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Abstract

We simulate a stochastic model with endogenous growth and endogenous

fertility of the Lucas-Uzawa-Type. During childhood agents are equipped with

education (human capital) and enter the labor force when adult. During adult-

hood they receive utility from their offspring and consumption. Regarding the

children a quality-quantity trade off is generated by changing opportunity costs

of child rearing. Unsecurity arises in that model, because of an identical and in-

dependent normal distributed shock, which governs the ability to use the human

capital in production, hence income. The strength of the correlation between the

ability of the parents and their children governs the intergenerational persistence

and the oscillation around the deterministic steady state. Because of endogenous

labor supply multiple equilibria are generated. It is shown that only one of them

is sustainable.

JEL: D31,J1, I2, O0

Keywords: OLG-model,endogenous fertility, intergenerational persistence, stochas-

tic growth, multiple equilibria



1 Introduction

The fertility decline observed in all industrialized countries, since the industrial rev-

olution leading to a fertility level below the replacement level even in countries with

traditional rather high fertility rates like Spain and Italy (now belonging with a fertil-

ity rate around 1.3 to the group of lowest-low fertility countries; Kohler et.al. (2002))

caused increasing attention for researchers and policy advisers. Obviously, a fertility

level much below the replacement level accompanied by an increasing life expectation

leads to tensions in the social security systems during the demographic transition and

to a not sustainable steady state after fertility has stabilized.

Economic arguments supporting this phenomenon can be found in the increase of

wages, especially that of women due to higher education (Galor/Weil (1996) and Green-

wood/Seshadri (2002)). In the first macroeconomic models based on Becker (1960)

fertility decisions are rather consumption oriented and the investments into children

by education are ignored (Barro/Becker (1988,1989), Becker/Murphy/Tamura (1990),

Barro/Sala-i-Martin (1995)). As soon as education is considered, the well known in-

teraction between quality and quantity of the offspring comes into play (Becker/Lewis

(1973)). Galor/Weil (2000) propose a uniform growth setting, in which the economy

escapes from a malthusian trap. Contrary to our framework, the quality-quantity trade

off is governed by the technological progress. Opportunity costs do not play any role.

The interaction between quality and quantitiy becomes important when families differ

in abilities and income. Low income families prefer high fertility and invest less in

education per child and the opposite is true for high income families leading to an

intergenerational persistence and redistributional pressure because lower income per-

centiles are growing with a higher fertility rate (Kremer/Chen (2000), Schäfer (2002)

and (2003)). If this is true, it is reasonable to examine how fertility and educational

decisions are affected by heterogeneities. We build up a frame work in which innate

ability is inherited by the parents through an AR(1)-process. The ability governs the

productivity in the education sector and in production.

We use an Uzawa-Lucas framework (Uzawa (1965) and Lucas(1988)) to generate an

endogenous growth process with transitional dynamics. From Ladron-de-Guevara et.al.

(1997), (1999) and Ortiega (2000) it is well known that this framework can generate

multiple equilibria if labor supply is endogenous and human capital does not enter the

utility function. Contrary to them, we show that due to the non-stationary popula-

tion only one steady state is optimal. In addition our framework is stochastic. To

solve the stochastic non-linear system of difference equations we apply a the method of
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eigenvalue-eigenvector decomposition based on Sims (2000) and Novales et. al (1999).

2 The Model

We consider an economy which is populated by continuum of two-period overlapping

generations. Each individuum lives two periods, childhood and adulthood and derives

utility out of consumption c and the number of children n. During childhood (t−1) he

or she is equipped with education e and inherited physical capital k. When adult (t)

he/she takes all the economic relevant decisions concerning savings, and the amount

of time spend for child rearing zn, production u and education 1 − u − zn. The time

budget is normalized to one and z represents the time necessary to raise one child.

Individuums are heterogenous in their abilities to accumulate human capital/educate

their children and to produce the output. When born, each person inherits the abilities

of his/her parents θt−1 which is influenced by a normal and independent distributed

shock ε with mean zero and standard deviation of σ2
ε . Hence the ability shock follows

an AR(1)-process

ln θt = ρ ln θt−1 + εt. (1)

Each generation is altruistic and derives utility out of the discounted period utility of

future generations. Consequently the maximization problem of each dynastic head can

be described as follows

max
{ct;nt;ut;kt+1;et}∞t=0

E0

∞∑
t=0

βt(ln ct + bnµ
t ) (2)

subject to:

ntkt+1 = θt−1k
α
t (utet−1)

1−α + kt + ct (3)

ntet = (1 + θtA(1− ut − znt))et−1 (4)

ln θt = ρ ln θt−1 + εt (5)

ε ∼ N(0, σ2
ε ) (6)
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Forming the Lagrangian and eliminating the Lagrange multiplier leads to the following

optimality conditions

bµ = n1−µ
t

1

ct
(zwtet−1 + ptet + kt+1) (7)

wt = ptθtA (8)

c
(−1)
t nt = βEt{c(−1)

t+1 (1 + rt+1)} (9)

nµ−1
t

ptzwtet−1 + ptet + kt+1

ptnt = βEt

{
nµ−1

t+1

pt+1zwt+1et + pt+1et+1 + kt+2

pt+1(1 + θt+1A(1− znt+1))} (10)

Et{1 + rt+1} = Et

{
wt+1

wt

θt

θt+1

(1 + θt+1A(1− znt+1))

}
(11)

Equations (7) and (8) are the common static optimality conditions, euqalizing the

marginal utilities and wages. Equations (9) and (10) are the Euler equations or opti-

mality conditions for investments in physical and human capital. Consequently they

can be transformed to an arbitrage condition, equalizing the expected revenue out of

physical capital to human capital.

Defining each expectation as W 1
t and W 2

t such that

W 1
t ≡ Et


(
ct+1

et

)(−1)
(
et

et−1

)(−1)

(1 + rt+1)

 (12)

W 2
t ≡ Et


(
ct+1

et

)(−1) (ct
et

)(−1)
(
et

et−1

)(−1)

pt+1(1 + θt+1A(1− znt+1))

 (13)

leads to the associated expectation errors

W 1
t−1 =

(
ct
et−1

)(−1) (
et−1

et−2

)(−1)

(1 + rt)− η1
t (14)

W 2
t−1 =

(
ct
et−1

)(−1) (
ct−1

et−1

)(−1) (
et−1

et−2

)(−1)

pt(1 + θtA(1− znt))− η2
t (15)
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Definition: A steady state is characterized by an equal and constant growth of the

endogenous variables k, c, e, y. The steady state growth rate v∗ equals the accumulation

rate of human capital (1+A(1−u∗− zn∗))/n∗. Reallocations across sectors are closed.

Hence, u∗, w∗, p∗ and n∗ are constant ∀ t.

In the long-run k, c, e are growing at a constant rate v∗. In order to obtain stationary

solutions it is reasonable to form relations. We introduce the following relations

χt ≡ kt

et−1

, (16)

ϕt ≡ ct
et−1

, (17)

with

(
χt+1

χt

)∗
=

(
ϕt+1

ϕt

)∗
= 1 ∀ t.

Consequently, for any steady state the following conditions are to hold

A(1− zn∗) = aBχ∗
a−1

u∗
1−a

, (18)

v∗ =

(
et

et−1

)∗
=
(
ct+1

ct

)∗
= (1 + A(1− u∗ − zn∗)) = β(1 + A(1− zn∗)), (19)

p∗ =
w∗

A
, (20)

ϕ∗ = Bχ∗
a

u∗
1−a

+ χ∗(1− n∗v∗), (21)

ψ∗ ≡ −µb+ n∗
1−µ

[
zw∗

ϕ∗
+
p∗v∗

ϕ∗
+
χ∗v∗

ϕ∗

]
= 0. (22)

Eliminating ϕ∗, χ∗, u∗ in (22) leads to a function ψ∗ = ψ(n∗). Finding the zeros of ψ∗

and substituting for n∗, in ϕ∗, χ∗, u∗ yields the steady state solutions.

As it becomes apparent from Fig. 1 the economy exhibits three steady states.
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Figure 1:

Steady State I

ϕ∗ = 0.027471

χ∗ = 0.019230

u∗ = 0.119926

n∗ = 0.372407

1− u∗ − zn∗ = .712490

v∗ = 5.555036

W 1∗ = 14.735119

W 2∗ = 0.0810472

Steady State II

ϕ∗ = 0.035344

χ∗ = 0.037356

u∗ = 0.096105

n∗ = 1.034117

1− u∗ − zn∗ = 0.438542

v∗ = 1.603118

W 1∗ = 31.802596

W 2∗ = 0.350399
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Steady State III

u∗ = 0.034519

n∗ = 2.145513

v∗ < 1

As expected the three steady states are characterized by an inverse relationship be-

tween fertility and education per child and hence growth per capita v∗.

Furthermore, steady state III is a corner solution in the sense that time is only allo-

cated to production and child rearing. In such an economy the accumulation rate of

human capital is zero. Given that n∗ > 0, the initial stock of human capital per capita

e0 is diluted over time and v∗ < 1. As a consequence, such economies will converge to

zero output and steady state III is not maximizing the objective function.

Similar, steady state I is not sustainable in a demographic sense, despite that time is

allocated to the three sectors. The long-run fertility falls much below the replacement

level. Hence, population is converging to zero and output is converging to zero. Con-

sequently, steady state I cannot maximize the utility of any dynasty, neither.

Therefore, the only feasible steady state, satisfying the first order conditions is steady

state II.

3 The Solution Method

The solution method applied here is based on Sims (1998) and Novales et al. (1999).

The general problem of solving stochastic linear rational expectation models can be

described as follows

Γoyt = Γ1yt−1 + C + Ψzt + Πηt, (23)

where C is a vector of constants, y is a vector of endogenous variables, zt is a vector

of exogenous variables, for example an exogenous stochastic shock, and ηt represents a

vector of rational expectation errors, with E[η] = 0.

Obviously, the problem in the present context is, (contrary, to the general problem (23))

highly non-linear. Despite that fact the first step of the solution adds a stability condi-

tion to the system (23), in order to avoid that unstable paths violate the transversality

conditions. This goal is achieved by linearizing the non-linear system around its steady

state. After adding the stability condition(s) to the nonlinear system, the solutions of
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the endogenous variables are obtained out of the original non-linear system. The gain

of this method is that a high degree of non-linearity of the system is maintained and

the only source of some numerical errors is introduced by stability conditions. Such

errors, due to approximations are absorbed by the expectations errors. As the underly-

ing system is not linearized and the endogenous variables are computed for each period

the introduced error is relatively small, because approximation errors do not cumulate

over time. Clearly, accuracy of the solutions requires more computational effort. The

latter is an important issue, if the errors produced by less demanding methods do cu-

mulate and translate into other endogenous variables. As a consequence, an economy

undergoing an instantaneous shock would not converge to the same initial steady state

and deviate from rationality.

4 The Stability Conditions

The economy is described by the following system derived out of the first order condi-

tions:

ψt = −ψt+1(1 + θtA(1− ut − znt)) + θt−1Bχ
α
t u

1−α
t + χt, (24)

bµ = n1−µ
t

1

ct
(zwtet−1 + ptet + kt+1) (25)

ϕ−1
t =

β

nt

W 1
t (26)

wt =
β

nt

W 2
t (27)

W 1
t−1 =

(
ct
et−1

)(−1) (
et−1

et−2

)(−1)

(1 + rt)− η1
t (28)

W 2
t−1 =

(
ct
et−1

)(−1) (
ct−1

et−1

)(−1) (
et−1

et−2

)(−1)

pt(1 + θtA(1− znt))− η2
t (29)

ln θt = ρ ln θt−1 + εt. (30)

Hence, each equation can be expressed as a function f , such that

f(ϕt, χt+1, ut, nt,W
1
t ,W

2
t , η

1
t , η

2
t , εt, ln(θt)) = 0. (31)
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Defining the vectors yt and yt−1 which contain the deviations from the steady state,

the vector of expectations errors ηt, and the (1× 1) z− vector, yields

yt = (ϕt − ϕ∗, χt+1 − χ∗, ut − u∗, nt − n∗,W 1
t −W 1∗ ,W 2

t −W 2∗ , ln(θt))
′, (32)

ηt = (η1
t , η

2
t )
′ (33)

zt = (εt)
′. (34)

Developing a first-order approximation around the steady state leads to:

∂f

∂yt

∣∣∣∣∣
∗
yt +

∂f

∂yt−1

∣∣∣∣∣
∗
yt−1 +

∂f

∂ηt

∣∣∣∣∣
∗
ηt.+

∂f

∂εt

∣∣∣∣∣
∗
εt = 0, (35)

with η1∗ = η2∗ = ε∗ = C = 0 (36)

the linearized problem can be written as

Γoyt = Γ1yt−1 + Ψzt + Πηt. (37)

Given that Γ0 is not singular and hence invertible multiplying the system from the left

side with Γ−1
0 and defining

Γ̃1 ≡ Γ−1
0 Γ1,

Ψ̃ ≡ Γ−1
0 Ψ,

Π̃ ≡ Γ−1
0 Π,

leads to

yt = Γ̃1yt−1 + Ψ̃zt + Π̃ηt. (38)

By Jordan decomposition of Γ̃1 we receive Γ̃1 = PΛP−1 and through multiplying by

P−1 and defining $t = P−1yt

$t = Λwt−1 + P−1(Ψ̃zt + Π̃ηt). (39)
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The stability conditions are obtained by imposing orthogonality between each eigenvec-

tor associated with an unstable eigenvalue and the vector of variables in it. A general

restriction can be approximated by an upper bound φ on the growth rate of a linear

combination νyt of the variables of the model

lim
s→∞

Et[νytφ
−s] = 0 (40)

(νP ) lim
s→∞

Et[$t+sφ
−s] = 0 (41)

(νP ) lim
s→∞

Et[Λ
s$t + P−1(Ψ̃zt + Π̃ηt)φ

−s] = 0 (42)

(νP )

 lim
s→∞

Et[Λ
s$tφ

−s] + lim
s→∞

Et[P
−1(Ψ̃zt + Π̃ηt)φ

−s]︸ ︷︷ ︸
0

 = 0 (43)

(νP ) lim
s→∞

Et[Λ
s$tφ

−s] = 0. (44)

From the last equation it becomes apparent that each of the $j,t elements of $t corre-

sponding to an unstable eigenvalue, such that |λjj| > φ and νP 6= 0 must be equal to

zero for all t

$jt = P j•yt = 0 ∀ t. (45)

The usual imposed upper bound is that the product out of shadow prices and state

variables cannot grow faster than β−1, so that both shadow prices and state variables

cannot grow faster than β−
1
2 .
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5 Simulating the Model

This section serves to explore the dynamic behavior of the economy under a given

parameter set

α = 0.5 A = 1.5; B = 1; µ = 0.2; b = 77.5; z = 0.45.ρ = 0.95;σε = 0.005

We will restrict our simulation to Steady State I and II. Steady State III is character-

ized by a steady state growth rate smaller than one and is highly unstable. Staying

in this steady state is not optimal and leaving this steady state would either lead to

a convergence to Steady State II or permanent divergence from all steady states. Ob-

viously, a social planer would prefer the former option. As mentioned above, Steady

State I is not sustainable in the demographic sense and would violate the transversal-

ity conditions, but contrary to Steady State III it will be characterized by the same

stability propertiers as steady state I.

5.1 Steady State I

Applying the solution method described above, we receive the following matrices of

eigenvalues Λ and and left eigenvectors P−1

P I−1

= (46)

∣∣∣∣∣∣∣∣∣∣

1 14.3732 −4.106 4.1871 −0.0119 −7.4701 −0.1432

0 26.0842 −0.2169 −0.0976 0.0114 −0.7027 0.3883

0 −50.1807− 39.0195i 10.6908 + 11.4196i 4.8109 + 5.1388i −0.4755− 0.0082i 18.7063− 70.8734i 2.4835− 1.1388i

0 −50.1807 + 39.0195i 10.6908− 11.4196i 4.8109− 5.1388i −0.4755 + 0.0082i 18.7063 + 70.8734i 2.4835 + 1.1388i

0 −13.6545 3.9023 −4.4235 0.0132 7.1207 0.1369

0 76.3919 −21.6905 −8.9556 −0.0621 −37.6713 −0.6939

0 0 0 0 0 0 4.7816

∣∣∣∣∣∣∣∣∣∣

ΛI =

∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0 0

0 −1.7259 0 0 0 0 0

0 0 −0.2687 + 0.2393i 0 0 0 0

0 0 0 −0.2687− 0.2393i 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0.95

∣∣∣∣∣∣∣∣∣∣
. (47)

Obviously, the system is generating real and complex eigenvalues. Whereas the complex

eigenvalues are within the unit circle instability arises by one real eigenvalue. Hence,

one stability condition is given by the second row of P I−1
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  θ                                                

     t 

Figure 2: Ability shock θ

$2,t = P 2•yt = 0 ∀ t (48)

26.0898(χt+1 − χ∗)− 0.2169(ut − u∗)− 0.0976(nt − n∗) (49)

+0.0114(W 1
t −W 1∗)− 0.7027(W 2

t −W 2∗) + 0.3883 ln θt = 0.

A second stability condition needed for the solution is generated out of zero eigenvalue,

which mean that this condition is redundant and not adding any further restriction

$6,t = P 6•yt = 0 ∀ t (50)

76.3919(χt+1 − χ∗)− 21.6905(ut − u∗)− 8.9556(nt − n∗) (51)

−0.0621(W 1
t −W 1∗)− 37.6713(W 2

t −W 2∗)− 0.6939 ln θt = 0.

In Figure 2 the sample realization of θ is shown, which is assumed to be the same for

all the simulations undertaken, here. Obviously, all the endogenous variables are oscil-

lating around their steady state values. As expected, current innate ability and wage
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rate are positively correlated and both are negatively correlated to fertility. Increasing

opportunity costs lead to a lower fertility. The time fraction u allocated to production

and the time fraction allocated to education (1 − u − zn) are also positively corre-

lated to the ability shock (see Figures 7 and 8). Obviously, the considered stochastic

dynamics of the model generates a quality-quantity trade-off, in the sense that high

abilities are generating a high wage rate, high opportunity costs of child bearing and

hence a low fertility traded against higher education per child. The latter increases in

conjunction with the persistence of the inherited ability the opportunity costs of child

rearing for the next generations even more. Leading to an intergenerational persistence

in those variables (n,w, e) over some periods, until the ability shock may reverse the

dynamics.

The expectations errors η1 and η2 are oscillating around the zero line and rational

expectations are full filled (see Figures 10 and 11), such that E[η1] = E[η2] = 0.

5.2 Steady State II

Similar to the above described scenario we reach to the following matrices and stability

conditions

P II−1

= (52)

∣∣∣∣∣∣∣∣∣∣

1 −0.2467 0.1652 −0.4274 0.0014 0.0729 0.01

0 41.6338 −1.7360 −0.7812 0.065 −0.2332 0.8016

0 40.1605 + 3.4177i 13.2252− 10.1408i −5.9513− 4.5634i +0.5227 + 0.0073i −4.3006 + 32.4106i −3.1577 + 0.2908i

0 40.1605− 3.4177i −13.2252 + 10.1408i −5.9513 + 4.5634i +0.5227− 0.0073i −4.3006− 32.4106i −3.1577− 0.2908i

0 −1.6740 1.1549 −4.6850 0.0031 0.5804 0.0780

0 37.1256 −23.6064 −15.6800 −0.0166 −7.8085 −1.1139

0 0 0 0 0 0 6.0110

∣∣∣∣∣∣∣∣∣∣

ΛII =

∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0 0

0 −1.5522 0 0 0 0 0

0 0 −0.7749 + 0.5632i 0 0 0 0

0 0 0 −07749− 0.5632i 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0.95

∣∣∣∣∣∣∣∣∣∣
(53)
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$2,t = P 2•yt = 0 ∀ t (54)

41.6338(χt+1 − χ∗)− 1.7360(ut − u∗)− 0.7812(nt − n∗) (55)

+0.0650(W 1
t −W 1∗)− 0.2332(W 2

t −W 2∗) + 0.8016 ln θt = 0.

$6,t = P 6•yt = 0 ∀ t (56)

37.1256(χt+1 − χ∗)− 23.6064(ut − u∗)− 15.6800(nt − n∗) (57)

−0.0166(W 1
t −W 1∗)− 7.8085(W 2

t −W 2∗)− 1.1139 ln θt = 0.

As can be verified easily from the Figures 2, 12 and 13 fertility, ability and wages

are again negatively correlated. But and especially therefore, the question arises what

makes this steady state different from the other ones ?

The key to the answer seems to lie in the way how time is allocated to the three

activities child rearing, education and production. From considering Figures 16 and

17 it becomes apparent that contrary to Steady State I, u and (1 − u − zn) are not

negatively correlated. High innate abilities lead to a high labor supply, but individuums

increase only (1−u−zn), moderatly. Consequently opportunity costs are not increased

so dramatically as in Scenario I. This allows the economy to sustain a long-run fertility

above the replacement level accompanied by a moderate growth rate. The ability effect

is internalized into the decision to educate children, that allows for fertility above the

replacement level. The opposite was true in the former scenario, so that opportunity

costs for child rearing increased even more in periods of high ability shocks.
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6 Concluding Remarks

In a dynastic endogenous growth setting with endogenous fertility we generated mul-

tiple equilibria. Contrary to the existing literature with endogenous labor supply we

have shown that only one steady state is optimal. Zero output in education leads to a

negative growth rate, because the existing stock of human capital has to be distributed

over a growing population. A high growth equilibrium with a fertility rate below the

replacement level leads to zero population. Consequently, the only remaining outcome

is a steady state with moderate investments in education per child and a fertility above

the replacement level.

Responsible for the described outcome in the later scenarios was the way in which time

was allocated to child rearing, education, and production. High ability shocks lead in

both scenarios to a positive impact on labor supply. The fast growth scenario instead

was characterized by an increase in the time allocated to production and to education,

whereas the sustainable growth scenario is characterized by a only moderate increase

in time allocated to education. This is exactly the underlying key mechanism which

weakens the quality-quantity trade off and allows for a fertility above the replacement

level and moderate growth rates per capita, in the long-run.
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Schäfer, A. (2003) , On the Interaction between Endogenous Fertility and Inequal-

ity, mimeo, University of Rostock.

Sims, C. A. (2000) , Solving Linear Rational Expectations Models, mimeo, Yale

University.

Uzawa, H. (1965), Optimal Technical Change in an Aggregative Model of Economic

Growth, International Economic Review , Vol. 6, pp. 18-31.

18



7 Appendix

7.1 Simulation Results for Scenario I
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Figure 3: Behavior of the fertility in scenario I
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Figure 4: Behavior of the wage rate in scenario I
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Figure 5: Behavior of the capital/human capital relation in scenario I
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Figure 6: Behavior of the consum/human capital relation in scenario I
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Figure 7: Behavior of the time fraction u allocated to production in scenario I
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Figure 8: Behavior of the time fraction 1− u− zn allocated to education in scenario I
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Figure 9: Behavior of the labor supply in scenario I
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Figure 10: Behavior of the expectation error η1 in scenario I
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Figure 11: Behavior of the expectation error η2 in scenario I
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7.2 Simulation Results for Scenario II
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Figure 12: Behavior of the fertility in scenario II
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Figure 13: Behavior of the wage rate in scenario II
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Figure 14: Behavior of the capital/human capital relation in scenario II
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Figure 15: Behavior of the consum/human capital relation in scenario II
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Figure 16: Behavior of the time fraction u allocated to production in scenario II
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Figure 17: Behavior of the time fraction 1− u− zn allocated to education in scenario

II
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Figure 18: Behavior of the labor supply in scenario II
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Figure 19: Behavior of the expectation error η1 in scenario II
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Figure 20: Behavior of the expectation error η2 in scenario II
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