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Abstract.  

 

I provide algebraic and computational considerations to alleviate the burden of com-

puting the information matrix for models of spatial interaction. Of prime importance, I compute 

the information matrix without storing an inverse of the spatial differencing operator, a large 

sparse matrix. To accomplish this efficiently, I developed a version of the conjugate gradient 

method for the case of sparse matrices and vectors. Performance is demonstrated for various data 

sets and major types of models of spatial interaction. Its advantages include modest computing 

resource requirements, suitability for multiprocessing environments, and easily controlled preci-

sion. Convergence is guaranteed for all feasible values of the maximum likelihood estimates with 

the rate of convergence depending on the coefficient of spatial correlation. The efficiency of the 

proposed method allows complete maximum likelihood estimation of models with very large spa-

tial data sets (one million observations or more). 
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1.   Introduction

 

Since as early as Whittle (1954), the method of maximum likelihood (ML) has been consid-

ered the preferred for the estimation of models of spatial interaction. Unlike least squares estima-

tion that could be biased, inefficient, or both, exact maximum likelihood estimation is consistent 

and asymptotically efficient. The complete procedure of ML estimation involves two steps: 

obtaining ML estimates and computing statistical inference. Most efforts have been directed 

towards the first step, the computation of values of the parameters that maximize log-likelihood 

function (Griffith, 2002; Pace and Barry, 1997; Pace and LeSage, 2002; Smirnov and Anselin, 

2001, among others). Mathematical and computational complexity of log-likelihood function is 

so overwhelming, that little attention has been paid to the second step—statistical inference. The 

second step, the computation of the information matrix and its inverse, however, is as important 

and highly desirable as the first step because it complements ML estimates of the parameters with 

information on their asymptotic variance, thence, statistical significance of the coefficients, test-

ing model specification, etc.

While there are several practical computational methods of obtaining ML estimates, the com-

putational problem of statistical inference for the models of spatial interaction has never been 

methodically investigated. Recent advances in computational methods enable to obtain ML esti-

mates for models of spatial interaction for very large data sets (one million observations or more) 

using personal workstations. Those techniques, however, are useless for computing information 

matrix, because information matrix has little in common with log-likelihood. To date, no practical 

solutions have been offered for the computation of the information matrix.
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1.  Study of Driscoll and Kraay (1998) demonstrates importance of consistent covariance matrix estimation 
and suggests use of Monte Carlo method in the context of generalized method of moments estimator.
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Computation of the information matrix involves computation of inverse of a large sparse 

matrix. The dimension of the matrix is determined by the size of the sample, so computing its 

inverse becomes increasingly strenuous for large spatial data sets. Inverting a large matrix 

becomes impractical if not possible on personal workstations for matrices as little as a few thou-

sand. In addition, straightforward utilization of existing formulas (Anselin, 1988; Anselin, Bera, 

1998) for the information matrix suggest non-symmetry of the matrix to be inverted.

I offer a few considerations that substantially alleviate the computation of the information 

matrix. Similarity transformations applied to the spatial differencing operator replace non-sym-

metric matrix operations with symmetric ones; symmetry of the matrices allows use of computa-

tionally more efficient algorithms. Since spatial differencing operator is much more sparse than 

its inverse, its use in computational method is potentially more efficient. Finally, I develop a pro-

cedure for computing all the necessary quantities needed for the information matrix without stor-

ing the inverse of the spatial differencing operator. The procedure utilizes the conjugate gradient 

method, adopted for the case of sparse matrices and vectors. This method imposes fewer demands 

on computational environment than any other.

Performance of the method for computing information matrix is demonstrated for various data 

sets and major types of models of spatial interaction. The convergence of the method is guaran-

teed for all feasible values of the ML estimates, but the rate of convergence varies depending on 

the value of the coefficient of spatial correlation.

Major advantages of the proposed method include modest memory requirements, accommo-

dation of sparse matrices of unusual structure without imposing additional demands on the com-

puting resources, suitability for a multiprocessing environment, easily controlled accuracy. 
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Computational efficiency of the proposed method for computing the information matrix is critical 

for it allows to perform computations for sparse matrices up to a million of observation and more. 

The method also proves to be useful for improving the computational accuracy of the initial ML 

estimates (especially those obtained by an approximation technique). 

 

2.   Structure of the information matrix for SAR models

 

Ord (1975) originally provided information matrix for the spatial autoregressive model 

. In practice, a full specification of the model with spatial interaction contains 

explanatory variables and a spatial autoregressive term in either  (spatial lag model) or  

(spatial error model) form, where  is a spatial autoregressive parameter, 

 

W

 

 is a  matrix of 

spatial weights, and 

 

y

 

,  are  vectors of observations on the dependant variable and unob-

servable error terms. Benirshka and Binkley (1994) provided the information matrix for spatial 

error model; Anselin and Bera specified information matrices for both models.

Formally, spatial lag model is presented as

,

 

(1)

 

where 

 

W

 

 is a spatial weights matrix,  is a vector of random error terms.

The log-likelihood function for the model is

,

 

(2)

 

where  and the information matrix for the model is

,
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Asymptotic variance matrix is an important component of statistical inference. Many statistics 

for models with spatial dependence such as asymptotic 

 

t

 

-test for spatial and non-spatial coeffi-

cients require knowledge of the entire asymptotic variance matrix or some of its elements (for 

examples, see Anselin, Bera, 1998)
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. Asymptotic variance can be obtained in the two-step proce-

dure. In the first step, the information matrix is computed, and in the second, it is inverted. The 

latter is a routine computational task that can easily be performed for the entire information 

matrix or its blocks. Key issue is to obtain the information matrix, because it involves computa-

tion of several traces: 

 

tr(A)

 

, 

 

tr(AA)

 

, and . In addition, element  contains matrix 

inverse.

Spatial error model is typically presented as

,

 

(4)

 

where  is a vector of error terms. Log-likelihood function for this model is

,

 

(5)

 

where  and the information matrix is

,

 

(6)

 

where .

The information matrix (6) is block-diagonal, so the terms containing traces of matrix inverses 

are needed only in the block corresponding to  and . The information matrix for spatial lag 

 

2. A rare exception is likelihood ratio statistic, which is computed using values of log-likelihood function 
only
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model is somewhat more challenging because it is not diagonal, hence must be always computed 

in full, and contains matrix inverse in element .

3.   Approaches for computing the information matrix

The straightforward computation of inverse of a large matrix is a well-studied problem of lin-

ear algebra (Golub, Van Loan, 1996). It is an  operation, that imposes burdensome require-

ments on fast-access memory. In practice, the size of data set for which this operation can be 

effectively computed on a typical workstation is limited to a few thousand observations. Since the 

computational complexity and memory requirements for the problem are highly non-linear, it 

cannot be effectively solved for those data sets that exceed in size a level specific for each compu-

tational system. For large data sets (hundred thousand observations or more), it is impractical to 

solve on a personal workstation if possible at all. While advances in modern computational tech-

niques and progress in computing environments do alleviate this problem, the needs of spatial sta-

tistical analysis and handling of large-sized data grow even faster (see Pace and LeSage, 2002; 

Smirnov and Anselin, 2001 for examples of large spatial datasets).

An obvious solution to reduce the computational burden and memory requirements for com-

puting traces of inverse of a sparse matrix is to exploit its sparsity. Common feature of sparse 

matrix factorization algorithms is a reliance on ordering of rows and columns to reduce the fill of 

the resulting factor matrix3. Ideally, the resulting factor matrix would have no fill while preserv-

ing the numerical characteristics of the original matrix (see, George and Liu, 1981; Gilbert, 

Moler, and Schreiber, 1992). Situation of the no fill is possible, for example, for a banded matrix, 

3. Good ordering routines even can reduce the complexity of the problem for a typical spatial weights 

matrix from  down to  (Gilbert, Moler, and Schreiber, 1992; MathSoft, 1996; Ng and 
Raghavan, 1999).

Iβρ

O n3( )

O n3( ) O n2( )
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when all non-zero elements are concentrated along main diagonal4. Such matrices represent a 

very specific case of spatial layout, which rarely found in practical applications. For example, 

spatial weights matrix that corresponds to a regular grid of  would have a band approxi-

mately of size n. The size of a band would increase with the size of the matrix, and so would the 

fill and the computational complexity of the Cholesky factorization and the matrix inverse.

The fill of the matrix depends not as much on the number of neighbors in the spatial weights 

matrix, as on how local  they are. Optimal ordering for regular grids produces fill of order 

 and total number of operations to perform factorization is . In comparison, fill 

for the banded matrix is zero, and its factorization is a linear complexity operation. In sum, typical 

spatial weights matrices tend to produce larger fill and their factorization requires more opera-

tions than sparse matrices with a band or other no-fill and small-fill structure. Therefore, sparse 

matrix factorization routines should be expected slower for spatial matrices and memory require-

ment are a factor that makes it impossible to perform factorization of large spatial weights matri-

ces.

Most computational solutions for sparse matrix factorization rely heavily on various strategies 

to reduce the fill and, consequently, the complexity of sparse matrix factorization. These methods, 

however, do not give an information on the memory requirements for storing the Cholesky factor 

of a sparse matrix until after the ordering or symbolic factorization is actually performed, lest the 

number of operations. The knowledge of the memory prerequisites is critical for determining if 

the factor matrix fits into the constraints of the particular computational environment. Such uncer-

4. For spatial weights matrix W that has a band with width b, i.e.  for all  and 

, Cholesky factor of matrix  is also a banded matrix with width b.

wij 0= i j b+>

i j b–< I ρW–

n n×

O n nln( ) O n n( )
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tainty places factorization methods of arbitrary sparse matrices in the category of methods that 

might produce a result and might fail.

4.   A Conjugate Gradient Method

4.1.   Principle

An alternative approach is to compute column-vector  using implicit matrix 

inverse. The idea is to find a vector z that satisfies the following condition:

 . (7)
 Once such vector is found, the element  of the information matrix is computed using only 

sparse matrix-vector multiplication .

Solving system of linear equations (7) without explicitly computing matrix inverse is a well-

known linear algebra problem (see Golub, Van Loan, 1996, chapter 10; Watkins, 2002, chapter 7). 

Key advantage of iterative methods over the direct Cholesky factorization is that computing the 

inverse is unnecessary and memory requirements are very modest. For the methods to be compu-

tationally efficient, the only requirement is efficient implementation of sparse matrix-vector mul-

tiplication. Row and column re-ordering or any form of symbolic computation which is a major 

time-consuming operation in sparse matrix factorization also is not required.

 The fastest best-known iterative methods for solving the system of linear equations are descend 

and conjugate gradient methods. Both methods are iterative. The former is easier to implement, 

but the latter has better convergence rates and is guaranteed to converge to the solution within a 

finite number of iterations. For these reasons, I focus on conjugate gradient method. Its complete 

description and proves of the properties can be found in (Golub, Van Loan, 1996:527-8; Watkins, 

2002, 577-8).

I ρW–( ) 1– Xβ

I ρW–( )z Xβ=
Iρβ

Iρβ
1
σ2------X′Wz=
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Conjugate gradient method is an iterative procedure when an initial value of z is sequentially 

updated until vector  becomes close enough or computationally indistinguishable from 

the desired target, i.e., . Update vector d is chosen in a such a manner that it is conjugate to the 

previous update vectors. This ensures that the iterative process never proceeds in the repetitive 

directions and that the method stops after a finite number of iterations. Each iteration involves 

computation of , which is a sparse matrix-vector operation and can be implemented 

efficiently. Other operations include computing vector norm, multiplication by a scalar and vector 

subtraction which are even less computationally demanding. The convergence is achieved when 

the update vector  becomes too small, i.e., has a small norm and further updates do not 

have any impact on the solution vector z. Intermediate results are a few vectors and no other 

memory is needed. 

The convergence rates of the conjugate gradient method depend on the properties of matrix 

. The upper bound of the rate is determined by the condition number (ratio of the largest 

eigenvalue to the smallest one) of matrix  (Watkins, 2002). The higher the condition num-

ber, the higher the convergence rates and the fewer the iterations. In practice, in the case of spatial 

weights matrices, the convergence is much faster and inversely related to the condition number, 

i.e. the value of coefficient , actually, is the only factor5 that determines the rate of convergence. 

Values of  close to zero produce a matrix with condition number close to one, its smallest value, 

but it takes only a few iterations, normally five or size, to compute vector z. Larger values of  

lead to the matrices with higher condition numbers, but slower convergence rates. For example, in 

the presence of strong spatial association, when  is equal to 0.5, it requires typically 30 to 40 

iterations to arrive at the accurate solution. Higher values of  imply larger number of iterations. 

5. The size of the matrix  does not affect the convergence rates beside providing an upper bound on 
the number of iterations.

I ρW–( )z

Xβ

I ρW–( )d

I ρW–( )d

I ρW–

I ρW–

ρ

I ρW–

ρ

ρ

ρ
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Since higher values of  are extremely rare for the correctly specified models with spatial interac-

tion, normally it would take 50 or fewer iterations to achieve the convergence.

4.2.   Computing information matrix for originally symmetric spatial weights matrix

Consider cases where matrix W is symmetric or obtained by row-standardizing a symmetric 

matrix . In the latter event, row-standardization can be expressed as , where 

 is a diagonal matrix with diagonal elements equal to the sum of the elements in the correspond-

ing row of the original spatial weights matrix. Although row-standardization of the matrix  

yields asymmetric matrix, the latter can be easily transformed into a symmetric one by a similar-

ity transformation . It can be readily demonstrated that the traces of the 

matrix W are the same as those of the matrix Ws. In this respect, symmetry can be utilized to make 

the computations of trace terms more efficient as

, , and 

.

Note that computing trace of matrix S is equivalent to computing the sum of scalars, which can be 

done without explicit matrix inverse

, (8)

where ,  is an i-th ord, i.e., a column-vector with 1 at i-th row and zeros 

elsewhere. Formally, computing  is equivalent to computing 

, where  is the solution of the system of linear equations . The system 

is free from an explicit matrix inverse and can be effectively solved by conjugate gradient or 

another iterative method. Computing  is essentially reduced to the computation of the i-th 

ρ
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component of vector . The advantage of conjugate gradient methods is that vector  can 

also be used in computing other trace terms.

Follow symmetry consideration as in the (8), the treatment of the term  is also signifi-

cantly simplified

 , (9)

where  denotes Euclidean norm of a vector. Computing (9) is further simplified using vector 

 already computed in (8). The only necessity is to compute the square of its norm.

Term  represents trace of a symmetric matrix , which is not equal to . Use of 

 and  leads to 

.

Similarly, using symmetry of matrix S,  can be presented as

. (10)

Since matrix D is diagonal and  has all zeros except at the i-th component, the use of 

 further simplifies (10):

. (11)

Re-use vector  from (8), and (11) becomes

 . (12)

The outlined approach for computing trA, trAA, and  uses conjugate gradient method 

and does not require storing of the inverse of matrix . The main advantages of the 

approach are low computer memory requirements on all stages, no need for symbolic computa-

tion or reordering of rows and columns of matrix W and suitability for multiprocessing computing 

environments. The major computational task of the method is computing vector 
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, . The fact that this task must be performed for each i, 

emphasizes the need for finding more efficient ways for computing vector .

4.3.   Computing information matrix for originally non-symmetric spatial weights matrix

Non-symmetry of the original spatial weights matrix requires additional manipulations to 

reduce the problem of computing traces. The simplest solution is to replace the non-symmetric 

system of linear equations  with the equivalent symmetric system 

. Although he latter uses symmetric matrix 

, it would take two matrix-vector multiplications on each iteration to compute 

solution update.

Once the system of linear equations  is solved using con-

jugate gradient method, equation

(13)

becomes a simple matter of extracting i-th component from vector :

 .

Computation of trAA requires additional step of solving 

. Further,  and  are used to compute the desired 

trace term:

. (14)

Term  can be computed as

 . (15)
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Equations (13)-(15) constitute the basis for computing the elements of the information matrix if 

the spatial weights matrix is not symmetric. Since they involve more computations than (8), (9), 

and (12), it is always advisable to use symmetric cases whenever possible.

5.   Sparse Conjugate Gradient Method

For a given matrix , computing vector  is a linear computa-

tional complexity process, i.e., the larger the dataset, the higher the computational burden. Since 

there are N vectors to be sequentially computed, the total computational complexity of computing 

traces trA, trAA, and  becomes  which is comparable to the computational complex-

ity of performing sparse Cholesky decomposition for a typical spatial weights matrix. Sparse con-

jugate gradient method allows to reduce the computational complexity of computing traces from a 

quadratic to linear. This is achieved by utilizing the specifics of computing the trace terms -- spar-

sity of vectors .

The starting point of the sparse conjugate gradient method is that vectors e are sparse, i.e. they 

contain only single non-zero component. Initial value for vector z is e. Vector of residuals 

 is also sparse. At each iteration, the direction  for updating vector z is chosen as 

, where  is the ratio of squared norms of vectors  and . Conse-

quently, vector of residuals r0 is updated by adding a multiple of vector . 

The iterative nature of conjugate gradient method contributes to the phenomenon, that the 

number of non-zero entries in vectors z, r, and d increases. The set of non-zero entries is expanded 

by adding elements in their immediate neighborhood at each iteration. Thus, if vector  contains 

only one non-zero entry, which corresponds to location i, vector  will have first order neighbors 

to i, vector  will have second order neighbors to i and so on. Adding spatial neighbors to the 

I ρW– vi Ws I ρWs–( ) 1– ei=

trAA′ O N2( )

ei

r0 ρWe= dk

dk rk 1– αdk 1–+= α rk 1– rk 2–

I ρWs–( )dk

d0

d1

d2
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sparse vector does not alter its sparsity, because most first order neighbors to non-zero entries 

have been already included.

In a typical spatial weights matrix, the number of non-zero entries in the higher order neigh-

bors is not dependent on the size of the data set; it rather depends on the criteria used to define 

locality and neighborhood conditions. For example, in a banded matrix with bandwidth b, the 

number of non-zero entries in vector  is equal to . For a spatial weights matrix 

computed over a regular grid with rook criteria of contiguity, the number of non-zero entries in 

vector  is no more than . While this number increases with the number of itera-

tions, it remains negligibly small for large data sets. Thus, the significant improvement to the per-

formance of the conjugate gradient method can be done by replacing sparse matrix—dense vector 

multiplication  requiring bN arithmetic operations with a sparse matrix—sparse vector 

application requiring bp arithmetic operations, where b is the average number of non-zero ele-

ments in matrix  and p is the total number of non-zero elements in vector . For example, 

for a spatial weights matrix originating from a regular grid with the rook criteria of contiguity and 

size of the data set N=100,000, the original implementation requires 400,000 operations and the 

improved - less than 20,004 operations for . The difference becomes more dramatic for 

larger data sets, because the latter does not change significantly with the size of the data set.

The efficient implementation of the sparse conjugate gradient method depends on the efficient 

implementation of sparse vector operations. The major gain in performance of sparse operations 

over the dense vector operations is attributed to elimination of unnecessary operations with com-

ponents that are known to be zeros. Thus, sparse vector operations have to keep track of the non-

zero components, i.e., to identify which components differ from zero and what are the values in 

dk b k 1+( ) 1+

dk 2 k 1+( )2 1+

I ρWs–( )dk

I ρW– dk

k 49=
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these components. Vector operations of addition and multiplication are carried out only with the 

non-zero components.

Data structures for efficient sparse vector operations should be efficient yet flexible enough to 

accommodate the dynamic nature of most sparse vectors used in the sparse conjugate gradient 

method. Intermediate sparse vectors change form iteration to iteration and the number of non-zero 

entries in these vectors typically increases. The number of non-zero elements in a vector is 

unlikely to reach the upper limit, N. The best data structure should contain the list of non-zero 

entries in the vector, so that the major vector operations would involve only non-zero vector com-

ponents. In addition, it should provide the efficient vector update, i.e., insertion of new non-zero 

elements or updating the value of the existing non-zero entry.

I use regular one-dimensional array to store the values of elements of the vector which is 

accompanied by the list of indices of non-zero elements in the vector. While such combination is 

not the most efficient from point of view of memory requirement, it is the most computationally 

efficient, because it provides a constant computational complexity for operations of inserting, 

accessing and updating single element and enables to list all non-zero elements bypassing zero 

components.

6. Numerical experiments

The main purpose of the numerical experiments is to test viability of the sparse gradient 

method for computing the elements of the information matrix for the models with spatial interac-

tion.

First, I want to establish if the method is practical  for computing the information matrix for 

large data sets in the regular workstation environment. This issue is wider than just confirming 
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that a particular computational problem can be solved given the limitations on computational 

resources of a specific workstation. After all, the notion of modern workstation has being con-

stantly upgraded and advances in computing techniques relax the limitations on the size and com-

plexity of the problems that can be solved. However, the notions of a typical or large spatial data 

sets are inflating even faster. For these reasons, the practicality of the method depends on how an 

increase in the size of the data set affects the method s performance.

The experiment that aim to establish how the data set size affects the performance of the 

sparse conjugate gradient method has to include several spatial weights matrices that preferably 

differ in the size and not other characteristics (average number of neighbors, presence or absence 

of spatial clusters, connectivity, etc.). Spatial weights matrices generated over the regular grids 

give the best fit for the purpose. I used rook criteria of contiguity6 to define spatial neighbors. 

This criterion results in a symmetric spatial weights matrix with 2, 3, or 4 neighbors per observa-

tion. The size of regular grid determines the number of observations and, consequently, the size of 

the data sets and the dimension of spatial weights matrix. 

The series of regular grids presented in Table 1 cover a range of spatial data sets. The smallest 

data set has 1,024 and the largest has 3,001,556 observations. The spatial weights matrices are 

originally symmetric binary sparse matrices. Explanatory and dependent variables are generated 

in such a way that the model to be estimated had a given true value of the coefficient of spatial 

association.

According to Table 1, the timing of the method increases with the size of the matrix7. It is 

increasing a bit faster than the theoretically established  linear complexity of the method suggests, 

6. i.e., two cells on the regular rectangular grid are neighbors if and only if they have a common boundary
7. All computations have been performed on a Macintosh computer equipped with PowerPC G4 processor 

rated at 800 MHz and 512 MB installed memory, operating system - Mac OS X. Programming language 
is C++.
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but slower than the rates of  or . It appears that the best curve to fit the tim-

ing for the method in Table 1 is . The actual timing and predicted timing are 

depicted in Figure 1. Both horizontal and vertical axes in Figure 1are correspondingly the loga-

rithms of the size of the data sets and timing. Visually, the predicted values for  are 

practically identical to the actual values of logarithm of timing.

The evidence in Table 1 and Figure 1 indicates that actual timing of the sparse conjugate gra-

dient method is  rather than a theoretical . This raises two important questions: 

why does this occur and what factors affect practical performance of the sparse conjugate gradient 

method? 

Theoretical linear computational complexity of the method relies on the assumption that the 

memory access operations are scale-independent. In practice, common hierarchical structure of 

random access memory (via one or more levels of cache) in modern computers makes smaller 

Table 1: Performance of sparse conjugate gradient method for computing the 
Information matrix for various spatial layouts, 

Regular grid Data set size

Non-zero 
elements in the 
spatial weights 

matrix

Time, seconds
Performance, 

rows/sec.

32 x  32 1,024 3,968 0.22 4,655

50 x  60 3,000 11,780 0.67 4,478

71 x  71 5,041 19,880 1.15 4,383

100 x 100 10,000 39,600 2.32 4,310

316 x 317 100,172 399,422 25.46 3,935

500 x 600 300,000 1,197,800 80.88 3,709

1,000x1,000 1,000,000 3,996,000 291.08 3,435

1,732x1,733 3,001,556 11,999,294 835.50 3,593a

a. Computations have been performed over night; fewer running applications result in lower CPU load 
and memory segmentation.

ρ 0.25=

O n nln( ) O n nlnln( )

O n nlnln( )

O n nlnln( )

O n nlnln( ) O n( )
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tasks disproportionately easier to accomplish than the larger ones. The larger tasks require more 

frequent access to slower layers of memory, which increases the execution time even if the float-

ing point operations are not affected. Nonetheless, the overhead associated with memory access is 

relatively modest; as Table 1 indicates, tenfold increase in the size of the data set causes the per-

formance of the method to slow down by less than 15 percent.

The answer on the second question depends on the size of the problem. For smaller problems, 

when the spatial weights matrix and most of the intermediate vectors fit into faster access cache, 

the computational power of the processor is important and RAM architecture and bus speed are of 

Figure 1. Actual and predicted timing of the 
method

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

3.0103 3.4771 3.7025 4 5.0007 5.4771 6 6.4773

Logarithm of the size of the dataset

L
o

g
a
ri

th
m

 o
f 

ti
m

in
g

ac
pr



19

lesser significance. For larger problems, the computational power of the processor becomes less 

important because the memory access becomes the limiting factor and the processor is mostly 

idling. Thus, the systems with slower processor but faster bus and better architecture can outper-

form those with faster processor and slower memory access.

Other factors that affect the performance of the sparse conjugate gradient method include the 

number of non-zero elements in the spatial weights matrix and the value of the coefficient of spa-

tial association. Computing spatial lag of a sparse vector is the major operation of the method. 

The fewer non-zero entries in the spatial weights matrix, the faster the computation of the spatial 

lag.

The importance of the value of the coefficient of spatial association for the convergence of the 

spatial conjugate gradient method is demonstrated in Table 2. The timing data in Table 2 are 

obtained by computing the information matrix for the model with 100,172 observations and vari-

ous values of the coefficient of spatial association. While I compute the information matrix for all 

the values listed in Table 2, it should be noted, that in practice the accurate computation of the 

information matrix is desirable mostly for lower values of the coefficient (less than 0.5), because 

higher values of coefficient are rare in correctly specified models.

It takes approximately 56 seconds to obtain ML estimates using characteristic polynomial 

method described in (Smirnov, Anselin, 2001). Using this timing as a benchmark, the sparse con-

jugate gradient method is reasonably fast for vast majority of practical applications when spatial 

coefficient is not exceeding 0.7. As Table 2 indicates, the performance of sparse conjugate gradi-

ent method dramatically deteriorates for extremely high values of the coefficient of spatial corre-

lation (0.7 and higher). The simplest way to reduce the timing for such cases is to find a 

reasonable compromise between the timing and the accuracy. The iterative nature of the method 
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provides a base for such a compromise; the iterations can be terminated much earlier than in the 

exact.version of the method. The termination condition in the exact method stipulates that the 

squared norm of the correction vector is less than . This ensures exactness of the informa-

tion matrix. However, if the exact values are not needed and a good approximation suffices, less 

stringent termination condition reduces the number of iterations and decreases timing. For exam-

ple, terminating value of  reduces timing from 1,290.86 for the exact method with correla-

tion 0.9 to just 152.83 seconds while ensuring four significant digits in the results. Terminating 

value  further reduces timing to 70.32 seconds and provides only three significant digits in 

the result. Memory requirements for exact and approximate versions are the same.

7.   Conclusion

In this paper, I identify the computation of trace terms of the inverse of spatial difference oper-

ator as the key issue for computing the information matrix for either spatial lag and spatial error 

Table 2: Performance of the method for various values 

of spatial correlation coefficienta

Coefficient Time, seconds

0.05 8.66

0.10 13.02

0.15 18.39

0.25 25.46

0.35 43.96

0.50 87.73

0.70 245.20

0.90 1,290.86

a.  The spatial weights matrix is obtained from a regular grid 
with 316 row and 317 columns using rook criterion of conti-
guity.

1 16–×10

1 8–×10

1 6–×10
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models. While the formulas needed for computing the information matrix are well-known, they 

cannot be easily applied for arbitrary large spatial problems. The conventional methods for com-

puting such terms impose substantial requirements on the computational resources, CPU and 

memory. Excessive demands for the resources preclude efficient application of existing methods 

for solving models with large spatial data sets. In addition, the requirements for sparse matrix fac-

torization methods are unknown in advance, thus introducing additional inconveniencies in the 

practice of estimating models with spatial interaction. 

The major contribution of this paper is in devising and analyzing an innovative approach for 

computing the information matrix for the models with spatial interaction. The core of the 

approach is build on sparse conjugate gradient method for computing necessary trace terms and 

other quantities. Unlike sparse or dense matrix inverse methods, it does not explicitly store and 

compute the inverse of a large matrix. Small memory requirements of the method enable compu-

tation of the information matrix for large spatial datasets, up to 1 million observations and more. 

Computational efficiency and theoretical linear computational complexity of the sparse conjugate 

gradient method allow to equally effectively deal with small and large models. In addition, the 

method can be deployed in the multiprocessing or distributed computing environments.

Numerical experiments have been conducted to test practicality of the sparse conjugate gradi-

ent method on a series of spatial data sets ranging in size from 1,024 to 3,001,556 observations. It 

has been established that the actual timing of the method is close to linear complexity, with per-

formance declining less than 15 percent when the size of the problem rises tenfold. The actual 

timing is described by  function, which can be explained by the hierarchical struc-

ture of memory and includes a modest penalty for accessing slower layers of memory.

O n nlnln( )
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Sparse conjugate gradient method is an effective solution that is modest in computational 

requirements and applicable to small and large scale problems. The only limitation of the exact 

version of the method is associated with extremely high (and rare high) values of the coefficient 

of spatial association (greater than 0.7). The timing, but not memory requirement or accuracy of 

the method, substantially increase in such cases. When the value of the coefficient is known and a 

good approximation of the information matrix is sufficient, the approximate version of the 

method can be utilized. Flexibility of the sparse conjugate gradient method allows to control the 

accuracy of the method and to compute approximate information matrix. Less precise results can 

be computed faster.

In sum, unlike sparse matrix inverse methods, sparse conjugate gradient method is predict-

able, modest in requirements, has linear computational complexity (i.e., very fast), allows for con-

trol of the accuracy of the results, and is easy to implement in single- or multiprocessing 

environments.
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