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Abstract

The extremal index of a time series describes its tendency to cluster by observations above
high thresholds. This phenomena, very common in financial time series, is referred to as volatility
clustering. Recent research has shown the theoretical feasibility of computing the extremal index
for a GARCH(1,1) process, though it has so far not been done in practice. Any GARCH(1,1)
process can be expressed in the context of stochastic difference equations, but, unlike the case
of ARCH(1), this does not help in computing the cluster-size distribution of those observations
exceeding high thresholds. I approach computing this distribution by simulating the joint be-
haviour of the sequence of returns and volatility-returns, coercing the first observation of both
processes to be extreme in some sense. This method is related to the notion of rejection sam-
pling, and it avoids the intensive computation required in generating GARCH observations.
Through a double random walk embedded in the stochastic difference equations, I first gener-
ate independent chains and then evaluate the empirical cluster-size distribution of observations
above the thresholds.
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1 Introduction

For discrete-time continuous-valued stationary time series the parameter which describes the
strength of short-range dependence is the extremal index 6, with 0 < § < 1, where the level
of extremal dependence increases with decreasing 6. Formally, if X;,..., X, is a stationary se-
quence of random variables satisfying the long-range asymptotic independence condition D(uy,)
of Leadbetter et al. (1983) then

Pr{max(Xi,..., X,) < u,} — {G(z)}? as n — oc.

The normalizing sequence w,, = a,x + by, with a,, > 0 and b,, € R, is selected to ensure that the
limit distribution is non-degenerate, and G(x) is the limit distribution of Pr{max(X7y,..., X}) <

un}. Here, X{,..., X represents a sequence of random variables independent, but with the



same univariate marginal distribution as X1, ..., X,,. This result shows that 6 is the key measure
of short-range dependence in extreme values, with the value § = 1 being of particular importance
as the asymptotic behaviour of max(Xy,...,X,) and max(X7,...,X})) is identical even in
presence of dependence in the sequence X1, ..., X,.

Subject-matter specialists for financial time series decompose the series into a volatility
term and a innovation series. There are three standard types of volatility dependence model:
autoregressive conditional heteroskedastic (ARCH), stochastic volatility (SV) and generalised
ARCH (GARCH). The extremal index is known for the first two of these, see de Haan et al.
(1989) and Breidt and Davis (1998) respectively, whereas Mikosch and Starica (2000) shows that
the extremal index in GARCH(1, 1) can be computed. They refrain from numerical evaluation
of § in GARCH(1, 1) processes, but they show several nice properties of regular variation. Here

we develop an algorithm for the evaluation of the extremal index for the GARCH process.

2 Technical conditions for the square of GARCH(1,1)

Given a multiplicative process X; = 04X z¢, we can define the GARCH(1, 1) processes, introduced
by Bollerslev (1986), as the volatility o; takes the form

or=(B+ X7, + 703—1)1/2

and z; is referred to as a White Noise term 2, ~ WN(0,02). For stationarity, of both X; and
o¢, we need some specific constraint for A and ~. If no otherwise stated, we assume the stronger
condition of Gaussianity for z;, thus z; ~ N(0,02).

In a recent work Mikosch and Staricd (2000) show that computing the extremal index for
a GARCH(1,1) process is feasible, even though they refrain from calculating numerically the
values of 6 given the values (\,7). To prove that the extremal index can be computed in
GARCH(1,1) processes it is necessary to go through the work of Davis and Hsing (1995) ex-
tended by Davis and Mikosch (1998).

The strategy adopted by de Haan et al. (1989), for the evaluation of  in ARCH(1) processes,
is based on the idea suggested by Kesten (1973). He shows how to compute the needed cluster
probabilities m;, (i = 1,2,...) for one dimensional random difference equations. Notice that
as we can compute cluster probabilities, we immediately derive the extremal index: Given the
sequence {m;} we have 07! = limy oo E?zl im;. The idea of de Haan et al. is adopted by
Turkman and Turkman (1997) for bilinear models. Unfortunately, the same approach does not
seem to have the same efficiency in the GARCH(1, 1) setting.

We notice that, in the wider context of stochastic difference equations, any GARCH(1,1)

can be written as

X, =AX, 1 +B,, tcZ (1)

where A; are iid random d X d matrices and B; iid d—dimensional random vectors. In addition,
(A¢,By) is an did sequence independent of X;_; for any ¢. The stochastic difference equation
setting for the GARCH(1, 1) model is met if we choose

o () a_ (M (0 o
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and d = 2. The literature on this topic is abundant; Goldie (1991) gives a wide range of model
that can be set in random recurrences context.

With notation of equations (2), consider A, = \2? ; + 1, t € Z; let us indicate with A any
general term. Loosely, assume E(In A) < 0, P(A > 1) > 0 and there exists hg < oo such that
EA" is finite for all h < hg and EA" = co. Then the following holds (Mikosch and Starica,
2000):

1. The function EA" = E(A2% + )" = 4(h) is continuous and convex in h and the equation

EAY =1 (3)

has a unique positive solution. With some algebra, it might be showed that the solution
to equation (3) is given by

E(AY) = % /OOO(QAS +)s V270 ds = 1. (4)

2. There exists a positive constant &g such that

P(oy > x) ~ oz~ 2  and P(|X;| > x) ~ E|z|*P(oy > ) for z — oo.

3. Moreover, the joint tail behaviour of the lagged vector Y;LQ) = (|Xo|?,02,...,|Xn|? 0}%) is
jointly regularly varying with index 2v, i.e.
2 2 2
Pr([Y}”| > 2, Y, /|Y}?)| € )
Pr(Y7| > )

—a VPr{Qe-} forq— oo, (5)

with this result holding for any norm on Y;LQ), and with Q being a random variable on the
space defined by this norm. The distribution of €2, termed the spectral measure, is given
by

©)0
{12 g e | ©)
E |Z(2)|u ’
h

where Z{?) = ((zg, D), T (A2, +7)(22, 1)).

Pr{Q2e -} =

3 About the function E(\z? +7)" = ¢(h)

Given GARCH(1,1) parameters A and -, the first step is to evaluate v to satisfy expression (4).
The shape of ¥ (h) is sketched in Figure 1 for A = 0.11 and v = 0.88.

There is no closed analytical form for expression (4) but numerical integration is trivial and
solution to find v > 0 is immediate as the function is convex with one root being h = 0. For a
range of parameter values (), ), v is given in Table 1.

We will see that for small values of the roots in Table 1 we observe small values of the
extremal index. Loosely, it seems that the parameter A\ is more preeminent: Suppose a value
for A not necessarily small (like A =~ 0.5). We have v ~ 2 regardless the value of . On the
contrary, for values of 7 ~ 0.5 we observe a root v =~ 2 only for A > 0.3.

The roots given in Table 1 represent the starting point for obtaining the cluster probability
distribution m; and the extremal index 6 of a GARCH(1, 1) process. Like for ARCH(1), we
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Figure 1: Plot of E(Az2 + )" = w(h) for A = 0.11 and v = 0.88; the vertical dotted line represents the
value v = v(\, ) for which ¢ (h) = 1.

cannot get the extremal index theoretically, but we can only have an approximation through
simulations using random walks.

As stated above, to find the extremal index for GARCH(1, 1) we need to develop a technique
for solving the system of random equations (2). Apparently, the problem of having a closed form
solution for d > 1 does not seem solved yet. To understand which is the cluster size distribution
for excesses in a GARCH(1, 1) processes is not straightforward. Potentially, this could be done

in two ways.

a) The first method would consist in computing the extremal index from the product of o
and z; of the GARCH(1,1) process. We know that z; is i¢id and that o satisfies the
recurrence (1) for d = 1, Xy = oy, A; = A\z2 | +v and B; = 7. In theory, we could easily
get the cluster probabilities for the sequence z; and, modifying slightly the approach of
de Haan et al. (1989), we can get the cluster probabilities for the volatility process ;.
Some research need to be developed in this direction, since the overall effect obtained by

combining the extremal properties of two processes is unknown.

b) A second approach, which we follow, consists in simulating the joint distribution of the
sequence (X7, 0?) keeping only the points for which X? is big enough. This is related to the
idea of rejection sampling (e.g. Ripley, 1987) and avoid the intensive computation which
an extremely long-range simulation GARCH would require. For financial time series, we

are not aware of any work done in this framework.



GARCH ~
Parameters 0.1 0.3 0.5 0.7 0.9
0.05 25.781 23.507 20.908 17.651 10.544
0.10 12.697 11.505 10.097  8.098 -
0.15 8.334  7.497  6.458  4.743 —
0.20 6.151 5486  4.604 2.956 —
0.25 4.841 4272 3.463 1.813 —
0.40 2.869 2.415 1.654 — —
A 0.45 2.502  2.061 1.296 — —
0.60 1.764  1.329 — — —
0.65 1.588  1.153 — — -
0.80 1.194 — — — —
0.85 1.092 — — - -

Table 1: Roots v = v(),7) for the expression E(Az2 +v)" = ¢(h) = 1.

4 Simulating the joint distribution of X? and ¢7 in GARCH(1, 1)

Very often it may be desirable simulating directly a cluster of exceedances instead of simulating
the whole time series and extracting clusters of values above a threshold.

The technique we are going to set up comes from the study of bivariate extremes, which are
a special case of multivariate extremes of Barnett (1976). Throughout the whole section, for a
given vector x, we use the £! norm, thus |x| = " |z

We have seen that expression (5) is the product of independent radial and angular pseudo-
polar components, where the radial is 7" and the angular is P{Q € -}.

Our aim is to simulate contemporaneously a couple (X2, 07) but, in practice we can con-

centrate on the vector Z;LQ). To understand this argument observe that the original space of

interest (X?,02) can be considered as (X?,07) = 02(2?2,1); this motivates why we need to focus
only on the couple (27,1). Due to the connections with bivariate and multivariate extremes of
Coles and Tawn (1991) and Coles and Tawn (1994), we also need to define the pseudo-polar

coordinates as

1
1+2

We justify the introduction of pseudo-polar coordinates recalling a very important result for

R=1+2z and Q=

bivariate extremes.

Theorem 1 Let (X;,Y;)ien be a sequence of independent bivariate observations from a distri-

bution with standard Fréchet margins that satisfies the convergence for componentwise mazima

max (X;) ~max (Y;)
P{ i=1,...,n < z, i=1,...,n < y} - G(x,y)
n n
where G is the bivariate extreme value distribution. Let (N,) be a sequence of point processes

defined by



Then, on regions bounded from the origin (0,0)

N, & N

where N is a non-homogeneous Poisson process on (0,00) x (0,00). Moreover, transforming X;
and Y; in pseudo-polar components (R,Y) as above, the intensity function of N can be written
as

dH (w)

A(r,w) =2 2 dr

for a distribution function H on [0,1] (related to G) which satisfies some mean constraint.

What is relevant to observe is that intensity of the limit process factorizes across radial and an-
gular components; therefore the angular distribution of points is independent of radial distance.
This property explains the need to transform in pseudo-polar coordinates.

After simulating from the radial and angular component we trace back to the original space
(X?,0?) through the transformations X? = R(1 — Q) and o7 = RQ.

Simulating from the joint distribution (5) can be done in two steps: get =" and, indepen-
dently, simulating from P{{2 € (0,w)}. The radial component can be simulated directly from
inversion. We generate from a uniform b;, in [0,1], ¢ = 1,..., M. Inverting with = b1/ we
get the radial component R of the pseudo-polar coordinates.

On the contrary, a Monte Carlo technique is required from simulating the angular component
in (6). For our purposes it suffices to chose h = 0.

Replacing theoretical expectation of expression (6) with empirical long-range average, we
have the empirical distribution of P{Q € (O,w)}. Therefore, we can build a lookup table of the
function f: (0,w) — Pq(0,w). Afterward, we generate a vector u;,i = 1,..., M of independent
observations from a uniform in (0,1) that represent our values on the y—axis of our lookup
table. For each u; we take the correspondent z—value which is w; = inf{f > w;}. This is like
generating w; values from the random variable 2 which represents the angular component of our
pseudo-polar coordinates. The shape of the distribution function of Pr{Q € (0,w)}, for some
values of v, is sketched in Figure 2.

In the (X?,0?) space we would keep only those observations for which X7 is fairly big.
Indeed, we originally simulate R from a conditional distribution. Expression (5) tells us that R

and (2 are independent and that, in the limit, the regular variation property holds since

P(R > zq)
P(R > q)

-V

This can be thought as the conditional probability P(R > zq|R > q), for x > ¢; for this reason

we can argue that sampling from R correspond to sample from the conditional distribution

Fr_,(x;v) —P{E > x| R > 1} =z "
a q q

This argument suggests to adopt ¢ = 1 as threshold for X?; values in the (X?,0?) space for
which X}? < 1 will be then discarded. Some improvement can be achieved if we could directly
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Figure 2: Distribution function of the spectral measure Pr{2 € (0,w)}. From top to bottom respectively,

lines represent all values of A\ in Table 1 which give decreasing roots v when v = 0.7.

simulate from the distribution of R and (2 such that X? = (1 — Q)R > 1.
Suppose to have drawn a value r* from R; it means that the values of  for which X? > 1

must lie in (0,w*) where w* = 1 — (1/r*). It follows that drawing u* from a uniform in
U(0, f~!(w*)) and mapping through the lookup table we have a value from the Q distribution

such that (1 — Q)R > 1.

5 Extremal index for GARCH(1, 1)

Once generated the seed (X7,07) for the chain (2) we can build a cluster of exceedances. After
the generation of the innovation term from a x# we then build the matrix A4; in expression (2).
Obtaining the process (X?,02),t = 1,...,T conditioned on having a big X? is straightforward;

in practice we generate a double random walk chains of length 7" = 100. For each random walk

chain we can count the frequency of observing points X7, ..., Xj09 bigger than ¢ = 1. Therefore

> Ix;>1 is the number of exceedances in each cluster. Averaging for all the clusters generated
we obtain the extremal index for the square of a GARCH(1, 1) with related cluster probabilities.

It can be shown that, given the extremal index @y of the square of a GARCH(1,1), {X?}
(with cluster probabilities defined as 7;), the extremal index of the GARCH(1, 1) process can

be computed with

Ox = 20x2(1 — I1(0.5)) (7)

where IT is the probability generating function corresponding to the limiting compound Poisson
process of the point processes of exceedances of thresholds u2 by the square process {X?}.



Mikosch and Staricd (2000) show that fx2 can be evaluated by simulation. Through the

proof of Theorem 4.1 in their paper, it can be seen that

. v

: 2v 2 J 2

klggoE{m' PR o T = (A2 +7)‘ }
+

0
X2 E|z1 |2

where {0, 2} = max(0,z). A very convenient way to write cluster probabilities 7; is

0 -0

- 1 .
T it , 1 €N.
Ox2

Each difference 052) — Gﬁ)l tells us the number of clusters over the number of exceedances with
ezactly i values above the threshold u2. Dividing 0§2) — Oﬁ)l by the total number of clusters,
we get the required quantities.

Once computed probabilities 7; we can evaluate the extremal index for any GARCH(1,1)
process through expression (7). Moreover, we can move from 7;, of a square GARCH(1, 1), to
the cluster size distribution 7;, of the corresponding GARCH(1, 1) process. Considering excess
over u, of a GARCH process having half probability to occur than excess of the square GARCH

over u2, with some combinatorial arguments, it can be shown that

= (1 - 1?(().5))_1 i (m"i i)ﬁmzm, i=1,2,....

Evaluating the extremal index through simulations can arise problems of accuracy; we achieve
any desired level of accuracy with the following arguments. We know that, in general, 6 can be
thought as the ratio between the total number of clusters Z = Z;w Z; over the total number
of exceedances N = ZzT Z;w Ix, >q; here i = 1,...,T is the length of a cluster (typically
T = 100), while j = 1,..., M is the number of clusters. In our procedure we can control the
number of clusters M. Once given the number of clusters the number of exceedances is random
and related to the parameters space of the GARCH process.

Our target is to be accurate at second decimal position, at least for the extremal index of the
square of GARCH processes, for which 6x2 = 0§2). Since 0%2) is computed as the ratio between

clusters number and exceedances number we want

é?) + 24/ Var(éf))

—_——
0.001

where Var(6(®) = 0¥ (1—6'?))/Z. Notice that Z is the number of clusters, and not the number
of exceedances, but, as stated above, is the only variable we can control in our simulation proce-
dure. In the worst case of 052) = 0.5 we have to generate Z = 1,000, 000 clusters and from each
cluster start generating the double random walk chain for the square of a GARCH(1,1). Notice
that for assessing the accuracy of all éz@ we would proceed as above, and evaluating the minimal
number of clusters which allows the specified two-decimal position accuracy. Nevertheless, we
believe that this has little effect for GARCH processes, being 0§2) the leading parameter for all
clusters probabilities 7;.

We report some results from our simulation scheme in Table 2 indicating directly the value
of the extremal index and cluster probabilities for GARCH(1,1) process. Notice that Ox is
computed with relation (7) and not through the use of cluster probabilities 7; with the obvious



A o | vl 0| m| m| m[ m] m]
0.1 |03 | 11.505 | 0.997 | 0.9974 | 0.0026 | 0.0000 | 0.0000 | 0.0000
0.1 |0.5 | 10.097 | 0.995 | 0.9950 | 0.0049 | 0.0000 | 0.0000 | 0.0000
0.09 | 0.7 9.184 | 0.989 | 0.9898 | 0.0098 | 0.0004 | 0.0000 | 0.0000
0.15 | 0.1 8.334 | 0.991 | 0.9909 | 0.0089 | 0.0002 | 0.0000 | 0.0000
0.15 | 0.7 4.743 | 0.901 | 0.9135 | 0.0694 | 0.0125 | 0.0031 | 0.0009
0.25 | 0.5 3.463 | 0.851 | 0.8682 | 0.1012 | 0.0218 | 0.0059 | 0.0018
0.2 |0.7 2.956 | 0.674 | 0.7427 | 0.1505 | 0.0547 | 0.0244 | 0.0121
04 |03 2415 | 0.775 | 0.8007 | 0.1405 | 0.0387 | 0.0127 | 0.0045
045 0.3 2.061 | 0.707 | 0.7451 | 0.1636 | 0.0540 | 0.0209 | 0.0088
0.11 | 0.88 | 1.838 | 0.171 | 0.3244 | 0.1404 | 0.0907 | 0.0662 | 0.0512
0.25 | 0.7 1.813 | 0.354 | 0.4926 | 0.1821 | 0.0991 | 0.0618 | 0.0413
0.65 | 0.3 1.153 | 0.412 | 0.5004 | 0.2011 | 0.1073 | 0.0637 | 0.0401

Table 2: The extremal index fx and the cluster probabilities m;, i = 1,...,5 for the GARCH(1,1) process
for a range of values of A and ~.

relation é)_(l =Y jm;; however, results are broadly consistent and evaluating x on both ways
does not make any difference.

6 Discussion

Table 2 gives the extremal index x for the GARCH(1, 1) process, illustrating that 6x depends,
in a rather complicated way, on parameters A\ and . For fixed =y, 6x decreases monotonically
with increasing A. Similarly, for fixed A, Ox decreases monotonically with increasing ~. Though
0x changes in a largely consistent way with v, with smaller 8x occurring for smaller v, this
property breaks down when A\ 4+ v ~ 1, i.e. when the process is close to non-stationary.

Some generalization can be given for more complicated GARCH processes, since in a recent
work Basrak et al. (2002) set any GARCH(p, ¢) process in the context of stochastic difference
equations. Moreover, they also proof that high-order GARCH processes share the same prop-
erties of regularity of variations in the tails as for the GARCH(1, 1) case.

Final Remark
This paper represents part of a wider work which is in progress and co-authored by Jonathan
A. Tawn, Department of Mathematics and Statistics, Lancaster University, UK.
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