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ABSTRACT 

This paper investigates the success of the well-known reverse-shooting and 

forward-shooting algorithms in finding stable solutions for linear macroeconomic 

models that both possess the particular property known as saddle-path instability and 

also have highly cyclic dynamic properties.  It is anticipated that assessing how well 

these algorithms cope with solving highly cyclic models will also provide insights 

into how well they are likely to cope with solving non-linear models. 

In this paper, a perfect foresight version of the well-known Cagan (1956) model 

of the monetary dynamics of hyperinflation is augmented with a labour market.  

Additional eigenvalues are then generated through sluggish adjustment mechanisms 

for wages and for the supply of labour.  This process provides the simplest model 

with stable complex-valued eigenvalues and a saddlepath: a model with two stable 

complex-valued eigenvalues and one unstable real-valued eigenvalue.   

Using this model, it is possible to define an indexing parameter that, when 

varied, determines a range of values for the stable eigenvalues: from (i) real-valued, 

to (ii) complex-valued with small absolute imaginary part, to (iii) complex-valued 

with large absolute imaginary part.  This leads to corresponding stable time-paths for 

the model, which are (i) either humped or monotonic, (ii) cyclic but with infrequent 

cycles, and (iii) cyclic but with frequent cycles.   

This paper then compares the properties of solutions derived using the reverse-

shooting and forward-shooting approaches as the magnitude of the indexing 

parameter (and hence of the cycles) is allowed to vary.  In the highly oscillatory case, 

we show that the success of both approaches is crucially dependent on the choice of 

ODE solver.   

 

JEL classification: C63; E17 

 

Keywords: Macroeconomics; Complex-valued eigenvalues; Real-valued 
eigenvalues; Cyclic convergence; Monotonic convergence; Saddle-path 
instability; Computational techniques. 
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1. INTRODUCTION 

Macroeconomic models play an important role in today’s society.  They are 

used for forecasting future values of a multitude of economic variables and for 

evaluating the effects of changes or proposed changes in government policy.  Such 

models are, in general, both dynamic and non-linear.  These characteristics mean that 

solving such models for the dynamic paths of jointly-determined economic variables, 

a procedure vital for forecasting and policy evaluation, is not always straightforward.  

These difficulties have led to the development of a variety of algorithms that are used 

to solve macroeconomic models with particular characteristics.  

In this paper we consider a linear model with complex-valued eigenvalues, 

and hence with cyclic dynamics.  The model is also characterised by the property 

known as saddle-path instability.  By choosing alternative parameter configurations, 

we allow the frequency of cycles to increase and hope to gain insights into how well 

alternative solution algorithms are likely to cope with non-linear dynamics.  Because 

the model is linear, we have the advantage that a true analytic solution exists and this 

true solution can be used as a benchmark to evaluate the success of the competing 

algorithms. 

Judd (1998, Chapter 10) describes a variety of methods for solving systems of 

equations described by ordinary differential equations.  Because of the saddle-path 

property we focus on solution methods for boundary-value problems.  In particular we 

consider two well-known shooting methods: reverse-shooting and forward-shooting.  

Both methods require searching over a sub-space or manifold so as to find the “right” 

solution.  However, it can be demonstrated that, in general, the reverse-shooting 

method involves searching over a smaller dimensional manifold than does the 

forward-shooting method.  This means, that, as long as the reverse-shooting algorithm 
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is successful, then it is likely to be more efficient than the forward-shooting approach.  

Our focus on a model with complex-valued eigenvalues (and hence with cyclic 

dynamics) allows us to evaluate how successfully the two competing algorithms are 

likely to cope with solving highly non-linear models. 

The rest of the paper proceeds as follows: Section 2 introduces the basic 

model.  Section 3 of the paper derives the model solution.  Section 4 is the main 

results section of the paper, describing the approach and results for competing 

algorithms.  Section 5 contains some concluding comments. 

 

2.  THE MODEL 

The basic model 

Consider the following model: 
 

1 2m p y pα α− = −       (1) 
 

(1 ) ,0 1y nβ γ γ= + − < <      (2) 
 
w p nδ γ− = −       (3) 
 

where all variables are functions of time, lower-case letters denote logarithms and 
  y = output; 
  n = employment; 
  p = price level; 
  m = nominal money stock, assumed to be constant; and 
  w = wage rate. 

 With y fixed and m exogenous, equation (1) is the perfect foresight extension 

of the Cagan (1956) model.  Using corresponding upper case letters to denote levels, 

the other two equations can be derived from a Cobb-Douglas production function of 

the form: 

  1Y AN γ−= ,       (2’) 

yielding the following first-order condition for profit maximisation: 
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  (1 )W dY AN
P dN

γγ −= = − .     (3’) 

Equations (2) and (3) can then be derived from (2’) and (3’) by taking logarithms. 

Introducing sluggish adjustment 

 Next, by introducing sluggish adjustment for wages and labour, we can derive 

the following model:1 

1 2m p y pα α− = −       (4) 
 

(1 ) ,0 1y nβ γ γ= + − < <      (5) 
 

( )n n w pθ δ γ= − − +       (6) 
 

( )w n nη= −        (7) 

where, in addition to the variables introduced earlier, 

  n = full employment expressed in logarithms. 

 The full model given by equations (4-7) can be reduced to the following set of 

equations: 

  1 1

2 2 2 2

(1 ) m pp nα αβ γ
α α α α

= + − − +     (8) 

  ( )n n w pθ δ γ= − − +       (9) 

  ( )w n nη= −        (10) 

This can be expressed in matrix form as: 

  

1

2 2

(1 )1 *

*

*

0

0 0

p p p
n n n
w w w

α γ
α α

θ θγ θ
η

−  −      = − − −          −    

    (11) 

                                                 
1 Various extensions to the Cagan (1956) model are considered in Chapter 3 of Turnovsky (2000).  In 
Chapter 7, Section 7.2, he considers a similar model to that considered here but with sluggish 
adjustment only in wages.  The model introduced here in equations (4-7) is an extension of 
Turnovsky’s approach. 
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where an asterisk denotes the corresponding steady-state value and where these 

steady-state values are given by: 

  *
1 1(1 )p m nα β α γ= − − −      (12) 

*n n=         (13) 

  *
1 1(1 )w m n nα β α γ δ γ= − − − + −     (14)  

  

3. DERIVING THE ANALYTIC SOLUTION 

Real-valued and complex-valued  eigenvalues 

In order to derive the full analytic solution to this model, we must first 

demonstrate that it is possible for the dynamical system defined by equation (11) to 

have complex-valued eigenvalues.  Letting 1γ → , the characteristic equation of this 

system satisfies: 

  
2

1 0 0

( )
0

c
α λ

λ θ θ λ θ
η λ

−

= − − −
−

 

( )
2

1( )α λ θ λ λ θη= − + +       

2

1 2( )α λ λ θλ θη = − + +      (15) 

 Hence the eigenvalues of the system are given by: 

  1
2

1 0λ
α

= > ; and 
2

2 3
4

,
2

θ θ θη
λ λ

− ± −
= .   (16) 

Note that 2λ  and 3λ  both have negative real parts and that both 2λ  and 3λ  are 

complex-valued whenever 4η θ> .  Accordingly, if the system has at least one 

complex-valued eigenvalue then it will have two complex-valued eigenvalues each 

with negative real parts.  Furthermore, if all other parameters are fixed, the size of the 
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imaginary part of the eigenvalues can be determined by changing the value of η .  For 

low value of η , both 2λ  and 3λ  will be real-valued.  For larger value of η , both 2λ  

and 3λ  will have small imaginary part.  For even larger value of η , both 2λ  and 3λ  

will have large imaginary part.   

(Table 1 about here) 

 Using continuity, it can be demonstrated that these general properties will also 

apply for γ less than 1 but still close to 1.  In particular, this paper will calibrate the 

model given by Equations (4-7) using the following parameter values: 1 1.0,α =  

2 0.5,α =  0.0,β =  0.5,γ =  log(0.5),δ =  1.0,θ =  and 1.0n = . Subsequently, we will 

consider the following experiment: initially the model is in the steady-state associated 

with 0.0m = ; then an unanticipated shock moves the nominal money supply to 

0.1m = ; this paper investigates the solutions to transitional dynamics as the economy 

adjusts towards its new steady-state. 

Using the chosen parameter values as well as the four different choices of η  

give values for 1λ , 2λ  and 3λ  as described in Table 1. 

General solution with real-valued eigenvalues 

 Letting 1 2,λ λ  and 3λ  denote the eigenvalues of the system given by equation 

(11), irrespective of whether those eigenvalues are real-valued or complex-valued.  

Then the eigenvectors of the system are given by: 

   
1

2

2

(1 )
( ) ( 1)

( 1)

i

i i i

i

α γ λ
λ α λ λ

η α λ

− 
 = − 
 − 

v      (17) 

and the general solution to the system is given by: 
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  [ ]
*

1 1
*

1 2 3 2 2
*

3 3

exp( )
( ) ( ) ( ) exp( )

exp( )

p p C t
n n C t
w w C t

λ
λ λ λ λ

λ

 −  
   − =   

  −   

v v v   (18)  

where 1 2,C C  and 3C  are yet-to-be-determined constants. 

 Irrespective of whether the eigenvalues are real-valued or complex-valued, in 

the cases that we consider it is always the case that precisely one eigenvalue has 

positive real part (the unstable eigenvalue) and two eigenvalues have negative real 

part (the stable eigenvalues).  Without loss of generality, assume that 1λ  has positive 

real part.  Then the stable solution is given by setting 1 0C =  so that: 

  [ ]
*

2 2*
2 3

3 3*

exp( )
( ) ( )

exp( )

p p
C t

n n
C t

w w

λ
λ λ

λ

 −
  

− =   
  − 

v v    (19) 

The standard approach to solving this model is to assume that one variable “jumps” to 

the stable solution, while other variables evolve continuously from their historically 

determined positions.2  In our interpretation of this model, we assume that p is the 

jump variable.  Then the constants, 2C  and 3C , are chosen consistent with the initial 

values of n and w.  When the eigenvalues are all real-valued, 2C  and 3C  are real-

valued constants and equation (19) fully determines the analytic solution of the 

model. 

General solution with complex-valued eigenvalues 

 When some of the eigenvalues can be complex-valued, the stable eigenvalues, 

2λ  and 3λ , form a complex conjugate pair.  As a consequence, the corresponding 

eigenvectors, 2( )λv  and 3( )λv , are complex conjugates.  Finally, in order for the 

solutions to p, n and w to be real-valued, it is necessary that 2C  and 3C  also form a 

                                                 
2 See Blanchard and Kahn (1980). 
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complex conjugate pair.  Hence, letting a bar above a parameter denote its complex 

conjugate, the general solution in the case of complex-valued eigenvalues can be 

written in the form: 

   

*

2 2*
2 2

2 2*

exp( )
( ) ( )

exp( )

p p
C t

n n
C t

w w

λ
λ λ

λ

 −
    − =     
  − 

v v   (20) 

 Let 2 a biλ µ µ= − +  and 2 a bC D iD= +  and equation (20) can be rewritten in the 

form:

*
1 1 1 1

* 2 2 2 2
2 2 2 2

*
2 2 2 2

(1 ) (1 ) (1 ) (1 )
( ) (2 ) ( ) (2 )

1 ( ) 1 ( )

a b a b

a b a a b b a b a a b b

a b a b

p p i i
n n i i
w w i i

α γ µ α γ µ α γ µ α γ µ
α µ µ µ α µ µ µ α µ µ µ α µ µ µ

ηα µ ηα µ ηα µ ηα µ

 − − − + − − − − − 
   − = − + − + − + + +   

  − − − + − − −  
 

( ) exp( )[cos( ) sin( )]
.

( ) exp( )[cos( ) sin( )]
a b a b b

a b a b b

D iD t t i t
D iD t t i t

µ µ µ
µ µ µ

+ − + 
 − − − 

  (21) 

 If the constants, aD  and bD , are chosen consistent with the initial values of n 

and w, then equation (21) fully determines the analytic solution of the model with 

complex-valued eigenvalues, providing real-valued solutions for p, n and w.    It will 

be observed that these solutions include the terms, cos( )btµ  and sin( )btµ  thus 

demonstrating that the analytic solution has cyclic properties and, in particular, that 

the frequency of the cycles increases as the absolute value of bµ  increases. 

Plotting the analytic solutions 

(Figures 1 and 2 about here) 

 For the calibration parameters presented in Table 1, it will be observed that the 

absolute value of the imaginary part ( bµ ) of the stable eigenvalues increases as η  

increases.  A three-dimensional phase diagram for the four sets of eigenvalues is 
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presented in Figure 1, while Figure 2 presents corresponding time plots of each of the 

three variables, p, n and w.  As anticipated, these figures demonstrate that the 

frequency of the cycles increases as η  (and hence the absolute value of bµ ) increases.  

Since our intention is to investigate the success of various algorithms in coping with 

highly oscillatory behaviour, throughout the rest of this paper we will focus on the 

outcome for wages when 100η = . 

 

4.  COMPARING ALTERNATIVE ALGORITHMS 

Methodological approach 

We can employ the above model to examine how well the reverse-shooting 

and forward-shooting algorithms cope with the type of cyclic behaviour generated by 

complex eigenvalues.  A full analytic solution can be derived for the model and this 

analytic solution can be used as a benchmark for the solutions derived using the two 

algorithms.  In this case, where an analytic solution is available, there is really no 

need to use the algorithms to solve the model at all.  But the comparisons between the 

benchmark analytic solution and the solutions derived using the competing algorithms 

provide good indications of how well the reverse-shooting and forward-shooting 

algorithms are likely to cope when faced with a non-linear model that exhibits cyclic 

behaviour.  Of course, in general, in the case of such a non-linear model, no analytic 

solution exists. 

Illustrating the alternative approaches 

We can illustrate the reverse-shooting and forward-shooting approaches by 

rewriting the general solution of the model given in equation (18) in the form: 

 [ ]
1 1

*
1 2 3 2 2

3 3

exp( )
( ) ( ) ( ) ( ) exp( )

exp( )

C t
t C t

C t

λ
λ λ λ λ

λ

 
 − =  
 
 

x x v v v   (22) 
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The forward-shooting solution to this model is given by first fixing an initial 

value for t, given by 0t , then searching over the values for 1 2 3( , , )C C C  until a solution 

is found that is consistent with the initial values of the non-jump variables and arrives 

within a suitably small neighbourhood of the steady-state, *x .  In this sense, the 

forward-shooting solution is equivalent to searching over a three-dimensional space. 

To find the reverse-shooting solution, it is first necessary to write the model in 

reverse time, so that ( ) ( )t t= −z x  and: 

   [ ]
1 1

*
1 2 3 2 2

3 3

exp( )
( ) ( ) ( ) ( ) exp( )

exp( )

C t
t C t

C t

λ
λ λ λ λ

λ

− 
 − = − 
 − 

z z v v v   (23) 

Without loss of generality, start at 0t N= −  where N is a large positive number and 

choose 0( )tz close to *z .  Then exp( )i iC Nλ  is close to zero for 1, 2,...,i m= .  If iλ  is 

an unstable eigenvalue, then exp( )i Nλ  is a large positive number; hence iC  must be 

close to zero.  On the other hand, if iλ  is a stable eigenvalue, then exp( )i Nλ  is close 

to zero; hence iC  can take any value. 

 Since 1λ  has positive real part, and both 2λ  and 3λ  have negative real parts, 

equation (23) reduces to: 

   [ ] 2 2*
2 3

3 3

exp( )
( ) ( ) ( )

exp( )
C t

t
C t

λ
λ λ

λ
− 

− =  − 
z z v v   (24) 

Then a solution is found by searching over the values for 2 3( , )C C  until the associated 

trajectory arrives within a suitably small neighbourhood of the history-determined 

values for the non-jump variables of ( )tx and hence for the non-jump variables of 

( )tz .  In this sense, the reverse-shooting solution is equivalent to searching over a 
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two-dimensional space.  A similar story can be told for the case when 2λ  and 3λ  are 

complex-valued. 

Thus the reverse-shooting algorithm is likely to be more efficient than the 

forward-shooting algorithm in the sense that the reverse-shooting algorithm requires 

searching over a two-dimensional space whereas the forward-shooting algorithm 

requires searching over a three dimensional space.  

The computational problem 

The associated computational problem requires the solution of the above 

model from a known meaningful steady state, *
0x , to a new known meaningful steady 

state, *x , after an exogenous shock in m.  The problem is to find the unique trajectory 

(in p, n and w) from the initial steady state to the final steady state resulting from the 

shock. 

The fundamental problem is to find the stable solutions for the following 

dynamical system: 

     ( ) ( ( ), )t t=x f x q     (25) 

where the state vector is given by: 

[ ], , Tp n w=x       (26) 

and where q  is a vector of parameters. 

 The shock in the money supply determines the boundary conditions for the 

model and gives rise to the specific exercise we solve. Before the shock the model is 

at * * * *
0 0 0, ,

T
p n w =  0x and evolves along a unique stable solution trajectory to 

* * * *, ,
T

p n w =  x as given in equations (25-26).  The problem is to find this stable 

trajectory.  Hence, while the initial values of n and w are predetermined by history, 

the initial condition for p is not known.  The basic problem of this computational 
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exercise is to find the initial condition for p, which must be chosen so that it lies on 

the stable trajectory. 

The exercise is a two-point boundary value problem where the aim is to find 

the stable trajectory of the model.  The exercise is difficult due to the unstable nature 

of the model problem.  Basically for the reverse-shooting algorithm we need to search 

around points “near enough” to the final steady state so that the solution to the model 

has transient dynamics in reverse time that are forced onto the stable manifold and 

that also satisfy the appropriate initial values for n and w.  For the forward-shooting 

algorithm we search around points at the initial values of n and w, to find an initial 

value for the variable, p, so that the solution to the model has transient dynamics in 

forward time that pass “near enough” to the final steady-state.  Both searches will 

determine a solution trajectory and initial conditions, ( (0), (0), (0)p n w ).   

To program the exercise, software components are needed to solve differential 

equations and undertake searches for a range of parameter sets.  We used Matlab 

(Mathworks, 2003) as it is ideally suited for this type of computational problem.  The 

programming was written so as to make use of key Matlab features.  Library routines 

(toolboxes) were used so that state-of-the art solvers and searches are included in the 

code.  All results were generated using Version 6.1 of Matlab.   

Both shooting algorithms considered here have two essential components: a 

differential equation solver to solve for each candidate path and a search routine that 

chooses among possible candidate paths and determines when an acceptable candidate 

path has been found.  For the search method we use a Nelder-Meade direct simplex 

search (Lagarias, Reeds, Wright and Wright, 1998).  We implement this search by the 

Matlab function fminsearch.  There is a range of differential equation solvers 

available in Matlab (Shampine and Reichelt, 1997).   
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Runge-Kutta solver 

The usual solver of first choice is the Runge-Kutta algorithm.  We initially use 

a variable time step size Runge-Kutta solver as implemented by calling the Matlab 

function ode45.  This solver uses the explicit 4,5 pair of the Runge-Kutta formula 

(Dormand and Prince, 1980).  It is a single-step solver so that only the solution at the 

previous time-step is used in determining the current solution.  It is informative to 

compare solutions derived using the Runge-Kutta ODE solver with the correct 

(analytic) solution.  In Figure 3, we compare the reverse-shooting and forward-

shooting solutions for the most oscillatory case, which is the outcome for wages when 

100η = . 

(Figure 3 about here) 

Using this ODE solver, both reverse-shooting and forward-shooting solutions 

have difficulty reproducing the correct solution.  In particular, both solutions tend to 

produce cycles of larger amplitudes than the true solution as each derived solution 

gets further away from its starting point.  Thus, for the reverse-shooting solution, 

which starts close to the final steady-state, the amplitude close to the initial point on 

the stable solution is much larger than the correct solution.  Similarly, for the forward-

shooting solution, which starts close to the initial point on the stable solution, the 

amplitude close to the final steady-state is much larger than the correct solution.  The 

problem is clearly worse for reverse-shooting than it is for forward-shooting. 

ABM solver 

 We next investigate the success rates of the two shooting algorithms using the 

Adams-Bashforth-Moulton predictor-corrector algorithm (Gear, 1971; Shampine and 

Gordon, 1975; Shampine and Reichelt, 1997).  We will henceforth refer to this 

algorithm as the ABM solver.  This is a multi-step algorithm, which usually needs 
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several preceding time point solutions to compute the current time point solution.  The 

ABM solver is regarded as better than the Runge-Kutta solver when the ODE function 

is expensive to calculate, as is the case with highly oscillatory solutions like those 

considered here, and has been implemented using the Matlab function ode113. 

(Figures 4 and 5 about here) 

 We first implement the ABM solver using the default step-size parameter.  

Figure 4 shows that, with the default step-size, the overall solution time-path for both 

reverse and forward-shooting are close to the analytic solution.  However, for both 

shooting approaches, the detail near the steady-state is less accurate.  Figure 5 repeats 

this exercise using the same solver but with a smaller step-size.  This approach is able 

to produce a near-perfect solution for both shooting approaches. 

 

5.  CONCLUDING COMMENTS 

We have presented a model, which has a saddle-path property in the form of one 

unstable and two stable eigenvalues.  With a simple change to the parameter 

configuration, it is possible to ensure that the two stable eigenvalues are either real-

valued (with monotonic or hump-shaped dynamics) or complex-valued (with cyclic 

dynamics).  Also, for the complex-valued eigenvalues, the number of cycles increases 

as the imaginary parts of the complex-valued eigenvalues increase in absolute size. 

This paper then focuses on the properties of calibrated solutions to the model for 

the most oscillatory outcome, the case of wages when 100η = .  Because the chosen 

model is linear, it has been possible to derive a correct (analytic) solution and then 

use this analytic solution as a benchmark when evaluating two alternative algorithms.  

The algorithms that are considered here are the well-known reverse-shooting and 



 14 
 

forward-shooting approaches.   Our results have shown that the results are sensitive to 

the choice of ODE solver.   

When the Runge-Kutta solver is used both types of algorithms have difficulty 

reproducing highly cyclic dynamics and, in particular, in reproducing the amplitude 

of models, which have complex-valued eigenvalues with large imaginary parts.  The 

problem is clearly worse for reverse-shooting than it is for forward-shooting.  

However, when the ABM solver is used with a sufficiently small step-size, all these 

problems are eliminated and a near-perfect solution can be derived.   

Remember, for this model, which can be reduced to a linear dynamical system, 

the correct solution exists and we have been able to benchmark our results from the 

shooting algorithms against the correct solution.  We have shown that the choice of 

ODE solver has a significant impact on the likely success of the shooting algorithms.  

These results have broader ramifications, too.  The varying levels of success 

experienced using different ODE solvers as they try to reproduce a highly cyclic 

model are likely to carry over to non-linear models, which also exhibit highly cyclic 

behaviour.  
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TABLES AND FIGURES 

 

η  
1λ  2λ  3λ  

0.2 2.3 -0.50 -0.34 
0.5 2.3 -0.41+0.51i -0.41-0.51i 

10.0 2.1 -0.32+3.0i -0.32-3.0i 
100.0 2.0 -0.26+9.9i -0.26-9.9i 

 
Table 1  

Values of Eigenvalues for Different Values of η  
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Figure 1: Phase Diagram of Analytic Solution 
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Figure 2: Time Plots of Analytic Solution 
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(a) Reverse-Shooting Solution 
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(b) Forward-Shooting Solution 
 

Figure 3: Time Plots of Wages with Frequent Cycles ( 100η = ) 
Comparison of Reverse-Shooting and Forward-Shooting Solutions Using Runge-

Kutta ODE Solver. 
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(a) Reverse-Shooting Solution 
 

0 5 10 15
−1.7

−1.68

−1.66

−1.64

−1.62

−1.6

−1.58

−1.56

−1.54

−1.52

−1.5

Time

W
ag

es

[η=100 λ
1
=2.0192 λ

2
=−0.25961+9.9489i λ

3
=−0.25961−9.9489i]

Analytic
Forward
Initial Steady State
Steady State

 
 

(b) Forward-Shooting Solution 
 

Figure 4: Time Plots of Wages with Frequent Cycles ( 100η = ) 
Comparison of Reverse-Shooting and Forward-Shooting Solutions Using ABM 

ODE Solver with Default (Large) Step-size. 
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(a) Reverse-Shooting Solution 
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(b) Forward-Shooting Solution 
 

Figure 5: Time Plots of Wages with Frequent Cycles ( 100η = ) 
Comparison of Reverse-Shooting and Forward-Shooting Solutions Using ABM 

ODE Solver with Small Step-size. 
 


