
Structural Breaks
in Inflation Dynamics

Luca Benati∗

Bank of England
George Kapetanios†

Queen Mary University of London

December 2002
(Very preliminary: comments welcome)

Abstract

Are there structural breaks in the dynamics of the inflation process? Does
inflation possess a unit root? Is inflation a highly persistent process? We use
tests for multiple structural breaks at unknown points in the sample, and a
newly developed test for unit roots allowing for up to m structural breaks, to
investigate breaks in inflation dynamics for 23 inflation series from 18 countries
(plus the eurozone), and their implications for the serial correlation properties
of inflation. All inflation series display structural breaks, often highly suggestive
as they appear to broadly coincide with readily identifiable macroeconomic
events, like the breakdown of Bretton Woods, the Volcker disinflation in the
U.S., and the introduction of inflation targeting in several countries. Allowing
for structural breaks, the null of a unit root can be strongly rejected for the
vast majority of the series. Finally, evidence seems to suggest that, in general,
inflation is not a highly persistent process.
We discuss the implications of our rejection of a unit root for Mishkin’s

explanation of time-variation in the extent of the Fisher effect. We argue
that Mishkin’s theory, based on the notion that inflation and interest rates
are cointegrated, is difficult to defend in the light of our evidence against a
unit root for almost all inflation series. The alternative Ibrahim and Williams
(1978)-Barthold and Dougan (1986)-Barsky (1987) explanation, based on the
notion of changes in the extent of inflation forecastability along the sample, is
on the other hand compatible with our findings.
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1 Introduction
Are there structural breaks in the dynamics of the inflation process? Does inflation
possess a unit root? Is inflation a highly persistent process? We use tests for multiple
structural breaks at unknown points in the sample, and a newly developed test for
unit roots allowing for up to m structural breaks, to investigate breaks in inflation
dynamics for 23 inflation series from 18 countries (plus the eurozone), and their im-
plications for the serial correlation properties of inflation1. We document structural
breaks in all the series we analyse. For many countries/series, structural breaks ap-
pear to be clustered around the beginning of the 1970s (16 series for 14 countries),
of the 1980s (14 series for 13 countries), and of the 1990s (14 series for 11 countries).
Further, in several cases estimated break dates are highly suggestive, as they appear
to broadly coincide with readily identifiable macroeconomic events, like the break-
down of Bretton Woods, the Volcker disinflation in the U.S.2, and the introduction of
inflation targeting in several countries. For the U.K., for example, estimated break
dates are 1991:1 based on the CPI, and 1992:3 based on the GDP deflator3. Canada
has an estimated break date in 1991:2 (based on the CPI) 4. New Zealand, which
adopted inflation targeting in February 1990, has a break date in 1989:4. Allowing
for structural breaks, our new unit root test allows us to increase the number of
rejections, compared to standard Dickey-Fuller tests. Finally, conditional on the esti-
mated breaks, inflation series exhibit, in general, little persistence, with the exception
of a few countries—for example, the U.S. and the U.K.—around the time of the Great
Inflation. [Such a conclusion, however, has to be considered for the time being as
tentative. We need more statistical tests on this.]
We discuss an implication of our findings for the Fisher effect. We argue that

Mishkin’s explanation for the well-known, puzzling time variation in the extent of
the Fisher effect seen in the data, based on the notion that inflation and nominal
interest rates are cointegrated, is difficult to defent in the light of our rejection of
a unit root for the vast majority of inflation series. The alternative Ibrahim and
Williams (1978)-Barthold and Dougan (1986)-Barsky (1987) explanation, based on

1A related recent paper is Levin and Piger (2002), who investigate inflation dynamics in 12
industrial countries over the period 1983-2001 by means of both classical and Bayesian methods.
For all series, they find strong evidence of a single structural break in both the intercept and the
innovation variance, but no evidence of a break in the autoregressive coefficients. Conditional on
the identified breaks in the intercept and innovation variance, all inflation series exhibits very little
persistence. As we discuss more extensively below, their results are broadly similar to ours.

2Estimated break dates are 1981:4 based on the CPI, and 1981:2 based on the GNP deflator (see
tables 3 and 18)

3In a broader investigation of changes in the stochastic properties of U.K. macroeconomic time
series over the last decade, compared to the previous post-WWII era, Benati and Talbot (2002)
detect similar breaks in the rate of growth of several national accounts deflators around the period
of the adoption of an inflation targeting regime, in November 1992.

4On changes in the dynamics of Canadian inflation around the time of the adoption of inflation
targeting, in 1991, see also Ravenna (2000).
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the notion of changes in the extent of inflation forecastability along the sample, is
on the other hand compatible with our findings, and is explored in related work in
progress5.
The paper is organised as follows. The next section describes our dataset. Section

3 reports results from tests for multiple structural breaks at unknown points in the
sample, based on the Andrews (1993), Andrews and Ploberger (1994), Bai (1994), and
Bai (1997) methodology. Section 4 describes our new test for a unit root allowing for
up to m structural breaks, and illustrates the results. Section 5 discusses implications
of our findings for the Fisher effect. Section 6 concludes.

2 The data
Our dataset contains 23 inflation series from 18 countries, with markedly different
sample periods6. For the U.K., both the GDP deflator and the CPI7 are from the
Office of National Statistics. The sample periods are 1955:1-2002:2 and, respectively,
1947:1-2002:3. For the U.S., the CPI is from U.S. Department of Labor, Bureau of
Labor Statistics, and is available from 1947:1 to 2002:3. The GNP deflator series is
from Balke and Gordon (1986) for the period 1875:1-1950:1, and from U.S. Depart-
ment of Commerce, Bureau of Economic Analysis, for the period 1950:2-2001:1. For
New Zealand, the CPI is from Statistics New Zealand, and is available from 1925:3
to 2002:2. For Sweden, Australia, Finland, Norway, Portugal, Spain, and Ireland the
CPI is from the OECD database, and is available from 1962:1 to 2001:2. For France
and Australia the GDP deflator is from the OECD database, and is available from
1962:1 to 2001:2. For Canada, the CPI is from Statistics Canada’s website on the
internet. The sample period we consider is 1947:1-2002:2. For Germany, the CPI,
available from 1950:1 to 2002:2 is from the Bundesbank monthly bullettin. [Here
investigate the story of the reunification: it is not clear how it is taken care of in
this series. If we can’t find what they exactly did, we have to drop these results].
The French CPI, available from 1951:1 to 2001:2, is from INSEE. For Italy, the CPI
excluding tobacco items is from ISTAT, and is available from 1947:1 to 2002:3, but
we only consider the period 1948:1-2002:3 to prevent our results from being distorted
by the high inflation and subsequent stabilisation of 1947. The Swiss CPI, available
from 1947:1 to 2002:2, is from Ufficio Federale di Statistica. For Belgium, the CPI,
available from 1947:1 to 2002:2, is from the Belgian central bank. For the Nether-
lands, the CPI is from CBS, the Dutch statistical office, and is available from 1945:4
to 2002:3. For Austria, the CPI is from Statistik Austria, and the sample period is

5Benati and Kapetanios (2002)
6We thank Graham Howard of the Reserve Bank of New Zealand, Peter Stadler of the Swiss

central bank, Raf Wouters of the Belgian central bank, Cees Ullersma of the Dutch central bank, and
Fabio Rumler of the Austrian central bank for kindly providing data for their respective countries.

7More precisely, RPIX, the consumer price index excluding mortage interest payments, which is
the price index targeted by the Bank of England under the current monetary framework.
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1950:1-2002:2. For the eurozone, both the GDP deflator and the HICP are from the
ECB website. The sample period is 1970:1-1998:4 for the HICP, and 1970:1-1998:3 for
the GDP deflator. Only six series—Belgium’s CPI, the U.S. GNP deflator, the GDP
deflators for France, the U.K., and the eurozone, and the U.S. CPI—are seasonally
adjusted. For all the other series we use seasonal dummies. On the other hand, in
the present version of the paper we do not use dummies in order to control for specific
events like the Nixon price controls in the U.S., or the introduction of the poll tax
in the U.K. in April 1990. Although we plan to do this at a later stage, we regard
as extremely unlikely that our results may have been significantly distorted by our
lack of controlling for such one-off events. [Or we may even drop the whole thing:
Fuhrer and Moore, Nelson, and Mankiw and Reis don’t do it, so for compatibility of
the results we may just as well drop it]
Finally, the commercial paper rate series used in section 5.2, available for the

period January 1857-present, has been constructed by linking the commercial paper
rate series from the NBER Historical Database (commercial paper rates, New York
City8; NBER series: 13002), available for the period January 1857-December 1971, to
the commercial paper rate series from the Federal Reserve database (3-month prime
commercial paper rate, averages of daily figures; acronym: CP3M), available for the
period April 1971-present.

3 Results fromTests forMultiple Structural Breaks
at Unknown Points in the Sample

In this section we use the methods of Andrews (1993), Andrews and Ploberger (1994),
Bai (1994), and Bai (1997) to test for multiple structural breaks at unknown points
in the sample in univariate representations for inflation for the 23 inflation series in
our dataset. For each series we estimate the following AR(k) model:

yt = µ+ φ1yt−1 + φ2yt−2 + ...+ φkyt−k + ²t (1)

via OLS, and we test for a structural break at an unknown point in the sample in
the intercept, the AR coefficients, and the innovation variance. Following Andrews
(1993), we assume that the break did not occur in either the first, or that last 15%

8Sources: for the period January 1857-January 1937: Macaulay (1938), pp. A142-161. For the
period February 1937-1942: computed by the NBER based on weekly data in Bank and Quotation
Record, Commercial and Financial Chronicle. For the period 1943-1971: Federal Reserve Board.
Data represent 60-90 day prime endorsed bills for 1858-1859; prime 60-90 day double name for
1860-1923; prime four-six months, double and single names thereafter. Data for 1857 are from rates
given in a Treasury report in bankers’ magazine; rates for 1858 are from the New York Chamber of
Commerce Report, 1858, p. 9; rates for 1859-June 1862 are arithmetic averages between the monthly
averages of Hunt’s Merchants magazine and of Bankers’; rates for July 1862-1865 are estimated from
a table of daily rates from different New York newspapers. Data for 1942-1971 are averages of daily
offerings rates of dealers 60-90 day prime bills.
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of the sample. For each possible breakdate we compute the relevant Wald9 statistic,
and we compare the maximum Wald statistic with the 10% asymptotic10 critical
values tabulated in Andrews (1993). If the null of no structural break is rejected,
we proceed to estimate the breakdate by minimizing the residual sum of squares.
The sample is then split in correspondence to the estimated breakdate, and the same
procedure is repeated for each subsample. If the null of no structural break is not
rejected for either subsample, the procedure is terminated. Otherwise, we estimate
the new breakdate(s), we split the relevant subsample(s) in correspondence to the
estimated breakdate(s), and we proceed to test for structural breaks for hierarchically
obtained subsamples11. The procedure goes on until, for each hierarchically obtained
subsample, the null of no structural break is not rejected at the 10% level. Following
van Dijk, Osborne, and Sensier (2002), throughout the whole procedure we impose
that at least 15% of the sample lies between two consecutively identified breakdates.
After estimating the number of breaks, and getting preliminary estimates of the
breakdates, each breakdate is re-estimated according to the modification of the Bai
(1997) ‘refinement’ procedure proposed by van Dijk, Osborne, and Sensier (2002)12.
Finally, we estimate the model conditional on the identified breakdates. Throughout
the whole process, the lag order for each model is chosen based on the Schwartz
information criterion13. Although, at the stage of making the choice between rejecting
or accepting the null of no structural break for a specific (sub)sample, we uniquely
focus on the sup-Wald statistic, we also report, for each estimated breakdate, Andrews
and Ploberger (1994)’s average and exponential Wald statistics, defined as:

9A key reason for focusing on the sup-, ave-, and exp-Wald versions of the Andrews (1993) and
Andrews and Ploberger (1994) tests is that, as conjectured by Boivin (1999), the -Wald versions of
these tests, compared to the likelihood ratio and to the Lagrange multiplier versions, may exhibit
more power. Cogley and Sargent (2002b) provide preliminary corroborating evidence that this may
indeed be the case for one specific alternative, that of random-coefficients with stochastic volatility.
10[Here discuss the issue of small-sample critical values, and why we don’t even try to compute

them (just a computational nightmare). Stress that this is what people do when they have lots of
series. McConnell and Peres-Quiros have only one series, so they can do it.]
11Here we follow Bai (1997) in estimating multiple structural breaks one at a time.
12Specifically, each of the n estimated break dates is re-estimated conditional on the remaining

n-1 break dates. In implementing the van Dijk, Osborne, and Sensier (2002) modification of the
Bai (1997) procedure, we adopt the following iterative approach. We start by taking the first-stage
estimated break dates as our initial conditions. Then, we re-estimate each break date conditional on
the remaining n-1 break dates. These re-estimated break dates then become the initial conditions
for the next iteration, and so on. The procedure is terminated when, from one iteration to the next,
there is no difference in estimated break dates, so that we have reached a sort of ‘econometric Nash
equilibrium’.
13In particular, SIC is applied to the model estimated over the whole sample, conditional on the

identified breakdates. Ideally, we would like to apply SIC to each identified sub-sample, therefore
allowing each subsample to have a different lag order. Such a strategy, however, presents the
drawback of dramatically complicating the econometrics, given that within such an approach the
problem of selecting the lag order for each identified subsample becomes inextricably intertwined
with the issue of testing for structural breaks.
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Ave−Wald = 1

(N2 −N1 + 1)
N2X
t=N1

Wald (t) (2)

Exp−Wald = ln
 1

(N2 −N1 + 1)
N2X
t=N1

exp [Wald (t)]

 (3)

For each estimated breakdate, and for both the sup-, the ave-, and the exp-Wald
statistics, we report approximated asymptotic critical values computed according
to Hansen (1997). Finally, for each identified subsample, we report the estimated
unconditional mean of the process, the sum of the AR coefficients, and the esti-
mated innovation variance, together with their estimated standard errors. Estimated
standard errors for the unconditional mean–a non-linear function of the estimated
parameters–have been computed according to the delta method described, for ex-
ample, in Campbell, Lo, and MacKinlay (1997).
As we discuss more extensively in what follows, for all the series we detect evidence

of multiple structural breaks. A rejection of the joint hypothesis of constancy in
the intercept, the AR coefficients, and the innovation variance, however, could in
principle be due to a break uniquely in the intercept, uniquely in the innovation
variance, and so on. Unfortunately, understanding what exactly is driving the strong
rejctions we obtain is, in general, not easy14. A first possibility is to run separate
tests for structural breaks for the three sets of coefficients, under the assumption that
the remaining coefficients do not experience any break. Although in what follows we
report results from such tests for the AR coefficients, the intercept, and the innovation
variance taken separately, these results should be considered with extreme caution.
As shown for example by Hansen (1992) in the context of the Nyblom-Hansen test,
structural break tests for individual (sets of) coefficients may have a very low power
when the remaining coefficients, whose stability is not being tested and is instead
assumed, may in fact be subject to breaks as well. A second possibility could to use a
sequential procedure, starting (say) by testing for structural breaks for the innovation
variance (the parameter for which, as we discuss in what follows, based on individual
break tests we find overwhelming evidence of instability) under the assumption of no
breaks in either the intercept or the AR coefficients. After estimating the break dates
for the innovation variance, a second-stage test for structural breaks in either the
mean or the AR coefficients will not follow the Andrews (1993) anymore, due to the
distortion induced by the first-stage testing, but critical values could be computed
via a bootstrap procedure.
Tables 1-23 illustrate the results for the 23 inflation series in our dataset, while

figures 1-9 show, for some selected series, estimates for the unconditional mean of the
process, the innovation variance, and the sum of the AR coefficients for each identified
14We thank Ken West for extremely helpful discussions on this issue. The problem could be easily

solved only under the unrealistic assumption that the log-likelihood is block-diagonal in the three
sets of parameters. Ruling out such an assumption, there seems to be no easy solution.
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sub-sample, together with 90% confidence bands. It is important to stress that, as a
consequence of the first-stage test, standard errors (reported in the tables in paren-
theses) cannot be use to perform tests of equality/inequality of parameters across
sub-samples, and are only valid within sub-samples. This implies, for example, that
the confidence bands are only valid within a specific sub-sample, while the indication
they give of parameter equality/inequality across sub-samples may be misleading. For
all the series we detect evidence of multiple structural breaks at the 10% level, but
the Hansen (1997) p-values are, in the vast majority of cases, extremely small, thus
indicating very strong identification of the break dates. Specifically, for five series we
identify two breaks; for twelve series we identify three breaks; and for the remaining
nine series we identify four breaks. The vast majority of break dates appears to be
clustered around the beginning of the 1970s (16 series, for 14 countries15, have a
break between 1969:3 and 1973:316), of the 1980s (14 series, for 10 countries17 plus
the eurozone, have a break between 1980:1 and 1983:4), and of the 1990s (14 series,
for 10 countries18 plus the eurozone, have a break between 1990:1 and 1993:419). Al-
though the interpretation of such purely statistical evidence is clearly contentious,
the concentration of so many break dates, for so many countries, around the time of
the collapse of the Bretton Woods regime is highly suggestive. For all the countries
and the series in this group, the unconditional mean of the process is estimated to
have increased. In some cases the increase is particularly marked. For New Zealand,
for example, the uncondititional mean jumps from 0.026 to 0.12. For the U.K., the
increase is from 0.044 to 0.144, based on the CPI, and from 0.063 to 0.165 based on
the GDP deflator. For the U.S., based on the CPI, it is from 0.045 to 0.116. For
Italy, based on the CPI, it is from 0.088 to 0.174. For Germany and Switzerland,
on the other hand, the increase is much milder. Based in both cases on the CPI,
the estimated unconditional mean increases from 0.025 to 0.052 and, respectively,
from 0.035 to 0.048. Second, for several countries/series in this group (but not for
all) we estimate a significant increase in the innovation variance. For the U.K., the
estimated standard deviation of the innovation increases from 0.0279 to 0.0729, based
on the GDP deflator, and from 0.0198 to 0.0664, based on the CPI. For Australia,
based on the CPI, it increases from 0.0207 to 0.0603. For Italy, based on the CPI,
it increases from 0.0137 to 0.0582. For Portugal, based on the CPI, it increases from
0.0518 to 0.1852. Finally, as for the sum of the AR coefficients, we estimate relatively
15New Zealand, Sweden, Australia, Germany, France, Italy, Switzerland, the U.K., Belgium, Nor-

way, Portugal, Spain, Ireland, and the U.S..
16We have chosen a four-year interval centered in 1971:3, the quarter of the collapse of Bretton

Woods.
17Canada, Germany, France, Italy, the U.S., the U.K., Switzerland, Norway, Spain, and Ireland.
18Sweden, Australia, Canada, Germany, France, the Netherlands, the U.K., the U.S., Switzerland,

and Spain.
19Our results are therefore broadly in line with those of Levin and Piger (2002), who, for all

the series in their sample, detect evidence of a single structural break in the mean and innovation
variance at the beginning of the 1990s.
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small changes for all countries and series, with the only exception of Germany, Italy,
Switzerland, and Portugal (all based on the CPI).
Tentatively interpreting the second clustering of break dates is less straightfor-

ward, but the beginning of the 1980s is the period in which central banks around the
industrialised world decisively shifted their policies towards inflation-fighting. All the
series displaying a break around this period, indeed, show a decrease in their esti-
mated unconditional mean, sometimes—like in the case of the U.S. and Italian CPI,
and of the U.K. GDP deflator—particularly marked. Finally, interpreting the third
clustering appears as even more difficult. Four countries which exhibit breaks at
the very beginning of the 1990s—the U.K., Sweden, Australia, and Canada—adopted
around those years inflation targeting regimes. For the other countries—Germany,
France, the Netherlands, Switzerland, Spain, the U.S., and the eurozone considered
as a whole—the interpretation is not clear at all, with the possible exception of Ger-
many, which in those years experienced the reunification shock.
[here discuss results for individual countries, and the issue of persistence]
Let’s now consider results from structural breaks tests for individual sets of pa-

rameters20. For each series, we estimated an AR(k) model by OLS, selecting the lag
order based on SIC, and we started by performing three Andrews (1993) and Andrews
and Ploberger (1994) tests for structural breaks in the intercept, in the innovation
variance, and in the AR coefficients considered as a whole, under the assumption that
the sets of parameters which were not being tested for breaks remained constant along
the sample. Tests for the stability of the innovation variance are remarkably uniform
in detecting strong evidence of structural breaks. Based on the sup-Wald statistic,
for only one series (Swedish CPI inflation) we cannot reject the null of stability, with
p-values being, in most cases, extremely small. Based on the ave- and the sup-Wald
statistics21,on the other hand, we can reject the null of stability for all series except
the Swedish and Australian CPI, and the eurozone GDP deflator and, respectively,
the Swedish, Australian, Canadian CPI, and the eurozone’s HICP inflation. Tests
for the stability of the intercept22, on the other hand, are even more uniform in not
rejecting the null of stability: based on the ave- and the exp-Wald statistics, not in a
single instance we reject stability at the 10% level, while based on the sup-Wald test,
we reject stability in only four cases (the GDP deflator and HICP for the eurozone,
and the CPI for Austria and Finland). [here explain why this is not surprising, given
the low power of these individual tests] Finally, as for the autoregressive coefficients
considered as a whole, based on the ave- and the exp-Wald statistics only in one case
we can reject the null of no break (in both cases for Belgium’s CPI), while based on
20The sup-, ave-, and exp-Wald statistics for testing the stability of the innovation variance are

not reported here, but are available upon rquest.
21The sup-, ave-, and exp-Wald statistics for testing the stability of the innovation variance are

not reported here, but are available upon rquest.
22Both for the intercept, and for the AR coefficients considered as a whole, test statistics have

been computed with a Newey-West correction for the covariance matrix.
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the sup-Wald statistic we can reject in 17 cases. The series for which, based on the
sup-Wald statistic, we have no rejection are the CPI for the Netherlands, Norway,
the U.S., Australia, Germany, France, and Italy, and the HICP for the eurozone.
Second, we performed Nyblom-Hansen tests23 for stability in the intercept, in the

innovation variance, and in the AR coefficients considered as a whole, once again
based on the previously estimated AR(k) model for each series (with the lag order
selected based on SIC)24. Results are reported in Table 24. Stability in the variance
was not rejected, even at the 90%, only for 6 series. For five series the rejection was
at the 5% level, while for all the remaining series stability in the innovation variance
was rejected at least at the 1% level. A significant difference compared to the single-
parameter Andrews (1993) and Andrews and Ploberger (1994) tests is given by the
intercept. For 6 series, the rejection is at the 5% level; and for 5 series, the rejection
is at the 10% level. [here try to make sense of this difference with the Andrews test]
As for the sum of the AR coefficients [here write the program and discuss the results]

4 Results from Unit Root Tests Allowing for Up
to m Structural Breaks

Does inflation possess a unit root? Nelson and Plosser (1982) was extremely influen-
tial in establishing the conventional wisdom notion of inflation as a highly persistent
process, possibly possessing a unit root. In the light of our previous evidence in favor
of multiple structural breaks in all the inflation series we analyse, however, the notion
that inflation may possess a unit root should be seen with suspicion. As first discussed
by Perron (1990), failure on the part of a researcher to control for possible structural
breaks in the unconditional mean of a process will spuriously increase its estimated
extent of persistence. In the limit, even a white noise process with an unconditional
mean shifting according to (say) a Markov-switching process will look very much like
a unit root process.
In this section we therefore proceed to re-examine the evidence in favor of a unit

root in inflation based on a newly developed test for unit roots allowing fo up to m
structural breaks. The test we propose follows from the sequential DF t-statistics
proposed by Banerjee, Lumsdaine, and Stock (1992) and Zivot and Andrews (1992)
for the case of a single break. The following model forms the basis of our investigation.

yt = µ0 + µ1t+ αyt−1 +
kX
i=1

γi∆yt−i +
mX
i=1

φiDUi,t +
mX
i=1

ψiDTi,t + ²t (4)

23Specifically, we implemented the Lagrange multiplier version of the Nyblom-Hansen test as
described in Hansen (1992).
24The Nyblom-Hansen procedure tests the null hypothesis that the parameter(s) of interest are

constant, against the alternative that they follow a martingale. As discussed for example by Nyblom
(1989), such an alternative comprises a number of cases of interest, among them random-coefficients,
and a one-time shift at an unknown point in the sample.
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1 − γ(L) has all its roots outside the unit circle, where γ(L) = γ1L + . . . + γkL
k.

We denote the probability limit of the estimated covariance matrix of the vector
(∆yt−1, . . . ,∆yt−k) by Σ. DUi,t and DTi,t are intercept and trend break dummy
variables respectively defined by :

DUi,t = 1(t > Tb,i), DTi,t = 1(t > Tb,i)(t− Tb,i)

where Tb,i + 1 denotes the date of the i-th structural break and 1(.) is the indicator
function taking the value of 1 if the argument of the function is true and 0 otherwise.

To facilitate the analysis we follow Banerjee, Lumsdaine, and Stock (1992) and
Lumsdaine and Papell (1997) and define the following vector of regressors:

zt = (1, t+1, yt−µ̄t, DU1,t+1, . . . ,DUm,t+1, DT1,t+1, . . . , DTm,t+1,∆yt−µ̄, . . . ,∆yt−k+1−µ̄)0

where µ̄ = E(∆yt). Then, yt = z0t−1θ where

θ = (µ0 + (γ(1)− α)µ̄, µ1 + αµ̄,α,φ1, . . . ,φm,ψ1, . . . ,ψm, γ1, . . . , γk)
0

. The sequence of errors is assumed to be a martingale difference sequence with finite
conditional 4 + ξ, ξ > 0, moments. The second conditional moment is denoted by
σ2. Denoting the number of observations for model (4) by T , we rewrite the break
dates as T δ1, . . . , Tδm where 0 < δi < 1, i = 1, . . . ,m are the break fractions. We
also define the scaling matrix

ΞT = diag(T
1/2, T 3/2, T, T 1/2, . . . , T 1/2| {z }

m

T 3/2, . . . , T 3/2| {z }
m

, T 1/2, . . . , T 1/2| {z }
k

)

partitioned conformably to zt. We define the OLS estimator for model (4) and given
break dates as

θ̂(δ1, . . . , δm) = ΨT (δ1, . . . , δm)
−1ζT (δ1, . . . , δm)

where ζT (δ1, . . . , δm) = Ξ−1T
PT
i=1 zt−1(δ1, . . . , δm)yt and

ΨT (δ1, . . . , δm) = Ξ−1T
TX
i=1

zt−1(δ1, . . . , δm)zt−1(δ1, . . . , δm)0Ξ−1T

We also define ϕT (δ1, . . . , δm) = Ξ−1T
PT
i=1 zt−1(δ1, . . . , δm)²t

In order to construct our test we define the following alternative hypotheses:

Hi : α < 1,φi+1 = . . . = φm = ψi+1 = . . . = ψm = 0, i = 1, . . . ,m− 1

Hm : α < 1
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As usual, we denote the null hypothesis α = 1, µ1 = φ1 = . . . = φm = ψ1 = . . . =
ψm = 0 by H0. Clearly, previous testing procedures concentrated on testing H0
against H1 or H2. Our aim is to construct a test of H0 against ∪mi=1Hi. The most
straightforward method involves constructing the relevant t-statistics on the estimate
of α for all possible break partitions for a given break number and all break numbers
from 1 to m and taking the infimum of the set of these t-test statistics. Let us denote
the set of all possible break partitions for a given number of breaks by Ti, i = 1, . . . ,m
and their union over i by T . The distribution under the null hypothesis for a t-test
statistic given the number of breaks and the break fractions follows from Proposi-
tion 1 of Kapetanios (2002) and Remark 1 of Lumsdaine and Papell (1997). The
distribution of the infimum of the t-test statistics, over T , under the null hypothesis
follows directly from Lemma A.4 of Zivot and Andrews (1992). The consistency of
the test is guaranteed by the consistent estimation of the break fractions and the
other coefficients under the alternative of structural breaks proven by, among others,
Bai and Perron (1998). Note that the results of Bai and Perron (1998) concerning
consistency of the estimated coefficients allows for deterministic trends. Nevertheless,
such an approach is unnecessarily computationally intensive25. By Bai and Perron
(1998, pp. 64) we have that a sequential procedure would allow consistent estimation
of break fractions, and therefore consistent estimation of the whole model under the
alternative hypothesis, with only O(T ) least squares operations for any given number
of breaks. We can therefore construct a consistent and less computationally intensive
test using the t-statistics from these least squares operations.
We therefore propose constructing a test using the following grid search scheme

following Bai and Perron (1998).

1. For a given maximum number of breaks, m, start by searching for a single break
and store the t-statistics of the hypothesis α = 1 for all possible partitions over
the sample. Denote the set of all possible partitions as T a1 . Also, denote the
set of t-test statistics by τ 1.

2. Choose the break date associated with the minimum sum of squared residuals
(SSR) given by

SSR =
TX

t=k+2

(yt − µ̂0 − µ̂1t+ α̂yt−1 +
kX
i=1

γ̂i∆yt−i + φ̂1DU1,t + ψ̂1DT1,t)
2

where k is assumed known.

3. Imposing the estimated break date on the sample, start looking for the next
break over all possible partitions in the resulting subsamples. Denote the set

25An alternative procedure to estimate multiple breaks with reduced computational burden has
recently been suggested by Bai and Perron (2000). This procedure could be used instead of the
sequential procedure we suggest in this context.

11



of all possible partitions by T a2 . Obtain the set of t-statistics of the hypothesis
α = 1 over all possible partitions and denote this by τ 2. Append τ 2 to τ 1 to
obtain τ 21 = τ 1 ∪ τ 2.

4. Choose the break with the minimum SSR as the next estimated break.

5. Repeat steps 3 and 4 until m break dates have been estimated. Denote the
resulting sets of all possible partitions as T ai , i = 3, . . . ,m.

6. Adopt as the test statistic, τmmin, the minimum t-statistic over the set τm1 =
τ 1 ∪ τ 2 ∪ . . . ∪ τm.

Before we discuss the asymptotic distribution of this test statistic we note that
we do not look for consecutive breaks or for breaks at the end or beginning of the
sample. Each estimated break is assumed to lie between two subsamples whose size
goes to infinity with rate T as the sample size increases. In other words we impose
a nonzero trimming parameter, ε on each break search. Under the null hypothesis of
a unit root, the test statistic will have a well defined distribution which will be the

same as that of the minimum of
R 1
0 W

∗
i (δ̂i, r)dW (r)/

³R 1
0 W

∗
i (δ̂i, r)dr

´1/2
over δ̂i where

δ̂1 = δ̂1, δ̂i = (δ̂1, . . . , δ̂i−1, δi), i = 2, . . . ,m and W ∗
i (δi, r), δ1 = δ1, δi = (δ1, . . . , δi),

i = 2, . . . ,m, is the continuous time residual from the projection of a Brownian motion
onto the functions [1, r, 1(r > δ1), (r − δ1)1(r > δ1), . . . , 1(r > δi), (r − δi)1(r > δi)].
Note that in δ̂i the only parameter that varies with the minimization is δi. The rest
of the break fractions are given and have been estimated from previous SSR minimi-
sations. This distribution merits further discussion. We firstly note that obviously
the set over which we take the infimum, T a ≡ ∪mi=1T ai , is a subset of the set T , over
which the infimum would have been taken had we simply extended the method used
by Lumsdaine and Papell (1997) to more than two breaks. Therefore, the uniform
convergence in distribution of the test statistics over T a follow straightforwardly from
extending the results of Zivot and Andrews (1992) and Lumsdaine and Papell (1997).
The asymptotic behaviour of the estimates δ̂i depend crucially on whether ε = 0 or
not. If ε = 0, δ̂1 = 0 or 1 with equal probability. Otherwise, δ̂1 converges to some
random variable. For more details see Nunes, Kuan, and Newbold (1995) and Bai
(1998). It is clear that the conditional distribution of δ̂i given δ̂1, . . . , δ̂i−1 is the same
as that of δ̂1. The marginal distribution is however clearly not the same. In any case
the distribution of break fractions and the test statistic is likely to depend on the
trimming parameter, ε. In conclusion, the asymptotic distribution is quite complex
and will be approximated by simulation similarly to previous work in the literature.
Under the alternative hypothesis of up to m structural breaks, the break fractions
and therefore the coefficients of the model are estimated consistently according to Bai
and Perron (1998) and consequently the statistic goes off to minus infinity providing
a consistent test.
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We note the following. Firstly, we distinguish between three cases. The first as-
sumes that ψ1 = . . . = ψm = 0 under both the null and the alternative. This case
will be denoted as case A. The second assumes the same for φ1, . . . ,φm. This will be
denoted as B. The third considers the general model (4) under the alternative and
will be denoted as C. Secondly, we assume that k is known. This assumption is not
crucial to the analysis and may easily be dropped if the results of Ng and Perron
(1995) are taken into account. Their work assumes that the error term in the unit
root model follows an ARMA process but that ADF tests are used. Then, it is shown
that if a data dependent procedure is used to determine k and this data dependent
procedure allows k to rise within specified rates then the distribution of the ADF
tests do not change. Both standard information criteria (AIC, BIC) and sequential
testing procedures are shown to satisfy the required conditions.

The critical values of the test for cases A,B and C are presented in Table ?? for
up to m = 5 and ε = 0.05. For higher m, results are available upon request. The
critical values have been computed by simulation where standard random walks are
generated and used to estimate the relevant model for each case. The errors are
standard normal and generated using the GAUSS pseudo-random number generator.
For all simulations the number of observations for the random walks is set to 250
and the number of replications to 1000. The test statistics for the unit root tests
are presented in Table ??. The above results make interesting reading. The Dickey-
Fuller test statistics reject the null hypothesis of a unit root in favour of stationarity
in about half of the series considered. The tests that incorporate the possibility of
a break under the alternative hypothesis clearly rejects for a much larger number of
series indicating the possible presence of a break distorting the analysis according to
the Dickey-Fuller test. Further, increasing the number of potential breaks considered
we see that in a majority of cases especially for models A and C the number of series
for which the null hypothesis of a unit root is rejected increases.

5 Inflation Persistence, Inflation Forecastability,
and the Time-Varying Fisher Effect

Despite being one of the cornerstones of monetary economics, as documented for
example by Ibrahim and Williams (1978), Barthold and Dougan (1986), and as dis-
cussed at length by Barsky (1987), evidence in favor of the Fisher effect is entirely
absent from the pre-Bretton-Woods period, and it only appears after about 196026.
As stressed for example by Mishkin (1992), evidence pro-Fisher has essentially disap-
26Lack of evidence in favor of the Fisher effect was stressed by Irving Fisher himself, who, in

the Theory of Interest, proposed an explanation based on the notion that agents form inflation
expectations based on a long distributed lag of past inflation. In the end, however, Fisher himself
was dissatisfied with his own theory—see Fisher (1930), pp. [here put exact references].
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peared after the beginning of the 1980s. Figure 10 plots U.S. GNP deflator quarterly
inflation (quoted at an annual rate), and the 3-month U.S. commercial paper rate, for
the period 1875:2-2001:1. Based largely on Meltzer (1986), we divide the monetary
history of the United States since 1875 into the following regimes/historical periods:
the ‘greenback period’, prevailing until 1878:4; the Classical Gold Standard regime
(1879:1-1914:4); the regime Meltzer labels as a ‘gold exchange standard with a cen-
tral bank’, between 1915:1 and 1932:427; the period between 1933:1 and 1941:4, with
‘no clear standard’28; the period of pegged interest rates, between 1942:1 and 1951:1;
the Bretton Woods regime (1951:2-1971:3); the period from the collapse of Bretton
Woods to the end of the Volcker disinflation (1971:4-1982:4); and the most recent
period, after the Volcker disinflation (1983:1-2001:1). The visual impression from
Figure 10 is of a substantial lack of a correlation between movements in inflation and
movements in the commercial paper rate up until the 1950s; of a strong correlation
between the two series between the beginning of the 1950s and the end of the Volcker
disinflation; and of a less clear pattern over the most recent period. Figure 11 shows
results from rolling Fama (1976)-tipe regressions of the ex-post quarterly inflation
rate on a constant and the 3-month commercial paper rate prevailing over the same
quarter, for a rolling window of 20 years29. Specifically, the figure shows rolling es-
timates of the coefficient on the 3-month commercial paper rate, together with 90%
confidence bands. (Confidence bands have been computed by means of a Newey and
West (1987) correction.) The rationale behind Fama (1976) regressions—the method-
ology traditionally employed to investigate the Fisher effect— is that, under rational
expectations, and assuming the Fisher hypothesis to be true, the nominal interest
rate prevailing over a specific time period should contain information on the inflation
rate which will prevail over the same period. In particular, assuming the ex-ante real
interest rate to be constant30, the estimate of the coefficient on the nominal interest
rate should not be significantly different from one, thus implying that movements in
expected inflation translate one-to-one into movements in nominal interest rates. A
number of things are readily apparent from the graph. First, a significant difference
between the years up until mid-1960s and the subsequent period, as far as the width
of the confidence bands is concerned, with the later period being characterised by a
much smaller extent of econometric uncertainty. Second, although for the period up
until mid-1960s it is often not possible to reject, at the 90% level, the null that the
coefficient on the 3-month commercial paper rate is equal to one, rolling estimates
are almost invariably way off the mark, being around zero during the Classical Gold
27Meltzer (1986) takes the departure of Great Britain from the Gold Standard (in the third quarter

of 1931) as the event marking the end of the interwar gold standard. Given our exclusive focus on
the United States, we take instead the first quarter of 1933, when the United States allowed the
dollar to float.
28See Meltzer (1986), table 4.1.
29Very similar results, based on rolling windows of 15 and 25 years, are available upon request.
30An assumption which, needless to say, is very much at odds with the recent macroeconomics

literature.
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Standard period, and being systematically negative over the period between 1914 and
mid-1960s31. After mid-1960s, rolling estimates of the coefficient on the commercial
paper rate gradually increase, taking, over most of the 1970s, values not significantly
different from one. After about 1980 estimates decrease, stabilising, after the end of
the Volcker disinflation, around 0.5, and being significantly different from one.
[here add a section with a discussion of the results from Fama (1976) regressions in

the spirit of Fama (1984), with a decomposition similar to the one he used to discuss
the Fama puzzle in the FX market]
Currently, there are two leading explanations for such a puzzling time-variation

in the extent of the Fisher effect32. First, Barthold and Dougan (1986) and Barsky
(1987) attribute changes in the extent of the Fisher effect to changes in the extent
of inflation forecastability along the sample. To take an extreme case, if inflation is
completely unforecastable in the R2 sense, Fama (1976)-type regressions will fail to
uncover evidence pro-Fisher even in a world in which the Fisher effect holds ex-ante
by assumption/construction. The evidence produced by Benati (2003) of dramatic
changes in the stochastic properties of inflation both in the U.S. and in the U.K. over
the last several decades, and in particular of wide fluctuations in inflation persistence
in both countries—which, as first stressed by Barsky (1987), implies equally marked
fluctuations in the extent of inflation forecastability—is clearly compatible with such
an explanation. A second explanation, put forward by Mishkin in a series of papers33,
is based on the notion that inflation and interest rates are cointegrated. During
certain historical periods they share strong stochastic trends, thus making the Fisher
effect apparent. Over different historical periods, on the other hand, the stochastic
trends they have in common are much more subdued, thus causing the Fisher effect
to all but disappear. In the light of the evidence we have produced in the previous
pages, we regard the Mishkin explanation as unpersuasive, for the simple reason that,
for two series to be cointegrated, they first have to be individually I(1). Although
an investigation of the issue of whether nominal interest rate do contain a unit root
once one allows for possible structural breaks in their unconditional mean is beyond
the scope of this paper, the evidence we have produced against a unit root in almost
31This puzzling pattern, and possible explanations for it, are discussed in Benati and Kapetanios

(2002). In particular, building on the work of Ibrahim and Williams (1978), Barthold and Dougan
(1986), and Barsky (1987), we argue that for the Fisher effect to be detectable via Fama (1976)-type
regressions, two things have to hold. First, inflation has to be forecastable in the R2 sense. Second,
there must be sufficient amount of variation in both inflation and nominal interest rates. For a
number of various, sometimes highly specific, historical reasons, the period between mid-1960s up
until the end of the Volcker disinflation appears to be the only one during which both conditions
held.
32Here we rule out the Friedman and Schwartz (1976) explanation—based on the notion that

economic agents only gradually ‘learned their Fisher’—on purely logical grounds. The partial dis-
appearance of a Fisher effect in recent years documented in the previous paragraph would indeed
imply that, over the last two decades, economic agents have somehow ‘unlearned their Fisher’, which
appears as implausible to us.
33See for example Mishkin (1992).
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all inflation series appears to us to rule out, on purely logical grounds, the Mishkin
explanation. This leaves open the possibility of the alternative Ibrahim and Williams
(1978)-Barthold and Dougan (1986)-Barsky (1987) explanation, which we explore in
related work in progress34.

6 Conclusions
In this paper, we have applied tests for multiple structural breaks at unknown points
in the sample, and a newly developed test for unit roots allowing for up to m struc-
tural breaks, to investigate break in inflation dynamics for 23 inflation series from
from 18 countries (plus the eurozone), in order to produce empirical evidence rele-
vant to the following three questions: (1) Are there structural breaks in the dynamics
of the inflation process? Does inflation possess a unit root? Is inflation a highly
persistent process? We have documented structural breaks in all the series we have
analysed. For many countries/series, structural breaks appear to be clustered around
the beginning of the 1970s (16 series for 14 countries), of the 1980s (14 series for 13
countries), and of the 1990s (14 series for 11 countries). Further, in several cases
estimated break dates are highly suggestive, as they appear to broadly coincide with
readily identifiable macroeconomic events, like the breakdown of Bretton Woods, the
Volcker disinflation in the U.S., and the introduction of inflation targeting in several
countries. Allowing for structural breaks, our new unit root test allows us to increase
the number of rejections, compared to standard Dickey-Fuller tests. Finally, condi-
tional on the estimated breaks, inflation series exhibit, in general, little persistence,
with the exception of a few countries—for example, the U.S. and the U.K.—around
the time of the Great Inflation. As we have stressed, however, such a conclusion
has to be considered as tentative, given the intrinsic difficulty of understanding what
exactly is driving our rejections of the joint hypothesis of constancy in the innovation
variance, the intercept, and the AR coefficients in the autoregressive representations
for inflation series we use.
We have discussed an implication of our findings for the Fisher effect. We have

argued that Mishkin’s explanation for the well-known, puzzling time variation in the
extent of the Fisher effect seen in the data, based on the notion that inflation and
nominal interest rates are cointegrated, is difficult to defent in the light of our rejection
of a unit root for the vast majority of inflation series. The alternative Ibrahim and
Williams (1978)-Barthold and Dougan (1986)-Barsky (1987) explanation, based on
the notion of changes in the extent of inflation forecastability along the sample, is on
the other hand compatible with our findings.

34Benati and Kapetanios (2002)
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Table 1 Estimated structural breaks in UK CPI inflation, 1947:1-2002:3
Estimated structural breaks

1959:2 1971:2 1981:3 1991:1
Sup-Wald 83.881 97.368 32.185 153.153
(p-value) (1.47E-11) (3.00E-14) (0.0171) (0) Lag order: 6
Ave-Wald 43.075 52.291 21.553 68.244 SIC: -6.248
(p-value) (3.62E-09) (4.76E-12) (4.14E-03) (0) AIC: -6.416
Exp-Wald 38.577 44.453 13.330 71.549
(p-value) (1.51E-12) (0) (8.92E-03) (0)

Sub-periods
1947:1-1959:1 1959:2-1971:1 1971:2-1981:2 1981:3-1990:4 1991:1-2002:3

Unconditional 0.044 0.044 0.144 0.054 0.023
mean (0.033) (0.048) (0.077) (0.031) (4.28E-03)

Sum of the 0.445 0.669 0.597 0.599 0.329
AR coefficients (0.209) (0.174) (0.224) (0.151) (0.106)
Innovation 1.00E-03 3.88E-04 5.09E-03 5.46E-04 7.91E-05
variance (2.47E-04) (8.90E-05) (1.29E-03) (1.46E-04) (1.84E-05)

Table 2 Estimated structural breaks in UK GDP deflator inflation,
1955:2-2002:2

Estimated structural breaks
1964:2 1972:4 1981:1 1992:3

Sup-Wald 33.955 31.835 87.574 34.989
(p-value) (8.25E-05) (2.08E-04) (5.6E-16) (5.23E-05) Lag order: 3
Ave-Wald 15.337 18.480 31.743 (14.558) SIC: -5.675
(p-value) (6.78E-04) (6.85E-05) (2.51E-09) (1.18E-03) AIC: -5.761
Exp-Wald 13.131 13.475 39.051 13.698
(p-value) (7.13E-05) (5.09E-05) (2.22E-16) (4.09E-05)

Sub-periods
1955:2-1964:1 1964:2-1972:3 1972:4-1980:4 1981:1-1992:2 1992:3-2002:2

Unconditional 0.031 0.063 0.165 0.058 0.025
mean (5.57E-03) (0.013) (0.030) (5.44E-03) (1.66E-03)

Sum of the -0.464 0.612 0.574 0.195 -0.759
AR coefficients (0.344) (0.217) (0.195) (0.168) (0.310)
Innovation 2.18E-03 7.81E-04 5.31E-03 8.16E-04 3.41E-04
variance (5.72E-04) (2.02E-04) (1.39E-03) (1.78E-04) (8.04E-05)
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Table 3 Estimated structural breaks in US CPI inflation, 1947:2-2002:3
Estimated structural breaks

1958:4 1973:1 1981:4 1990:4
Sup-Wald 66.661 26.185 27.959 50.021
(p-value) (1.84E-11) (2.25E-03) (1.08E-03) (5.35E-08) Lag order: 3
Ave-Wald 25.487 15.393 9.924 19.676 SIC: -6.816
(p-value) (3.36E-07) (6.51E-04) (0.027) (2.81E-05) AIC: -6.893
Exp-Wald 28.697 10.990 10.850 20.455
(p-value) (9.09E-12) (5.66E-04) (6.47E-04) (4.58E-08)

Sub-periods
1947:2-1958:3 1958:4-1972:4 1973:1-1981:3 1981:4-1990:3 1990:4-2002:3

Unconditional 0.018 0.035 0.101 0.040 0.025
mean (0.012) (0.014) (0.015) (4.42E-03) (2.40E-03)

Sum of the 0.502 0.860 0.678 0.179 0.300
AR coefficients (0.179) (0.101) (0.152) (0.204) (0.152)
Innovation 1.44E-03 1.66E-04 6.78E-04 4.60E-04 1.28E-04
variance (3.27E-04) (3.23E-05) (1.72E-04) (1.15E-04) (2.74E-05)

Table 4 Estimated structural breaks in French CPI inflation, 1951:2-2002:2
Estimated structural breaks

1959:3 1973:2 1981:4 1991:1
Sup-Wald 123.751 30.579 87.974 59.907
(p-value) (0) (0.028) (2.33E-12) (4.84E-07) Lag order: 6
Ave-Wald 65.147 11.988 40.236 32.010 SIC: -6.701
(p-value) (0) (0.336) (2.65E-08) (6.91E-06) AIC: -6.879
Exp-Wald 57.815 12.113 39.426 26.218
(p-value) (0) (0.021) (6.70E-13) (1.69E-07)

Sub-periods
1951:2-1959:2 1959:3-1973:1 1973:2-1981:3 1981:4-1990:4 1991:1-2002:2

Unconditional 0.039 0.045 0.116 0.024 0.015
mean (0.107) (0.023) (0.019) (0.049) (0.015)

Sum of the 0.602 0.623 0.511 0.809 0.610
AR coefficients (0.263) (0.213) (0.213) (0.058) (0.175)
Innovation 3.84E-03 4.60E-04 5.75E-04 1.67E-04 8.19E-05
variance (1.32E-03) (9.71E-05) (1.66E-04) (4.54E-05) (1.93E-05)
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Table 5 Estimated structural breaks in German CPI inflation, 1950:1-2002:2
Estimated structural breaks

1960:2 1969:3 1981:3 1993:2
Sup-Wald 132.678 165.230 145.042 154.202
(p-value) (0) (0) (0) (0) Lag order: 1
Ave-Wald 48.559 74.157 63.791 76.372 SIC: -6.936
(p-value) (0) (0) (0) (0) AIC: -7.032
Exp-Wald 61.344 78.788 67.988 72.315
(p-value) (0) (0) (0) (0)

Sub-periods
1950:1-1960:1 1960:2-1969:2 1969:3-1981:2 1981:3-1993:1 1993:2-2002:2

Unconditional 0.021 0.025 0.052 0.029 0.017
mean (0.023) (6.43E-03) (0.021) (0.022) (8.79E-03)

Sum of the 0.451 -0.035 0.611 0.669 0.202
AR coefficients (0.123) (0.154) (0.114) (0.124) (0.125)
Innovation 1.47E-03 2.79E-04 2.02E-04 3.40E-04 1.53E-04
variance (3.51E-04) (6.97E-05) (4.35E-05) (7.42E-05) (3.82E-05)

)

Table 6 Estimated structural breaks in Swedish CPI inflation, 1962:2-2001:2
Estimated structural breaks

1970:1 1977:3 1984:1 1993:3
Sup-Wald 41.590 42.774 42.014 113.742
(p-value) (1.31E-04) (8.06E-05) (1.10E-04) (0) Lag order: 4
Ave-Wald 23.135 20.792 19.715 26.728 SIC: -5.954
(p-value) (2.96E-04) (1.24E-04) (2.36E-03) (3.00E-05) AIC: -6.129
Exp-Wald 17.209 17.709 17.825 52.167
(p-value) (0.860) (0.551) (0.497) (0)

Sub-periods
1962:2-1969:4 1970:1-1977:2 1977:3-1983:4 1984:1-1993:2 1993:3-2001:2

Unconditional 0.041 0.096 0.100 0.062 0.016
mean (0.031) (0.028) (0.031) (0.028) (0.105)

Sum of the 0.491 0.361 0.242 0.464 0.724
AR coefficients (0.302) (0.377) (0.233) (0.238) (0.217)
Innovation 6.56E-04 1.47E-03 9.28E-04 1.43E-03 2.21E-04
variance (2.13E-04) (4.44E-04) (3.09E-04) (3.70E-04) (6.37E-05)
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Table 7 Estimated structural breaks in Swiss CPI inflation, 1947:1-2002:2
Estimated structural breaks

1961:2 1970:3 1983:4 1993:3
Sup-Wald 98.074 29.002 68.010 54.339
(p-value) (0) (0.026) (4.27E-09) (1.64E-06) Lag order: 5
Ave-Wald 44.069 19.082 31.897 30.899 SIC: -6.623
(p-value) 9.85E-10 8.20E-03 3.59E-06 6.84E-06 AIC: -6.776
Exp-Wald 44.562 12.516 29.416 23.861
(p-value) (0) (9.68E-03) (4.76E-09) (7.51E-07)

Sub-periods
1947:1-1961:1 1961:2-1970:2 1970:3-1983:3 1983:4-1993:2 1993:3-2002:2

Unconditional 0.012 0.035 0.048 0.033 8.98E-03
mean (0.016) (7.20E-03) (0.054) (0.041) (6.35E-03)

Sum of the 0.507 -0.293 0.712 0.711 -0.106
AR coefficients (0.165) (0.375) (0.190) (0.154) (0.301)
Innovation 2.98E-04 4.00E-04 1.43E-03 2.30E-04 1.78E-04
variance (6.43E-05) (1.07E-04) (3.04E-04) (5.95E-05) (4.85E-05)

Table 8 Estimated structural breaks in Portugal’s CPI inflation, 1962:2-2001:2
Estimated structural breaks

1973:1 1979:3 1986:2 1995:2
Sup-Wald 83.845 19.605 119.392 87.075
(p-value) (1.00E-14) (0.058) (0) (0) Lag order: 1
Ave-Wald 48.475 10.613 61.892 48.680 SIC: -4.923
(p-value) (2.00E-14) (0.040) (0) (2.00E-14) AIC: -5.040
Exp-Wald 38.792 7.301 55.048 39.856
(p-value) (0) (0.037) (0) (0)

Sub-periods
1962:2-1972:4 1973:1-1979:2 1979:3-1986:1 1986:2-1995:1 1995:2-2001:2

Unconditional 0.065 0.238 0.210 0.089 0
mean (0.028) (0.061) (0.082) (0.046) (5.97E-03)

Sum of the 0.296 -0.249 0.401 0.565 -0.021
AR coefficients (0.156) (0.212) (0.190) (0.142) (0.162)
Innovation 2.68E-03 0.034 6.37E-03 9.32E-04 2.23E-04
variance (6.24E-04) (0.011) (1.92E-03) (2.37E-04) (7.05E-05)
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Table 9 Estimated structural breaks in Spain’s CPI inflation, 1962:2-2001:2
Estimated structural breaks

1973:3 1980:1 1986:3 1992:4
Sup-Wald 20.081 34.570 73.176 47.332
(p-value) (0.090) (4.19E-04) (8.43E-12) (1.65E-06) Lag order: 2
Ave-Wald 10.263 14.587 33.407 25.005 SIC: -5.987
(p-value) (0.104) (9.54E-03) (2.92E-08) (1.10E-05) AIC: -6.123
Exp-Wald 7.109 13.456 32.350 20.207
(p-value) (0.080) (4.01E-04) (4.01E-12) (7.09E-07)

Sub-periods
1962:2-1973:2 1973:3-1979:4 1980:1-1986:2 1986:3-1992:3 1992:4-2001:2

Unconditional 0.073 0.184 0.117 0.059 0.035
mean (0.027) (0.039) (0.052) (9.60E-03) (0.012)

Sum of the 0.459 0.295 0.603 0.251 0.560
AR coefficients (0.183) (0.266) (0.189) (0.162) (0.183)
Innovation 2.18E-03 4.38E-03 7.56E-04 2.17E-04 2.16E-04
variance (5.13E-04) (1.39E-03) (2.39E-04) (7.03E-05) (5.57E-05)

Table 10 Estimated structural breaks in French GDP deflator inflation,
1962:2-2001:2

Estimated structural breaks
1972:1 1983:3 1993:2

Sup-Wald 21.762 61.904 18.906
(p-value) (0.0131) (1.84E-10) (0.038) Lag order: 3
Ave-Wald 11.461 32.706 11.209 SIC: -6.763
(p-value) (0.010) (1.17E-09) (0.012) AIC: -6.859
Exp-Wald 7.864 28.126 7.742
(p-value) (0.010) (1.65E-11) (0.012)

Sub-periods
1962:2-1971:4 1972:1-1983:2 1983:3-1993:1 1993:2-2001:2

Unconditional 0.046 0.109 0.028 0.012
mean (6.88E-03) (6.13E-03) (8.46E-03) (2.93E-03)

Sum of the 0.193 0.259 0.662 0.594
AR coefficients (0.276) (0.202) (0.111) (0.167)
Innovation 1.10E-03 9.27E-04 2.21E-04 4.46E-05
variance (2.77E-04) (2.02E-04) (5.29E-05) (1.17E-05)
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Table 11 Estimated structural breaks in Italy’s CPI inflation
1948:1-2002:3

Estimated structural breaks
1964:4 1973:3 1982:4

Sup-Wald 88.040 43.152 103.879
(p-value) (8.30E-14) (6.89E-05) (0) Lag order: 4
Ave-Wald 40.403 26.957 54.770 SIC: -6.050
(p-value) (2.71E-09) (2.59E-05) (8.63E-14) AIC: -6.189
Exp-Wald 40.058 18.184 48.010
(p-value) (2.26E-14) (3.60E-05) (0)

Sub-periods
1948:1-1964:3 1964:4-1973:2 1973:3-1982:3 1982:4-2002:3

Unconditional 0.036 0.088 0.174 0.036
mean (0.018) (0.114) (0.023) (0.025)

Sum of the 0.108 0.954 0.056 0.789
AR coefficients (0.216) (0.124) (0.240) (0.045)
Innovation 2.96E-03 1.89E-04 3.39E-03 2.06E-04
variance (5.64E-04) (5.15E-05) (8.89E-04) (3.44E-05)

Table 12 Estimated structural breaks in Canada’s CPI inflation
1947:1-2002:2

Estimated structural breaks
1961:3 1982:3 1991:2

Sup-Wald 41.356 72.893 87.481
(p-value) (2.34E-05) (9.68E-12) (7.33E-15) Lag order: 2
Ave-Wald 20.611 35.447 47.163 SIC: -6.217
(p-value) (2.13E-04) (6.68E-09) (1.17E-12) AIC: -6.325
Exp-Wald 17.61541163 32.2737608 39.45630524
(p-value) (8.49E-06) (4.33E-12) (2.78E-15)

Sub-periods
1947:1-1961:2 1961:3-1982:2 1982:3-1991:1 1991:2-2002:2

Unconditional 0.023 0.075 0.047 0.018
mean (0.038) (0.073) (0.010) (5.85E-03)

Sum of the 0.705 0.844 0.354 -0.138
AR coefficients (0.106) (0.075) (0.166) (0.158)
Innovation 1.60E-03 7.11E-04 2.41E-04 3.89E-04
variance (3.21E-04) (1.14E-04) (6.33E-05) (8.81E-05)
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Table 13 Estimated structural breaks in Belgium’s CPI inflation
1947:1-2002:3

Estimated structural breaks
1955:4 1971:1 1985:2

Sup-Wald 90.640 20.950 47.860
(p-value) (0) (0.018) (1.48E-07) Lag order: 3
Ave-Wald 49.173 10.095 18.809 SIC: -5.885
(p-value) (0) (0.025) (5.36E-05) AIC: -5.961
Exp-Wald 41.290 7.026 19.602
(p-value) (0) (0.022) (1.09E-07)

Sub-periods
1947:1-1955:3 1955:4-1970:4 1971:1-1985:1 1985:2-2002:3

Unconditional 0.024 0.026 0.078 0.021
mean (0.029) (4.72E-03) (0.011) (2.23E-03)

Sum of the 0.377 0.288 0.597 0.048
AR coefficients (0.237) (0.227) (0.149) (0.183)
Innovation 0.010 6.89E-04 1.12E-03 3.08E-04
variance (2.79E-03) (1.29E-04) (2.17E-04) (5.37E-05)

Table 14 Estimated structural breaks in Dutch CPI inflation
1945:4-2002:3

Estimated structural breaks
1961:2 1974:2 1991:3

Sup-Wald 89.415 140.495 70.575
(p-value) (2.78E-15) (0) (2.98E-11) Lag order: 2
Ave-Wald 26.430 83.525 29.924 SIC: -5.754
(p-value) (4.10E-06) (0) (3.52E-07) AIC: -5.860
Exp-Wald 40.313 66.152 31.435
(p-value) (1.11E-15) (0) (1.01E-11)

Sub-periods
1945:4-1961:1 1961:2-1974:1 1974:2-1991:2 1991:3-2002:3

Unconditional 0.044 0.057 0.030 0.028
mean (0.025) (0.021) (0.034) (0.014)

Sum of the 0.048 0.164 0.832 0.092
AR coefficients (0.190) (0.167) (0.073) (0.203)
Innovation 7.63E-03 1.25E-03 4.08E-04 2.50E-04
variance (1.47E-03) (2.60E-04) (7.27E-05) (5.66E-05)
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Table 15 Estimated structural breaks in Norway’s CPI inflation
1962:2-2001:2

Estimated structural breaks
1970:1 1982:2 1988:3

Sup-Wald 41.775 44.292 120.523
(p-value) (1.951E-05) (6.44E-06) (0) Lag order: 2
Ave-Wald 18.611 25.857 54.444 SIC: -6.228
(p-value) (7.84E-04) (6.10E-06) (4.88E-15) AIC: -6.365
Exp-Wald 16.978 19.212 56.122
(p-value) (1.550E-05) (1.85E-06) (0)

Sub-periods
1962:2-1969:4 1970:1-1982:1 1982:2-1988:2 1988:3-2001:2

Unconditional 0.038 0.094 0.070 0.027
mean (0.014) (0.019) (0.030) (7.01E-03)

Sum of the 0.066 0.238 0.559 0.387
AR coefficients (0.270) (0.198) (0.171) (0.144)
Innovation 1.00E-03 2.00E-03 3.50E-04 2.09E-04
variance (2.96E-04) (4.31E-04) (1.14E-04) (4.36E-05)

Table 16 Estimated structural breaks in Finland’s CPI inflation
1962:2-2001:2

Estimated structural breaks
1976:4 1984:3 1994:1

Sup-Wald 91.235 74.739 106.017
(p-value) (3.33E-16) (1.30E-12) (0) Lag order: 1
Ave-Wald 40.843 31.023 47.278 SIC: -6.331
(p-value) (9.76E-12) (2.04E-08) (5.94E-14) AIC: -6.448
Exp-Wald 41.999 33.819 48.752
(p-value) (1.11E-16) (3.81E-13) (0)

Sub-periods
1962:2-1976:3 1976:4-1984:2 1984:3-1993:4 1994:1-2001:2

Unconditional 0.087 0.090 0.040 0.017
mean (0.039) (0.044) (0.024) (0.010)

Sum of the 0.685 0.607 0.687 0.420
AR coefficients (0.103) (0.145) (0.123) (0.195)
Innovation 2.14E-03 4.92E-04 2.14E-04 2.18E-04
variance (4.21E-04) (1.36E-04) (5.28E-05) (6.16E-05)
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Table 17 Estimated structural breaks in Austrian CPI inflation
1950:1-2002:2

Estimated structural breaks
1957:3 1967:1 1984:2

Sup-Wald 109.429 34.815 104.076
(p-value) (0) (1.55E-04) (0) Lag order: 1
Ave-Wald 62.438 19.278 54.910 SIC: -5.417
(p-value) (0) (1.27E-04) (1.10E-16) AIC: -5.513
Exp-Wald 50.358 14.536 47.881
(p-value) (0) (6.27E-05) (0)

Sub-periods
1950:1-1957:2 1957:3-1966:4 1967:1-1984:1 1984:2-2002:2

Unconditional 0.091 0.038 0.056 0.024
mean (0.110) (0.024) (0.010) (5.55E-03)

Sum of the 0.389 -0.290 0.252 -0.135
AR coefficients (0.181) (0.158) (0.125) (0.106)
Innovation 0.026 4.90E-03 9.23E-04 4.14E-04
variance (7.49E-03) (1.21E-03) (1.63E-04) (7.11E-05)

Table 18 Estimated structural breaks in US GNP deflator inflation
1875:2-2002:2

Estimated structural breaks
1921:1 1952:4 1981:2

Sup-Wald 62.75063849 234.1384532 47.08569746
(p-value) (1.22505E-10) (0) (2.11811E-07) Lag order: 3
Ave-Wald 42.51248691 136.6287018 21.50355586 SIC: -5.559409798
(p-value) (4.54636E-13) (0) (7.10303E-06) AIC: -5.517833688
Exp-Wald 28.0683342 113.0183165 19.0299126
(p-value) (1.75168E-11) (0) (1.95792E-07)

Sub-periods
1875:2-1920:4 1921:1-1952:3 1952:4-1981:1 1981:2-2002:2

Unconditional 0.020522024 0.021550585 0.066355167 0.022907437
mean (0.013307948) (0.016773979) (0.044698179) (0.003513926)

Sum of the 0.40573414 0.69865533 0.958596364 0.732876942
AR coefficients (0.105088887) (0.068697235) (0.04861721) (0.0504)
Innovation 0.011248818 0.003199415 0.000205444 6.12803E-05
variance (0.001199128) (0.000407974) (2.7702E-05) (9.62928E-06)
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Table 19 Estimated structural breaks in Australia’s CPI inflation
1962:2-2001:2

Estimated structural breaks
1970:4 1977:1 1991:1

Sup-Wald 49.713 34.823 55.208
(p-value) (1.99E-07) (1.54E-04) (1.54E-08) Lag order: 1
Ave-Wald 22.973 19.518 29.107 SIC: -5.941
(p-value) (8.72E-06) (1.07E-04) (8.81E-08) AIC: -6.058
Exp-Wald 20.865 14.049 23.770
(p-value) (1.48E-07) (9.86E-05) (8.63E-09)

Sub-periods
1962:2-1970:3 1970:4-1976:4 1977:1-1990:4 1991:1-2001:2

Unconditional 0.027 0.120 0.083 0.023
mean (7.97E-03) (0.043) (0.011) (0.011)

Sum of the 0.080 0.416 0.299 0.149
AR coefficients (0.183) (0.216) (0.106) (0.146)
Innovation 4.29E-04 3.64E-03 7.38E-04 8.09E-04
variance (1.15E-04) (1.15E-03) (1.46E-04) (1.88E-04)

Table 20 Estimated structural breaks in New
Zealand’s inflation 1925:4-2002:2

Estimated structural breaks
1970:1 1989:4

Sup-Wald 62.937 139.113
(p-value) (3.93E-10) (0) Lag order: 1
Ave-Wald 38.459 39.885 SIC: -5.267
(p-value) (6.36E-11) (2.08E-11) AIC: -5.341
Exp-Wald 27.282 64.557
(p-value) (2.67E-10) (0)

Sub-periods
1925:4-1969:4 1970:1-1989:3 1989:4-2002:2

Unconditional 0.026 0.121 0.020
mean (0.012) (0.025) (7.91E-03)

Sum of the 0.395 0.500 0.379
AR coefficients (0.070) (0.098) (0.096)
Innovation 2.43E-03 2.70E-03 2.89E-04
variance (2.63E-04) (4.43E-04) (6.03E-05)
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Table 21 Estimated structural breaks in Ireland’s
CPI inflation 1962:2-2001:2

Estimated structural breaks
1973:1 1983:4

Sup-Wald 41.486 93.788
(p-value) (2.21E-05) (3.3E-16) Lag order: 2
Ave-Wald 20.300 50.732 SIC: -5.417
(p-value) (2.61E-04) (8.04E-14) AIC: -5.552
Exp-Wald 17.548 43.382
(p-value) (9.05E-06) (0)

Sub-periods
1962:2-1972:4 1973:1-1983:3 1983:4-2001:2

Unconditional 0.0614 0.157 0.031
mean (0.023) (0.035) (0.012)

Sum of the 0.295 0.221 0.561
AR coefficients (0.219) (0.203) (0.110)
Innovation 2.01E-03 6.18E-03 4.36E-04
variance (4.79E-04) (1.40E-03) (7.65E-05)

Table 22 Estimated structural breaks in Eurozone’s
GDP deflator inflation 1970:2-1998:3

Estimated structural breaks
1984:2 1992:2

Sup-Wald 32.462 62.962
(p-value) (1.09E-05) (1.75E-12) Lag order: 1
Ave-Wald 13.657 24.095 SIC: -6.318
(p-value) (1.60E-04) (3.60E-08) AIC: -6.390
Exp-Wald 12.223 27.115
(p-value) (2.00E-04) (9.82E-04)

Sub-periods
1970:2-1984:1 1984:2-1992:1 1992:2-1998:3

Unconditional 0.126 0.077 0.042
mean (7.38E-03) (3.48E-03) (3.59E-03)

Sum of the 0.468 -0.252 0.126
AR coefficients (0.119) (0.165) (0.178)
Innovation 8.48E-04 6.05E-04 2.52E-04
variance (1.65E-04) (1.56E-04) (7.29E-05)
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Table 23 Estimated structural breaks in Eurozone’s
HICP inflation, 1970:2-1998:4

Estimated structural breaks
1981:2 1993:2

Sup-Wald 109.033 69.747
(p-value) (0) (4.45E-11) Lag order: 2
Ave-Wald 38.970 29.309 SIC: -7.542
(p-value) (5.10E-10) (5.44E-07) AIC: -7.71
Exp-Wald 50.123 30.986
(p-value) (0) (1.60E-11)

Sub-periods
1970:2-1981:1 1981:2-1993:1 1993:2-1998:4

Unconditional 0.098 0.039 0.015
mean (0.035) (0.034) (0.022)

Sum of the 0.708 0.858 0.664
AR coefficients (0.134) (0.053) (0.168)
Innovation 3.99E-04 1.03E-04 5.41E-05
variance (9.40E-05) (2.24E-05) (1.85E-05)
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Table 24 Results from Nyblom-Hansen tests
for individual sets of parameters

Intercept Variance AR coeffs
UKCPI NR NR
SWICPI NR NR
BELCPI 5% 1%
NETHCPI NR 1%
AUSTRIACPI 5% 5%
FINCPI 5% 1%
NORCPI 10% 10%
PORCPI 10% 5%
SPACPI 10% 1%
IRECPI NR 5%
FRAGDPDEF 10% 1%
UKGDPDEF NR 5%
USCPI NR 1%
EUROGDPDEF 5% NR
EUROHICP 10% 5%
NZCPI 5% NR
SWECPI NR NR
AUCPI NR NR
CANCPI NR 1%
GERCPI NR 1%
FRACPI NR 1%
ITACPI NR 1%
USGNPDEF 5% 1%
For details, see text. NR=no rejection even at the 10%
level; 1%=rejection at the 1% level; 5%=rejection at the
5% level; 10%=rejection at the 10% level.
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Table 25 Critical values for __ for
models A, B, and C

Significance level
Model m 0.1 0.05 0.025 0.01

1 -4.661 -4.938 -5.173 -5.338
2 -5.467 -5.685 -5.965 -6.162

A 3 -6.265 -6.529 -6.757 -6.991
4 -6.832 -7.104 -7.361 -7.560
5 -7.398 -7.636 -7.963 -8.248
1 -4.144 -4.495 -4.696 -5.014
2 -4.784 -5.096 -5.333 -5.616

B 3 -5.429 -5.726 -6.010 -6.286
4 -5.999 -6.305 -6.497 -6.856
5 -6.417 -6.717 -6.998 -7.395
1 -4.820 -5.081 -5.297 -5.704
2 -5.847 -6.113 -6.344 -6.587

C 3 -6.686 -7.006 -7.216 -7.401
4 -7.426 -7.736 -7.998 -8.243
5 -8.016 -8.343 -8.593 -9.039
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Table 26 Tests Statistics for Unit Root test with breaks for model A
Country Maximum break number

1 2 3 4 5
New Zealand -6.098** -6.885** -6.885* -9.935** -10.361**
Sweden -4.180 -4.935 -5.290 -5.668 -5.727
Australia -4.943* -5.579 -6.609* -7.802** -8.105*
Canada -7.854** -9.137** -9.137** -9.137** -9.137**
Germany -7.522** -8.150** -8.356** -8.735** -9.031**
France -4.995* -5.974* -7.329** -9.230** -9.230**
Italy -4.896 -6.705** -11.064** -11.521** -11.725**
U.S. -11.057** -12.914** -12.914** -13.520** -13.949**
U.K. -7.331** -8.937** -8.937** -8.937** -9.062**
Switzerland -4.637 -5.257 -6.348 -6.348 -6.671
Belgium -8.592** -9.550** -10.014** -11.107** -11.640**
Netherland -5.880** -7.484** -8.130** -8.130** -9.448**
Austria -6.177** -6.195** -6.195 -6.195 -6.195
Finland -4.905 -5.552 -5.991 -6.298 -6.563
Norway -4.883 -6.090* -6.594* -8.041** -8.675**
Portugal -7.267** -8.102** -14.064** -15.230** -17.477**
Spain -6.308** -7.199** -7.821** -8.829** -13.416**
Ireland -4.065 -5.304 -5.777 -6.757 -7.164
France -3.904 -7.689** -13.886** -14.653** -14.653**
U.K. -4.448 -7.621** -7.621** -7.621** -14.540**
U.S. -5.917** -7.692** -8.483** -9.720** -9.951**
Euro1 -3.586 -4.195 -4.728 -5.415 -5.415
Euro2 -6.733** -7.180** -7.622** -8.827** -9.380**
No. of rejections (5%) 2 2 3 0 1
No. of rejections (1%) 12 15 14 17 16
Single stars indicate rejection at the 5% significance level.
Double stars indicate rejection at the 1% significance level.
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Table 27 Tests Statistics for Unit Root test with breaks for model A
Country Maximum break number

1 2 3 4 5
New Zealand -6.098** -6.885** -6.885* -9.935** -10.361**
Sweden -4.180 -4.935 -5.290 -5.668 -5.727
Australia -4.943* -5.579 -6.609* -7.802** -8.105*
Canada -7.854** -9.137** -9.137** -9.137** -9.137**
Germany -7.522** -8.150** -8.356** -8.735** -9.031**
France -4.995* -5.974* -7.329** -9.230** -9.230**
Italy -4.896 -6.705** -11.064** -11.521** -11.725**
U.S. -11.057** -12.914** -12.914** -13.520** -13.949**
U.K. -7.331** -8.937** -8.937** -8.937** -9.062**
Switzerland -4.637 -5.257 -6.348 -6.348 -6.671
Belgium -8.592** -9.550** -10.014** -11.107** -11.640**
Netherland -5.880** -7.484** -8.130** -8.701** -9.448**
Austria -6.177** -6.195** -6.195 -6.195 -6.195
Finland -4.905 -5.552 -5.991 -6.298 -6.563
Norway -4.883 -6.090* -6.594* -8.041** -8.675**
Portugal -7.267** -8.102** -14.064** -15.230** -17.477**
Spain -6.308** -7.199** -7.821** -8.829** -13.416**
Ireland -4.065 -5.304 -5.777 -6.757 -7.164
France -3.904 -7.689** -13.886** -14.653** -14.653**
U.K. -4.448 -7.621** -7.621** -7.621** -14.540**
U.S. -5.917** -7.692** -8.483** -9.720** -9.951**
Euro1 -3.586 -4.195 -4.728 -5.415 -5.415
Euro2 -6.733** -7.180** -7.622** -8.827** -9.380**
No. of rejections (5%) 2 2 3 0 1
No. of rejections (1%) 12 15 14 17 16
Single stars indicate rejection at the 5% significance level.
Double stars indicate rejection at the 1% significance level.
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Table 28 Tests Statistics for Unit Root Test with Breaks for Model B
Country Maximum break number

1 2 3 4 5
New Zealand -5.343** -5.725** -8.653** -9.233** -13.336**
Sweden -4.464 -4.715 -4.833 -5.033 -5.452
Australia -4.289 -5.021 -5.694 -5.694 -6.032
Canada -7.016** -7.698** -9.182** -9.182** -9.182**
Germany -7.466** -7.686** -8.018** -8.080** -8.127**
France -4.954* -5.381* -5.901* -6.695* -7.393**
Italy -4.909* -5.468* -10.550** -10.618** -11.202**
U.S. -10.715** -10.753** -10.849** -11.183** -16.528**
U.K. -6.691** -7.896** -8.505** -8.898** -8.898**
Switzerland -4.833* -4.927 -5.642 -5.922 -6.471
Belgium -8.556** -8.934** -9.647** -9.853** -9.853**
Netherland -5.210** -5.879** -7.104** -7.250** -7.751**
Austria -7.491** -9.507** -10.038** -10.236** -10.763**
Finland -3.482 -5.183* -6.004* -6.474* -9.094**
Norway -4.619* -4.908 -5.381 -5.980 -6.806*
Portugal -13.046** -13.334** -13.556** -13.662** -14.079**
Spain -5.584** -6.698** -11.810** -12.421** -12.692**
Ireland -3.122 -3.741 -4.362 -4.429 -4.528
France -6.681** -6.965** -11.843** -12.172** -12.628**
U.K. -4.704* -6.290** -6.696** -7.203** -8.596**
U.S. -6.135** -6.453** -7.540** -8.082** -8.447**
Euro1 -3.570 -3.689 -4.529 -5.429 -6.280
Euro2 -6.508** -6.671** -6.859** -7.184** -7.596**
No. of rejections (5%) 6 3 2 2 1
No. of rejections (1%) 13 14 15 15 17
Single stars indicate rejection at the 5% significance level.
Double stars indicate rejection at the 1% significance level.
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Table 29 Tests Statistics for Unit Root Test with Breaks for Model C
Country Maximum break number

1 2 3 4 5
New Zealand -6.032** -6.817** -6.817 -7.905* -8.572*
Sweden -4.639 -5.047 -6.114 -6.807 -7.898
Australia -5.483* -6.389* -6.757 -7.444 -7.927
Canada -7.970** -9.510** -9.510** -9.510** -9.510**
Germany -7.877** -8.495** -8.912** -9.227** -9.484**
France -5.547* -5.547 -8.784** -9.132** -9.132**
Italy -10.374** -10.897** -11.684** -11.684** -11.684**
U.S. -11.575** -12.881** -12.881** -13.755** -14.437**
U.K. -7.167** -7.784** -7.829** -8.344** -8.356*
Switzerland -5.337* -6.235* -6.639 -7.580 -8.670*
Belgium -9.250** -9.250** -9.250** -9.250** -9.250**
Netherland -5.867** -8.103** -8.910** -9.328** -9.410**
Austria -8.400** -10.208** -10.592** -10.881** -11.269**
Finland -5.053 -5.450 -8.307** -8.766** -8.772*
Norway -5.020 -5.742 -6.515 -6.515 -6.515
Portugal -13.826** -15.168** -16.469** -16.544** -17.491**
Spain -6.523** -11.926** -11.926** -11.926** -11.926**
Ireland -4.672 -5.795 -6.623 -7.335 -7.335
France -7.291** -12.577** -13.519** -13.519** -13.519**
U.K. -6.736** -8.089** -13.631** -14.897** -16.856**
U.S. -7.018** -7.405** -8.010** -8.010* -8.010
Euro1 -3.686 -4.102 -4.102 -4.102 -4.777
Euro2 -6.701** -7.626** -8.305** -8.578** -9.894**
No. of rejections (5%) 3 2 0 2 4
No. of rejections (1%) 15 15 16 15 13
Single stars indicate rejection at the 5% significance level.
Double stars indicate rejection at the 1% significance level.
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Table 30 Tests Statistics for Dickey-Fuller Unit Root
test

Country Maximum break number
1 2 3

New Zealand -2.643** -3.687** -3.863*
Sweden -1.209 -2.367 -2.690
Australia -1.231 -2.523 -2.721
Canada -4.800** -5.769** -5.812**
Germany -3.759** -6.549** -6.471**
France -2.111* -3.361* -3.440*
Italy -2.186* -3.247* -3.226
U.S. -6.398** -10.369** -10.555**
U.K. -4.647** -5.553** -5.797**
Switzerland -2.363* -3.617** -3.585*
Belgium -4.258** -6.168** -6.181**
Netherland -2.885** -4.743** -4.831**
Austria -4.588** -5.875** -5.909**
Finland -1.281 -2.159 -2.645
Norway -1.260 -2.785 -3.168
Portugal -1.548 -2.753 -2.893
Spain -1.244 -2.028 -2.343
Ireland -1.164 -2.128 -2.513
France -1.222 -1.406 -1.739
U.K. -2.013* -3.031* -3.056
U.S. -2.629** -3.926** -4.043**
Euro1 -1.034 -1.024 -2.861
Euro2 -1.309 -2.593 -5.588**
No. of rejections (5%) 4 3 5
No. of rejections (1%) 9 10 9
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Figure 1: UK GDP deflator inflation (1955:2-2002:2), estimated structural breaks in
the mean, innovation standard deviation, and AR coefficients
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Figure 2: US CPI inflation (1947:2-2002:3), estimated structural breaks in the mean,
innovation standard deviation, and AR coefficients
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Figure 3: Canada’s CPI inflation (1947:1-2002:2), estimated structural breaks in the
mean, innovation standard deviation, and AR coefficients
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Figure 4: Belgium’s CPI inflation (1947:1-2002:3), estimated structural breaks in the
mean, innovation standard deviation, and AR coefficients
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Figure 5: Italian CPI inflation (1948:1-2002:3), estimated structural breaks in the
mean, innovation standard deviation, and AR coefficients
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Figure 6: French CPI inflation (1951:2-2002:2), estimated structural breaks in the
mean, innovation standard deviation, and AR coefficients
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Figure 7: German CPI inflation (1950:1-2002:2), estimated structural breaks in the
mean, innovation standard deviation, and AR coefficients
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Figure 8: Swiss CPI inflation (1947:1-2002:2), estimated structural breaks in the
mean, innovation standard
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Figure 9: New Zealand’s CPI inflation (1925:4-2002:2), estimated structural breaks
in the mean, innovation standard deviation, and AR coefficients
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Figure 10: U.S. GNP deflator inflation and the commercial paper rate, 1875:2-2001:1
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Figure 11: Evidence of time-variation in the extent of the Fisher effect in the U.S.:
rolling estimates of beta from Fama (1976) regressions (rolling window: 20 years)

49


