conditions justifying the local
approximations, and they discuss methods for checking the validity of the approxi-
mations. Others also have studied perturbation methods of higher than first order
including Collard and Juillard (2000), Anderson and Levin (2002), and Schmitt-
Grohé and Uribe (2002).

Kim and Kim (forthcoming) and Sutherland (2002) have developed a bias cor-
rection method that produce the same results as the second order perturbation
method for certain welfare calculations, while requiring less computational effort
than a full perturbation solution.

Several papers have applied the second-order perturbation method to dynamic
general equilibrium models. Kim and Kim (2003) used the second-order solu-
tion method to analyze welfare effects of tax policies in a two-country framework.
In particular, they calculate the optimal degree of response for various tax rates
against TFP shocks faced by each country. Welfare gains of tax policies are mea-
sured by conditional welfare changes from the benchmark case. Kollmann (2002)
has analyzed the welfare effects of monetary policies in open economies using the
software that has been developed along with this paper, and Bergin and Tchakarov
(2002) have used it to examine the welfare effects of exchange rate risk.

This paper describes the algorithm for computing a second order approxima-
tion and shows how to apply it to calculating forecasts and impulse responses in
dynamic models and to evaluating welfare in DSGE models. It points out some
necessary regularity conditions for application of the method and discusses the
sense in which the approximate solutions are locally accurate.

While much of the paper parallels others in this rapidly growing literature, this
paper makes some new contributions. The rest of the literature in most cases be-
gins from a formulation of the problem in which a partition of variables in the
model into “states” and “controls” or “co-states” is assumed known. While in
smaller models such a partition is often obvious, in larger models it can be un-
clear how to partition the variables into states and controls. The Matlab program
gensys.m , implementing the approach described in Sims (2002), accepts model
specifications that do not partition the variable list into states and co-states, con-
structing its own version of such a partition automatically. This paper extends that
approach to second-order approximations.

The “state-free” approach of gensys.m has the disadvantage that its output,
while completely characterizing the dynamics in terms of the original variables,
includes only its own artificial decomposition into states and co-states, which may
be opaque. For some purposes it is important to have an intuitively appealing
decomposition into states and co-states. We discuss how to do this, with the aid
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of another program, gstate.m , that uses the output of gensys.m or gensys2.m
to test proposed state vectors and and to provide guidance as to what a valid state
vector must look like.

Where the sense in which accuracy of local expansions is claimed has been made
explicit in the literature, it has for the most part (Jin and Judd, 2002, most promi-
nently) focused on accuracy of the function mapping state variables to co-states. It
has also tended to assert as regularity conditions almost-sure boundedness of sto-
chastic disturbances and stationarity of the dynamic model being studied. These
assumptions allow strong claims to be made about approximation accuracy, but
they are disquieting for most DSGE modeling applications. Models with unit roots,
or even mild explosiveness, are not uncommon in macroeconomics, and models
with near-unit roots are the rule. Often disturbance distributions with unbounded
support seem more realistic than any particular truncation to bounded support. If
perturbation methods break down, or are at the edge of their domain of applica-
bility, for such models, they might seem to be unattractive for many of the models
to which they have in fact been applied.

In this paper we argue that boundedness of shocks and stationarity of the model
are not essential to the validity of perturbation methods. For their main applica-
tions so far, perturbation methods can be shown to produce results that are in a
natural sense locally accurate, without the invocation of the dubious stationarity
and boundedness assumptions.

There is little explicit discussion in the literature of how to use higher order per-
turbation approximations in constructing simulations, forecasts, and welfare eval-
uations. We show that some apparently obvious approaches to these tasks in fact
result in an accumulation of “garbage” high-order terms that can make accuracy
deteriorate. We lay out an algorithm that always produces stationary second-order
accurate dynamics whenever the first-order dynamics are stable.

The Matlab code that was built along with this paper is available at http://
eco-072399b.princeton.edu/yftp/gensys2/ , where the current version of
this paper will also be found.

II. THE GENERAL FORM OF THE MODEL

We suppose a model that takes the form

K
n×1

( wt
n×1

, wt−1, σεt
m×1

) + Πσηt
p×1

= 0 , (1)

where Etηt+1 = 0 and Etεt+1 = 0.2 The equations hold for t = 0, . . . , ∞, as does
the Etεt+1 = 0 condition. The disturbances εt are exogenously given, while ηt is

http://eco-072399b.princeton.edu/yftp/gensys2/�
http://eco-072399b.princeton.edu/yftp/gensys2/�
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determined as a function of ε when the model is solved, if the solution exists and is
unique. Note that because there is no assumption at all about η0, it is a free vector
that is likely to make certain linear combinations of the equations tautological at
the initial date.

The scale factor σ is introduced to allow us to shrink the distribution of εt toward
zero as we seek a domain of validity for our local approximation. The distribution
of εt itself is assumed to be constant across time t and invariant to changes in σ, so
that in particular it has a fixed covariance matrix Ω.

The equation system could be written equivalently as

Q1K(wt, wt−1, σεt) = 0 (2)

Et[Q2K(wt+1, wt, σεt+1)] = 0 , (3)

where Q1 is any matrix such that Q1Π = 0 and [Q′
1, Q′

2] is a full rank square matrix.
The “forward-shift” of the expectational block reflects the absence of any restric-
tion on η0.

We assume that the solution will imply that wt remains always on a stable man-
ifold, defined by H(wt, σ) = 0 and satisfying

{ H
nu×1

(wt, σ
n×1

) = 0, H(wt+1, σ) = 0 a.s. and Q1K(wt+1, wt, σεt+1) = 0 a.s.}

⇒ Et[Q2K(wt+1, wt, σεt+1)] = 0 . (4)

We consider expansion of the system about a deterministic steady state w̄, i.e. a
point satisfying K(w̄, w̄, 0) = 0. We do not need to assume the steady state is
unique, so the situation arising in unit root models, where there is a continuum of
steady states, is not ruled out.

We also assume that the nonlinear system (1) is formulated in such a way that
its first-order expansion characterizes the first-order behavior of the deterministic
solution. That is, we assume that solving the first-order expansion of (1) about w̄,

K1dwt = −K2dwt−1 − K3σεt + Πηt , (5)

as a linear system results in a unique stable saddle path in the neighborhood of
the deterministic steady state. If so, this saddle path characterizes the first-order
behavior of the system. We assume further that H1(w̄, 0) is of full row rank, so
that the first-order character of the saddle path is determined by the first-order
expansion of H.3

2This form is more general than it might seem. See Sims (2002) for examples showing how
models with explicit expectations operators, including lagged expectations, can be cast into this
form.
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The system (1) has the second-order Taylor expansion about w̄

K1ijdwjt = −K2ijdwj,t−1 − K3ijσε jt + Πijηjt

− 1
2(K11ijkdwjtdwkt + 2K12ijkdwjtdwk,t−1 + 2K13ijkdwjtσεkt

+ K22ijkdwj,t−1dwk,t−1 + 2K23ijkdwj,t−1σεkt + K33ijkσ2ε jtεkt) , (6)

where we have resorted to tensor notation. That is, we are using the notation that

AijkBmnjq = Cikmnq ⇔ cikmnq = ∑
j

aijkbmnjq . (7)

where a, b, c in this expression refer to individual elements of multidimensional
arrays, while A, B, C refer to the arrays themselves. As special case, for example,
ordinary matrix multiplication is AB = AijBjk and the usual matrix expression
A′BA becomes AjiBjk Akm. Note that we are distinguishing the array Kmij of first
derivatives from the array Kmnijk of second derivatives only by the number of in-
dexing subscripts the two arrays have.

III. REGULARITY CONDITIONS

Because we are taking first and second derivatives and because we are expand-
ing about the steady state w̄, it is clear that we require existence of first and second
derivatives of K at w̄. We have also directly assumed that the first order behavior
of K near w̄ determines H(·, 0). In order to make our local expansion in dw, σε, and
ε work, we will need that H(w, σ) is continuous and twice-differentiable in both its
arguments.

It may seem that these are all standard assumptions on the degree of differen-
tiability of the system near w̄. Consider what emerges, though, when we split the
system into expectational and non-expectational components as in (2)-(3). If we
replace (3) with its second-order expansion and take some expectations explicitly,
we arrive at

Et
[
Q2(K1ijdwj,t+1 + K2ijdwjt + 1

2(K11ijkdwj,t+1dwk,t+1 + 2K12ijkdwj,t+1dwk,t

+ K22ijkdwj,tdwk,t + K33ijkΩjkσ2))
]

= 0 , (8)

and find ourselves needing to assert that εt has finite second moments, which is
not a local property. That is, if εt does not have second moments, shrinking σ will
not make σεt have finite second moments. The same point applies to (3) in its
original nonlinear form. If it is to be differentiable in wt and σ, we will in general

3This assumption on H is not restrictive. So long as there is a continuous, differentiable saddle
manifold, we will be able to choose an H satisfying this condition.
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need to impose restrictions on the distribution of εt. Jin and Judd (2002) have an
example of a model in which some apparently natural choices of a distribution for
εt imply that Et[Q2K(wt+1, wt, σεt+1)] is discontinuous in σ at σ = 0, even though
K has plenty of derivatives at the steady state.

IV. SOLUTION METHOD

The solution we are looking for can be written in the form

wt = F∗(wt−1, σεt, σ) . (9)

Because we know the saddle manifold characterized by H exists and that H1(w̄, σ)
has full row rank nu, we can use H to express nu linear combinations of w’s in
terms of the remaining ns = n − nu. Let the ns linear combinations of w’s chosen
as “explanatory" variables in this relation be

yt = Φ
ns×n

wt . (10)

Then the solution (9) can be expressed equivalently, in a neighborhood of w̄, as

yt = ΦF∗(wt−1, σεt, σ) = F(yt−1, xt−1, σεt, σ) (11)

xt
nu×1

= h(yt, σ) , (12)

where (12) is just the solved version of the H = 0 equation that characterizes the
stable manifold. Here of course x, like y, is a linear combination of w’s.

The appearance of xt−1 in (11) may seem redundant, since along the solution
path we will have xt = h(yt, σ), but at the initial date the lagged w vector might
not satisfy this restriction. This is likely in a growth model with multiple types
of capital, for example, where there may be optimal proportions of capital of dif-
ferent types, but no physical requirement that the initial endowments are in these
proportions.4

The solution method for linear rational expectations systems described in Sims
(2002) begins by applying linear transformations to the list of variables and to the
equation system to produce an upper triangular block recursive system. In the
transformed system, the unstable roots of the system are all associated with the
lower right block, ηt does not appear in the upper set of equations in the system,5

and the upper part of the equation system is normalized to have the identity as the
coefficient matrix on current values of the upper part of the transformed variable

4See section V below for further discussion of this point.
5It may not be possible in fact to eliminate ηt from the upper part of the system. When it is not,

the solution is not unique. The programs signal the non-uniqueness and deliver one solution, in
which the η’s are set to zero in the upper block of this system.
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matrix. In other words, by applying to the equation system the same sequence of
linear operations as applied in the earlier paper to a linear system6, we can trans-
form (6) to

dyit =G1ijdxjt + G2ijdvj,t−1 + G3ijε jt + 1
2

(
G11ijkdvjtdvkt + 2G12ijkdvjtdvk,t−1

+ 2G13ijkdvjtεkt + G22ijkdvj,t−1dvk,t−1 + 2G23ijkdvj,t−1εkt + G33ijkε jtεkt

) (13)

J1ijdxjt = J2ijdxj,t−1 + J3ijε jt + Π∗ηt + 1
2

(
J11ijkdvjtdvkt + 2J12ijkdvjtdvk,t−1

+ 2J13ijkdvjtεkt + J22ijkdvj,t−1dvk,t−1 + 2J23ijkdvj,t−1εkt + J33ijkε jtεkt

)
,

(14)

where vt = [yt; xt], i.e. the y and x vectors stacked up.
Now the y and x introduced above may seem to have no connection to the y and

x in terms of which we wrote the solution (11)-(12). But that solution has second-
order expansion

dyit = F1ijdvj,t−1 + F2ijε jt + F3iσ
2

+ 1
2

(
F11ijkdvj,t−1dvk,t−1 + 2F12ijkdvj,t−1εkt + F33ijkε jtεkt

) (15)

dxit = 1
2 M11ijkdyjtdykt + M2σ2 . (16)

Of course if x were chosen as an arbitrary linear combination of w’s, there would
in general be a first-order term in dyt on the right-hand side of (16). However, we
can always move such terms to the left-hand side and then redefine x to include
them. We will now proceed to show that the dy and dx in (15)-(16) are indeed those
in (13)-(14), and that indeed we can construct the coefficient matrices in the former
from knowledge of the coefficient matrices in the latter.

The terms in σ in (15)-(16) deserve discussion. As can be seen from (8), the
appearance of expectations operators in our system makes it depend on the distri-
bution of ε, not just on realized values of ε. But there is only one term in (8) that
is first-order in dwt+1. All the other terms are second-order, or depend on dwt or
σ2, not σ. Therefore if there were a component of Q1K1dwt+1 that depended on σ

(rather than σ2), that term could not be zero as the equation requires. Hence we
can be sure that there is no term linear in σ in the second order expansion of (2)-(3),
and thus none in (15)-(16). This then also rules out any term of the form σ · σεt+1
also, since such a term could enter only through the cross products in dwt+1σεt+1
or through the dwt+1dwt+1 terms, and without a first-order term in σ in dwt+1,
these cross products can generate no σ · σεt+1 terms.

6and implemented in the Matlab function gensys.m
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Observe that dxt in (13)-(14) must be zero to first order (except for t = −1),
because otherwise there would be an explosive component in the first order part
of the solution, contradicting the stability assumption. Therefore, F1 is exactly G2
from (13). Clearly also F2 = G3. Therefore we have a complete first-order solution
for dy and dx in hand:

dyt
.= F1dvt−1 + F2εt (17)

dxt
.= 0 . (18)

We find the second order terms in the following steps. First shift (14) forward
in time by one (so that the left-hand side is dxt+1) and substitute the right-hand
side of (16), shifted forward in time by 1, for the dxt+1 on the left. Then substitute
the right-hand-side of (17), shifted forward by 1, for all occurrences of dyt+1 in the
resulting system. Finally apply the Et operator to the result. In doing this, we are
dropping all the second order terms in the solution for dy and dx when these terms
themselves occur in second order terms. This makes sense because cross products
involving terms higher than first order are third order or higher, and thus do not
contribute to the second order expansion. Note that this means that, since dx is
zero to first order, in (13)-(14) all the second-order terms in dv can be written in
terms of dy alone. We will abuse notation by using the same G and J labels for
the smaller second-order coefficient matrices that apply to dy alone that we use
in (13)-(14) for the second order terms involving the full v vector. In this way we
arrive at

J1ij

(
1
2

(
M11jk`F1krdyrtF1`sdyst + M11jk`F2krF2`sΩrsσ

2) + M2jσ
2
)

= J2ij

(
1
2 M11jk`dyktdy`t + M2jσ

2
)

+ 1
2

(
J11ijk

(
F1jrF1ksdyrtdyst

+ F2jrF2ksΩrsσ
2) + 2J12ijkF1jrdyrtdykt + 2J13ijkF2jrΩrkσ2

+ J22ijkdyjtdykt + J33ijkΩjkσ2
)

, (19)

Where we have set Var(εt) = σ2Ω.
For this equation to hold for all dy and σ2 values, we must match coefficients on

common terms. Therefore, looking at the dyt · dyt terms, we conclude that

J1ijM11jktF1krF1`s = J2ijM11jrs + J11ijkF1jrF1ks + 2J12ijsF1jr + J22ijk . (20)

This is a linear equation, and every element of it is known except for M11···. The
transformations that produced the block-recursive system with ordered roots guar-
antee that J2··, an ordinary 2 × 2 matrix, has all its eigenvalues above the critical
stability value. It is therefore invertible, and we can multiply (20) through on the
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left by J−1
2 , to get a system in the form

AM∗F1 ⊗ F1 = M∗ + B . (21)

In this equation, M∗ is the ordinary ns × n2
s matrix obtained by stacking up the

second and third dimensions of M11···, A = J2\J1,7 and B is everything else in
the equation that doesn’t depend on M∗. If the dividing line we have specified
between stable and unstable roots is 1 + δ, then our construction of the block-
recursive system has guaranteed that J2\J1 has all its eigenvalues ≤ 1/(1 + δ),
while at the same time it is a condition on the solution that all the eigenvalues of
F1 be < 1 + δ. To guarantee that a second-order solution exists, we require that
the product of the largest eigenvalue of F1 ⊗ F1, which is the square of the largest
eigenvalue of F1, be less than the inverse of the largest eigenvalue of A = J2\J1. If
δ = 0 this condition is automatically satisfied. Otherwise, there is an extra condi-
tion that was not required for finding a solution to the linear system: the smallest
unstable root must exceed the square of the largest stable root.

Assuming this condition holds, (21) has the form of a discrete Lyapunov or
Sylvester equation that is guaranteed to have a solution. Because of the special
structure of F1 ⊗ F1, it would be very inefficient to solve this system with standard
packages (like Matlab’s lyap.m ), but it is easy to exploit the special structure with
a doubling algorithm to obtain an efficient solution for M∗.

With M11··· in hand, it is easy to see from (19) that we can obtain a solution for
M2 by matching coefficients on σ2. The only slightly demanding calculation is a
required inversion of J2 − J1. But since J2\J1 has all its eigenvalues less than one,
this J2 − J1 is guaranteed to be nonsingular.

The next step is to use (16) to substitute for the first-order term in dxt on the
right of (13) and (17)-(18) to substitute for all occurrences of dyt and dxt in second-
order terms on the right in the resulting equation. This produces an equation with
dyt on the left, and first and second-order terms in dyt−1 and εt and terms in σ2

on the right. With M11 and M2 in hand, it turns out that it is only a matter of
bookkeeping to read off the values of F12, F22, and F3 by matching them to the
collected coefficients in this equation.8

7We are using the nonstandard notation A\B to stand for A−1B.
8This bookkeeping is not trivial to program, but it is probably best for those who need to pro-

gram it to consult the program, rather than take up space here with the bookkeeping.
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V. ANALYZING THE STATE REPRESENTATION

The gensys.m program produces as output, among other things, a first-order
expansion of (9), as

dwt
.= F∗1 dwt−1 + F∗2 σεt . (22)

To find a conventional state-space representation of such a system, we can form a
singular value decomposition

[F∗1 F∗2 ] =
[
U V

] [
D 0
0 0

] [
R′1 R′2
S′1 S′2

]
, (23)

where [U V] and [R S] are orthonormal matrices and D is diagonal. Any state vec-
tor zt that has the property that wt is determined by zt in this system will have to be
of the form zt = θU′wt. The only way wt−1 affects current wt is via R′1wt−1. While
R′1 can be the same row rank as U, it can also be less, so that a smaller “state” vector
summarizes the past than is needed to characterize the current situation. Also, the
rank of F∗1 can be below its number of non-zero singular values. In this case it may
be possible to find a zt that , after the system has run a few periods, summarizes
the past and/or characterizes the current situation yet is of lower dimension than
the rank of D.

The program gstate.m takes as input F∗1 and F∗2 , together with an optional
candidate matrix φ of coefficients that might form a state vector as zt = φwt. The
program checks whether φ lies in U’s or R′1’s row space and returns U and R′1 for
further analysis.

Once a state/co-state representation of the form vt = Φwt has been settled on,
where Φ is non-singular and the v = [y; x] vector is partitioned into state and
costate, it is straightforward to convert a first or second-order approximate solu-
tion from one co-ordinate system into the another.

VI. THE LOCAL ACCURACY OF THE APPROXIMATION

Once we have a second-order accurate approximation to the dynamics, in the
form (15)-(16), we can make a claim to local accuracy of the following form:

dvt+1 = F̂(dvt, σεt+1, σ) + op(‖dvt, σ‖2) , (24)

where op means “order in probability” and F̂ is the second-order approximation
to the dynamics. That is, the error in the approximation is claimed to converge in
probability to zero, at a more rapid rate than ‖dvt, σ‖2, when ‖dvt, σ‖2 goes to zero.
This rate is the weakest kind of claim that can be made for a Taylor expansion.
If we are willing to claim that third derivatives exist at the deterministic steady
state, then we can replace the error term with Op(‖dvt, σ‖3). This claim does not
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depend on strict boundedness of the support of the distribution of εt, because we
are only claiming our local accuracy with a certain (high) probability. Whatever
the distribution of εt, σεt converges in probability to zero as σ → 0, allowing us
to make this claim. Of course this is all dependent on the underlying assumption
that the original nonlinear model has dynamics differentiable of sufficiently high
order in σ in the neighborhood of deterministic steady state, and on the existence
and continuity of the expectations that occur in the statement of the model.

This one-step-ahead “local accuracy in probability” claim obviously can be ex-
tended to a corresponding claim to accuracy n-steps-ahead for any finite n. We
have made no appeal to stationarity of the system in making these claims. Of
course the size of the n for which accuracy remains good at a given level of σ will
in general be smaller for systems that are not stationary. But the qualitative nature
of the accuracy claim is no different for non-stationary systems.

This type of finite-time-span, accuracy-in-probability claim is exactly what is
appropriate for purposes of fitting a model to data — which always cover a finite
time span — or for purposes of simulating the model from given initial conditions
over a finite span of time. It is also exactly appropriate for the correct calculation of
expected welfare, when welfare is constructed as a discounted sum of period util-
ities. The discounting means that accuracy of the approximation is unimportant
after some time horizon in the future.

Finite-time-span, accuracy-in-probability claims will not justify estimating un-
conditional expectations of any functions of variables in the model via simulation.
To make the effects of initial conditions die away, such simulations must cover long
spans of time. If the second-order approximation is non-stationary, expectations
calculated from simulations of it will of course not converge. If the true nonlinear
model is non-stationary, then the true unconditional expectations will in general
not exist, even though it is possible that the local second-order approximation is
stationary, so again in this case it will not be possible to estimate unconditional
expectations from simulated paths.

When both the true nonlinear model and the second order approximate model
are stationary and ergodic, and the true unconditional expectation in question is a
twice-differentiable function of σ in the neighborhood of σ = 0, then it is possible
to estimate the expectation from long simulations of the approximate model, with
the estimates accurate locally in σ in the usual sense. This is true even though
it may be (e.g. because of unbounded support of εt) that with probability one
the path of the model repeatedly enters regions where the local approximation is
inaccurate. This is possible because as σ → 0 the fraction of time spent in these
regions goes to zero, for both the true and the approximate model.
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However it will often be preferable to estimate an expectation by using the
second-order approximation analytically, expanding the function whose expecta-
tion is being taken as a Taylor series and applying the methods of the next section.

VII. FORECASTING AND SIMULATION

Forecasts s steps ahead, Et[dwt+s] and Vart[dwt+s] are the building blocks for the
calculation of impulse response functions as well as welfare.

We build the forecasts from the second-order accurate dynamic model given by
(15)-(16), modified here to reflect our assumption that the initial conditions sat-
isfy the equations of the model and that therefore dxt−1 = 0 to first order. We
abuse notation by using the same F’s here, for the pieces of the original F matri-
ces corresponding to dy’s, as we did for the original F matrices in (15)-(16) that
corresponded to the full dv = [dy, dx] vector.

dyt
.= F1jdyj,t−1 + F2jσε j,t + F3σ2

+ 1
2 F11jkdyj,t−1dyk,t−1 + F12jkσdyj,t−1εk,t + 1

2 F22jkσ2ε j,tεk,t (25)

dxt
.= 1

2 M11jkdyj,tdyk,t + M2σ2 (26)

We would then like to calculate, to second order accuracy, Et[dyt+s] and Vart[yt+s].
To begin with, note that, since the conditional mean of dyt+s is of second order,

the variance terms Σ̂s ≡ Vart (yt+s) are correct to second order accuracy when com-
puted from the first-order terms in the expansion (25) alone and that, to second-
order accuracy, Vart (xt+s) = 0 since dxt itself is of second order.

For s = 1, it is easy to see from (25-26) that we have

dŷt+1 = Et[dyt+1]
.= F1jdyj,t + F3σ2

+ 1
2 F11jkdyjtdykt +

σ2

2
F22jkΩjk

(27)

dx̂t+1 = Et[dxt+1]
.= 1

2 M11jk
(
dŷj,t+1dŷk,t+1 + Σ̂1jk

)
+ M2σ2 . (28)

The expression in (28) for determining Et[dxt+1] from the conditional mean and
variance of dyt+1 works equally well for determining Et[dxt+s] from the conditional
mean and variance of dyt+s for s > 1. The straightforward approach to determin-
ing dŷt+s and dx̂t+s is to apply (27) recursively, computing dŷt+s from dŷt+s−1 and
Σ̂k−1, etc. This procedure is in fact second-order accurate, but it introduces higher
order terms into the expansion. For example, since d̂yt+1 contains quadratic terms
in dyt, and (27) makes dŷt+2 quadratic in dŷt+1, dŷt+2, in a simple recursive com-
putation, becomes quartic in dyt. These extra high-order terms do not in general
increase accuracy of the approximation, as they do not correspond to higher order
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coefficients in a Taylor series expansion of the true dynamic system, and in practice
often lead to explosive time paths for dŷt+s.

To see what goes wrong, consider the simple univariate model

yt = ρyt−1 + αy2
t−1 + εt ,

where |ρ| < 1 and α > 0. Though this model is locally stable about its unique deter-
ministic steady state of ȳ = 0, it has a second steady-state, at (1− ρ)/α. If x exceeds
the other steady state, it will tend to diverge. This is likely to be a generic problem
with quadratic expansions — they will have extra steady states not present in the
original model, and some of these steady states are likely to mark transitions to
unstable behavior.

Since the unique local dynamics are stable in a neighborhood of the steady state,
it will be desirable to choose amongst the second order accurate expansions one
that implies stability. Deriving sufficient conditions on the support of εt to guaran-
tee non explosiveness under the iterative scheme (27)-(28) is in general a non-trivial
task and therefore it is useful to have available an algorithm which generates non-
explosive forecasts and simulations without imposing explicit conditions on the
support of εt. The mere fact that the generated forecasts are stable of course does
not imply superior accuracy in general, especially when shocks are not bounded.
However, stationarity will in general imply that, for a given neighborhood U of the
steady state and a given time horizon T, we can restrict σ in such a way as to make
the probability of leaving U in time T arbitrarily small.

Obtaining a stable solution based on (27) can be achieved by pruning out the
extraneous high-order terms in each iteration by computing the projections of the
second order terms based on a first-order expansion, dȳ, as follows:

dŷt+s
.= F1jdŷj,t+s−1 + F3σ2

+ 1
2 F11jk

(
dȳj,t+s−1dȳk,t+s−1 + Σ̂k−1,jk

)
+ σ2

2 F22jkΩjk
(29)

dx̂t+s
.= 1

2 M11jk
(
dȳj,t+sdȳk,t+s + Σ̂s,jk

)
+ M2σ2 (30)

dȳt+s
.= F1jdȳj,t+s−1 (31)

Σ̂ij,s = σ2F2ikΩk`F2j` + F1ikΣ̂k`,s−1F1j` . (32)

Using these equations recursively results in a dŷt+s series which, by construc-
tion, is quadratic in dyt for all s. Furthermore, when the eigenvalues of F1 are
less than one in absolute value, the first order accurate solution dȳt+s is stable and
hence so is the squared process

(
dȳj,t+sdȳk,t+s

)
. It follows that dŷt must be stable
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as well.9 Note that the F12 component of the second order expansion — the coef-
ficients of the interactions between dyt−1 and εt — do not enter this recursion at
all.

The same issues arise if the aim is to generate simulated time paths, rather than
simply conditional expectations and variances of future variables. For this pur-
pose, we can introduce the notation dy(1)

t+s and dy(2)
t+s for first and second order

accurate simulated time paths, respectively. A recursive, non-explosive, “pruned”
simulation scheme is then given by

dy(2)
t+s

.= F1·jdy(2)
j,t+s−1 + F2·jσε j,t+s + F3σ2

+ 1
2 F11·jkdy(1)

j,t+s−1dy(1)
k,t+s−1 + σF12·jky(1)

j,t+s−1εk,t+s + σ2

2 F22·jkε j,t+sεk,t+s

(33)

dx(2)
t+s

.= 1
2 M11·jkdy(1)

j,t+sdy(1)
k,t+s + M2σ2 (34)

dy(1)
t+s

.= F1·jdy(1)
j,t+s−1 + F2·jσε j,t+s , (35)

where the F12 terms that could be ignored in forming conditional expectations have
necessarily returned for generation of accurate simulations. By preventing buildup
of spurious higher-order terms, we make stability of the simulation over a long
time path more likely, while at the same time preserving second-order accuracy of
the mapping from initial variable values yt, xt, shocks εt+1, . . . , εt+s, and σ to the
simulated values y(2)

t+1, . . . , y(2)
t+s.

It can help in understanding these recursions to append the vector dy(1) ⊗ dy(1)

to dy(2) and use matrix notation:
[

dy(2)
t+1

(dy(1)
t+1 ⊗ dy(1)

t+1)

]
= Θ1

[
dy(2)

t

(dy(1)
t ⊗ dy(1)

t )

]
+ Θ2 σ2 + ξt+1 (36)

with

Θ1 =
[

F1
1
2(F∗11)

0 (F1 ⊗ F1)

]
(37)

Θ2 =
[

F3 + 1
2 F22·jkΩjk

(F2 ⊗ F2) vec(Ω)

]
(38)

ξt =

[
σεt + σF23·jkεk,tdy(1)

j,t−1 + σ2

2 F33·jk(ε jtεkt −Ωjk)
σ2(εt ⊗ εt − (F2 ⊗ F2) vec(Ω)

)
]

. (39)

9The same matrix eigenvalue conditions are at issue here as in section IV’s discussion of existence
of the solution to (21)
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The F∗11 in the definition of Θ1 (37) is a matrix with number of rows equal to the
length of y and with the second and third dimensions of the array vectorized into
a row vector — so it is an ns × n2

s matrix. Note that Θ1 is upper block triangular
and is stable exactly when the eigenvalues of F1 are less than one in absolute value.
Note also that, to second order accuracy,

Var(ξt) =
[

σ2Ω 0
0 0

]
.

Calculations of conditional and unconditional first and second moments can there-
fore be carried out using (36) as if it were an ordinary first order AR. This can be
an aid to understanding, or to computation in small models, though for larger sys-
tems it is likely to be important for computational efficiency to take account of the
special structure of the Θj matrices in (36).

VIII. WELFARE

One can easily produce cases where the second-order approximation is neces-
sary to get an accurate evaluation of certain aspects of the model. Utility-based
welfare calculation is one case. For example, calculating welfare effects of vari-
ous monetary and fiscal policies or welfare effects of changes in economic envi-
ronment such as financial market structure should include second-order or even
higher-order terms in order to get an accurate measure. Kim and Kim (forthcom-
ing) present an example of how inaccurate the linearized solution can be in calcu-
lating welfare using a two-country model. Using the linearized solution, welfare
of autarky can appear to be higher than that of the complete markets, solely be-
cause of the inaccuracy of the linearization method. Another application in which
second-order approximation is important is examination of asset price behavior in
DSGE’s. Linearized solutions will imply equal expected returns on all assets. Sec-
ond order solutions will generate correct risk premia, though generally to analyze
time variation in risk premia will require higher than second-order accuracy.

Equation (36) makes it relatively straightforward to see how to carry out a second-
order accurate welfare calculation. Welfare is defined as a discounted sum of ex-
pected utility. Let the period utility function be given by u : Rns → R.10 Then the

10Of course often in growth models utility is a function of consumption, which is not a conven-
tional state variable. To use the formulation we develop here, then, consumption (an x variable)
has to be replaced by the corresponding component of h(y, σ). Also, because we work entirely in
terms of y, we are not covering the case where the initial distribution of w does not lie on the saddle
path. The methods we describe here can be expanded to cover this case and to allow x to enter u,
at the cost of some increase in the burden of notation.
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utility conditional on an initial distribution of y0 with mean and variance (µ, Σ) is

U(µ, Σ) = E0

[
∞

∑
t=0

βtu(yt)

]
≈

u(ȳ)
1− β

+ E0

[
∞

∑
t=0

βt(∇u(ȳ)dy(2)
t + 1

2 vec(∇2u(ȳ))′(dy(1)
t ⊗ dy(1)

t )
)
]
⇒

(40)

U(µ, Σ) =
u(ȳ)
1− β

+
[∇u(ȳ) 1

2 vec(∇2u(ȳ))′
]

· [I − βΘ1]−1
([

µ

vec (Σ + µµ′)

]
+ β(1− β)−1Θ2σ2

) (41)

If we are interested only in unconditional expected u, we can arrive at the correct
formula by multiplying (41) through by 1− β and taking the limit as β → 1, giving
us

E[u(yt)] = u(ȳ) +
[∇u(ȳ) 1

2 vec(∇2u(ȳ))′
]
(I −Θ1)−1Θ2σ2 . (42)

Note that in (41) we make no use, explicitly or implicitly, of F12. Also note that
though the matrix I − βΘ1 appears in the formula inverted, the utility calculation
only requires [∇u(ȳ) 1

2 vec(∇2u(ȳ))′
] · (I − βΘ1)−1 ,

whose computation is only an equation-solving problem, not a full inversion; fur-
thermore, this part of the computation does not need to be repeated as µ and Σ
are varied. Finally, note that (42) uses only (I − Θ1)−1Θ2, regardless of the form
of u. This is again an equation-solving problem. So if we are interested only in
unconditional expectations, even in unconditional expectations of many different
functions u, the computation of a full second-order correction may be much sim-
pler than calculation of the full second-order expansion of the dynamics.

It is these simplifications, applied to particular models, that are the insights pro-
vided by the papers that have put forward “bias-correction” methods for making
second-order accurate expected welfare computations in DSGE models (Kim and
Kim, forthcoming; Sutherland, 2002).

VIII.1. Conditional vs. Unconditional welfare. Many papers have analyzed the
welfare effects of government policies based on various utility based welfare crite-
ria. When one compares welfare of one environment with another, there are two
ways to do that. One is to compare the unconditional welfare of the two states
(average value of expected utility) and another is to calculate the level of welfare
conditional on an initial state (discounted sum of expected utility conditioned on
the information at the initial state).11 Conventionally, many researchers have used
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unconditional welfare for evaluating policies. Examples of using unconditional
welfare include Clarida, Galí, and Gertler (1999), Rotemberg and Woodford (1997,
1999), Sutherland (2002) and Kollmann (2002). Unconditional welfare compares
the welfare level of the economy at the steady state. We know that it takes time for
one steady state to reach another steady state and unconditional welfare neglects
the welfare effects during the transitional period. It is therefore generally not in
fact optimal, in problems with discounting, to use policies that maximize the un-
conditional expectation of one-period welfare. This is not a new point — it is the
same point as the non-optimality of driving the rate of return to zero in a growth
model — and it has been recognized in the DSGE literature in , e.g, Kim and Kim
(2003), and Woodford (2002).

Because unconditional welfare can be computed easily, using the “bias correc-
tion” shortcut, it is important to note that using unconditional welfare can give
nonsensical results. Kim and Kim (forthcoming) construct a two-country DSGE
model and compute risk-sharing gains from autarky to the complete-markets econ-
omy using a second-order approximation method. Welfare is defined as condi-
tional welfare and the results show that there are positive welfare gains from au-
tarky to the complete-markets economy. But the unconditional welfare measure
can for certain parameter values produce the paradoxical result that autarky gen-
erates a higher level of welfare than the complete markets.

The use of conditional welfare does not imply that results necessarily are tied to
some particular initial state. One can condition on a distribution of values for the
initial state. The critical point is that when comparing two policies or equilibria
one should use the same distribution for the initial state for each. When there is
no time-inconsistency problem the optimal policy will have the property that no
matter what initial distribution is specified for the state, it will produce a higher
conditional expectation of welfare than any other policy. However, when com-
paring a collection of policies that are not optimal, one may find that rankings of
policies vary with the assumed distribution of the initial state.

When there is a time-inconsistency problem, the optimal policy generally de-
pends on the initial conditions, even if we restrict attention to policy rules that are
a fixed mapping from state to actions. Using a conditional expectation as the wel-
fare measure does not avoid this problem. One attempt to get around this issue
is the suggestion in, e.g., Giannoni and Woodford (2002) that policy should follow
the rule that would prevail under commitment in the limit as the initial condi-
tions recede into the past. This “timeless perspective” policy can be implemented

11Woodford (2002) discusses the differences between unconditional and conditional welfare in
calculating welfare effects of monetary policies.
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by treating the Lagrange multipliers on private sector Euler equations as “states”,
and then maximizing conditional expected discounted utility.

IX. CONCLUSION

Use of perturbation methods to improve analysis of DSGE models is still in its
early stages. Programs that automate computations for models higher than second
order are just beginning to emerge. Methods of dealing with the kinds of singular-
ities that show up in economic models — for example the indeterminacy of asset
allocations in standard portfolio problems when variances are zero — are still not
widely understood. And we have only begun to get a feel for where these methods
are useful and what their limitations are. Real progress is being made, however, in
an atmosphere that is both competitive enough to be stimulating and cooperative
enough that researchers located around the world are benefiting from each others’
insights.
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