

1

Computation of the Information Matrix for Models of
Spatial Interaction

Oleg Smirnov

Regional Economics Applications Laboratory

University of Illinois at Urbana-Champaign

email: osmirnov@uiuc.edu

Abstract.

I provide algebraic and computational considerations to alleviate the burden of com-

puting the information matrix for models of spatial interaction. Of prime importance, I compute

the information matrix without storing an inverse of the spatial differencing operator, a large

sparse matrix. To accomplish this efficiently, I developed a version of the conjugate gradient

method for the case of sparse matrices and vectors. Performance is demonstrated for various data

sets and major types of models of spatial interaction. Its advantages include modest computing

resource requirements, suitability for multiprocessing environments, and easily controlled preci-

sion. Convergence is guaranteed for all feasible values of the maximum likelihood estimates with

the rate of convergence depending on the coefficient of spatial correlation. The efficiency of the

proposed method allows complete maximum likelihood estimation of models with very large spa-

tial data sets (one million observations or more).

Keywords: spatial statistics, maximum likelihood estimation, sparse conjugate gradient method

2

1. Introduction

Since as early as Whittle (1954), the method of maximum likelihood (ML) has been consid-

ered the preferred for the estimation of models of spatial interaction. Unlike least squares estima-

tion that could be biased, inefficient, or both, exact maximum likelihood estimation is consistent

and asymptotically efficient. The complete procedure of ML estimation involves two steps:

obtaining ML estimates and computing statistical inference. Most efforts have been directed

towards the first step, the computation of values of the parameters that maximize log-likelihood

function (Griffith, 2002; Pace and Barry, 1997; Pace and LeSage, 2002; Smirnov and Anselin,

2001, among others). Mathematical and computational complexity of log-likelihood function is

so overwhelming, that little attention has been paid to the second step—statistical inference. The

second step, the computation of the information matrix and its inverse, however, is as important

and highly desirable as the first step because it complements ML estimates of the parameters with

information on their asymptotic variance, thence, statistical significance of the coefficients, test-

ing model specification, etc.

While there are several practical computational methods of obtaining ML estimates, the com-

putational problem of statistical inference for the models of spatial interaction has never been

methodically investigated. Recent advances in computational methods enable to obtain ML esti-

mates for models of spatial interaction for very large data sets (one million observations or more)

using personal workstations. Those techniques, however, are useless for computing information

matrix, because information matrix has little in common with log-likelihood. To date, no practical

solutions have been offered for the computation of the information matrix.

1

1. Study of Driscoll and Kraay (1998) demonstrates importance of consistent covariance matrix estimation
and suggests use of Monte Carlo method in the context of generalized method of moments estimator.

3

Computation of the information matrix involves computation of inverse of a large sparse

matrix. The dimension of the matrix is determined by the size of the sample, so computing its

inverse becomes increasingly strenuous for large spatial data sets. Inverting a large matrix

becomes impractical if not possible on personal workstations for matrices as little as a few thou-

sand. In addition, straightforward utilization of existing formulas (Anselin, 1988; Anselin, Bera,

1998) for the information matrix suggest non-symmetry of the matrix to be inverted.

I offer a few considerations that substantially alleviate the computation of the information

matrix. Similarity transformations applied to the spatial differencing operator replace non-sym-

metric matrix operations with symmetric ones; symmetry of the matrices allows use of computa-

tionally more efficient algorithms. Since spatial differencing operator is much more sparse than

its inverse, its use in computational method is potentially more efficient. Finally, I develop a pro-

cedure for computing all the necessary quantities needed for the information matrix without stor-

ing the inverse of the spatial differencing operator. The procedure utilizes the conjugate gradient

method, adopted for the case of sparse matrices and vectors. This method imposes fewer demands

on computational environment than any other.

Performance of the method for computing information matrix is demonstrated for various data

sets and major types of models of spatial interaction. The convergence of the method is guaran-

teed for all feasible values of the ML estimates, but the rate of convergence varies depending on

the value of the coefficient of spatial correlation.

Major advantages of the proposed method include modest memory requirements, accommo-

dation of sparse matrices of unusual structure without imposing additional demands on the com-

puting resources, suitability for a multiprocessing environment, easily controlled accuracy.

4

Computational efficiency of the proposed method for computing the information matrix is critical

for it allows to perform computations for sparse matrices up to a million of observation and more.

The method also proves to be useful for improving the computational accuracy of the initial ML

estimates (especially those obtained by an approximation technique).

2. Structure of the information matrix for SAR models

Ord (1975) originally provided information matrix for the spatial autoregressive model

. In practice, a full specification of the model with spatial interaction contains

explanatory variables and a spatial autoregressive term in either (spatial lag model) or

(spatial error model) form, where is a spatial autoregressive parameter,

W

 is a matrix of

spatial weights, and

y

, are vectors of observations on the dependant variable and unob-

servable error terms. Benirshka and Binkley (1994) provided the information matrix for spatial

error model; Anselin and Bera specified information matrices for both models.

Formally, spatial lag model is presented as

,

(1)

where

W

 is a spatial weights matrix, is a vector of random error terms.

The log-likelihood function for the model is

,

(2)

where and the information matrix for the model is

,

(3)

where .

y ρWy ε+=

ρWy ρWε

ρ n n×

ε n 1×

y ρWy Xβ ε+ +=
ε N 0 σ2I,()∼

L ρ β σ2, ,() N
2
---- 2π() N

2
---- σ2() e′e

σ2-------– I ρW–ln+ln–ln–=

e I ρW–()y Xβ–=

I ρ β σ2, ,()

tr AA() tr A′A() β′X′A′AXβ
σ2----------------------------++ β′X′A′X

σ2--------------------
tr A()
σ2-------------

X′AXβ
σ2-----------------

X′X
σ2--------- 0

tr A()
σ2------------- 0 N

2σ2---------

=

A W I ρW–() 1–=

5

Asymptotic variance matrix is an important component of statistical inference. Many statistics

for models with spatial dependence such as asymptotic

t

-test for spatial and non-spatial coeffi-

cients require knowledge of the entire asymptotic variance matrix or some of its elements (for

examples, see Anselin, Bera, 1998)

2

. Asymptotic variance can be obtained in the two-step proce-

dure. In the first step, the information matrix is computed, and in the second, it is inverted. The

latter is a routine computational task that can easily be performed for the entire information

matrix or its blocks. Key issue is to obtain the information matrix, because it involves computa-

tion of several traces:

tr(A)

,

tr(AA)

, and . In addition, element contains matrix

inverse.

Spatial error model is typically presented as

,

(4)

where is a vector of error terms. Log-likelihood function for this model is

,

(5)

where and the information matrix is

,

(6)

where .

The information matrix (6) is block-diagonal, so the terms containing traces of matrix inverses

are needed only in the block corresponding to and . The information matrix for spatial lag

2. A rare exception is likelihood ratio statistic, which is computed using values of log-likelihood function
only

tr A′A() Iβρ

y Xβ ε+=

ε λWε µ+=
µ N 0 σ2I,()∼

L λ β σ2, ,() N
2
---- 2π() N

2
---- σ2()

ed′ed

2σ2------------– I λW–ln+ln–ln–=

ed I λW–() y Xβ–()=

I λ σ2 β, ,()

tr AA() tr A′A()+ tr A()
σ2------------- 0

tr A()
σ2-------------

N
2σ2--------- 0

0 0 σ2 X′d Xd[]

=

A W I λW–() 1–=

λ σ2

6

model is somewhat more challenging because it is not diagonal, hence must be always computed

in full, and contains matrix inverse in element .

3. Approaches for computing the information matrix

The straightforward computation of inverse of a large matrix is a well-studied problem of lin-

ear algebra (Golub, Van Loan, 1996). It is an operation, that imposes burdensome require-

ments on fast-access memory. In practice, the size of data set for which this operation can be

effectively computed on a typical workstation is limited to a few thousand observations. Since the

computational complexity and memory requirements for the problem are highly non-linear, it

cannot be effectively solved for those data sets that exceed in size a level specific for each compu-

tational system. For large data sets (hundred thousand observations or more), it is impractical to

solve on a personal workstation if possible at all. While advances in modern computational tech-

niques and progress in computing environments do alleviate this problem, the needs of spatial sta-

tistical analysis and handling of large-sized data grow even faster (see Pace and LeSage, 2002;

Smirnov and Anselin, 2001 for examples of large spatial datasets).

An obvious solution to reduce the computational burden and memory requirements for com-

puting traces of inverse of a sparse matrix is to exploit its sparsity. Common feature of sparse

matrix factorization algorithms is a reliance on ordering of rows and columns to reduce the fill of

the resulting factor matrix3. Ideally, the resulting factor matrix would have no fill while preserv-

ing the numerical characteristics of the original matrix (see, George and Liu, 1981; Gilbert,

Moler, and Schreiber, 1992). Situation of the no fill is possible, for example, for a banded matrix,

3. Good ordering routines even can reduce the complexity of the problem for a typical spatial weights

matrix from down to (Gilbert, Moler, and Schreiber, 1992; MathSoft, 1996; Ng and
Raghavan, 1999).

Iβρ

O n3()

O n3() O n2()

7

when all non-zero elements are concentrated along main diagonal4. Such matrices represent a

very specific case of spatial layout, which rarely found in practical applications. For example,

spatial weights matrix that corresponds to a regular grid of would have a band approxi-

mately of size n. The size of a band would increase with the size of the matrix, and so would the

fill and the computational complexity of the Cholesky factorization and the matrix inverse.

The fill of the matrix depends not as much on the number of neighbors in the spatial weights

matrix, as on how local they are. Optimal ordering for regular grids produces fill of order

 and total number of operations to perform factorization is . In comparison, fill

for the banded matrix is zero, and its factorization is a linear complexity operation. In sum, typical

spatial weights matrices tend to produce larger fill and their factorization requires more opera-

tions than sparse matrices with a band or other no-fill and small-fill structure. Therefore, sparse

matrix factorization routines should be expected slower for spatial matrices and memory require-

ment are a factor that makes it impossible to perform factorization of large spatial weights matri-

ces.

Most computational solutions for sparse matrix factorization rely heavily on various strategies

to reduce the fill and, consequently, the complexity of sparse matrix factorization. These methods,

however, do not give an information on the memory requirements for storing the Cholesky factor

of a sparse matrix until after the ordering or symbolic factorization is actually performed, lest the

number of operations. The knowledge of the memory prerequisites is critical for determining if

the factor matrix fits into the constraints of the particular computational environment. Such uncer-

4. For spatial weights matrix W that has a band with width b, i.e. for all and

, Cholesky factor of matrix is also a banded matrix with width b.

wij 0= i j b+>

i j b–< I ρW–

n n×

O n nln() O n n()

8

tainty places factorization methods of arbitrary sparse matrices in the category of methods that

might produce a result and might fail.

4. A Conjugate Gradient Method

4.1. Principle

An alternative approach is to compute column-vector using implicit matrix

inverse. The idea is to find a vector z that satisfies the following condition:

 . (7)
 Once such vector is found, the element of the information matrix is computed using only

sparse matrix-vector multiplication .

Solving system of linear equations (7) without explicitly computing matrix inverse is a well-

known linear algebra problem (see Golub, Van Loan, 1996, chapter 10; Watkins, 2002, chapter 7).

Key advantage of iterative methods over the direct Cholesky factorization is that computing the

inverse is unnecessary and memory requirements are very modest. For the methods to be compu-

tationally efficient, the only requirement is efficient implementation of sparse matrix-vector mul-

tiplication. Row and column re-ordering or any form of symbolic computation which is a major

time-consuming operation in sparse matrix factorization also is not required.

 The fastest best-known iterative methods for solving the system of linear equations are descend

and conjugate gradient methods. Both methods are iterative. The former is easier to implement,

but the latter has better convergence rates and is guaranteed to converge to the solution within a

finite number of iterations. For these reasons, I focus on conjugate gradient method. Its complete

description and proves of the properties can be found in (Golub, Van Loan, 1996:527-8; Watkins,

2002, 577-8).

I ρW–() 1– Xβ

I ρW–()z Xβ=
Iρβ

Iρβ
1
σ2------X′Wz=

9

Conjugate gradient method is an iterative procedure when an initial value of z is sequentially

updated until vector becomes close enough or computationally indistinguishable from

the desired target, i.e., . Update vector d is chosen in a such a manner that it is conjugate to the

previous update vectors. This ensures that the iterative process never proceeds in the repetitive

directions and that the method stops after a finite number of iterations. Each iteration involves

computation of , which is a sparse matrix-vector operation and can be implemented

efficiently. Other operations include computing vector norm, multiplication by a scalar and vector

subtraction which are even less computationally demanding. The convergence is achieved when

the update vector becomes too small, i.e., has a small norm and further updates do not

have any impact on the solution vector z. Intermediate results are a few vectors and no other

memory is needed.

The convergence rates of the conjugate gradient method depend on the properties of matrix

. The upper bound of the rate is determined by the condition number (ratio of the largest

eigenvalue to the smallest one) of matrix (Watkins, 2002). The higher the condition num-

ber, the higher the convergence rates and the fewer the iterations. In practice, in the case of spatial

weights matrices, the convergence is much faster and inversely related to the condition number,

i.e. the value of coefficient , actually, is the only factor5 that determines the rate of convergence.

Values of close to zero produce a matrix with condition number close to one, its smallest value,

but it takes only a few iterations, normally five or size, to compute vector z. Larger values of

lead to the matrices with higher condition numbers, but slower convergence rates. For example, in

the presence of strong spatial association, when is equal to 0.5, it requires typically 30 to 40

iterations to arrive at the accurate solution. Higher values of imply larger number of iterations.

5. The size of the matrix does not affect the convergence rates beside providing an upper bound on
the number of iterations.

I ρW–()z

Xβ

I ρW–()d

I ρW–()d

I ρW–

I ρW–

ρ

I ρW–

ρ

ρ

ρ

ρ

10

Since higher values of are extremely rare for the correctly specified models with spatial interac-

tion, normally it would take 50 or fewer iterations to achieve the convergence.

4.2. Computing information matrix for originally symmetric spatial weights matrix

Consider cases where matrix W is symmetric or obtained by row-standardizing a symmetric

matrix . In the latter event, row-standardization can be expressed as , where

 is a diagonal matrix with diagonal elements equal to the sum of the elements in the correspond-

ing row of the original spatial weights matrix. Although row-standardization of the matrix

yields asymmetric matrix, the latter can be easily transformed into a symmetric one by a similar-

ity transformation . It can be readily demonstrated that the traces of the

matrix W are the same as those of the matrix Ws. In this respect, symmetry can be utilized to make

the computations of trace terms more efficient as

, , and

.

Note that computing trace of matrix S is equivalent to computing the sum of scalars, which can be

done without explicit matrix inverse

, (8)

where , is an i-th ord, i.e., a column-vector with 1 at i-th row and zeros

elsewhere. Formally, computing is equivalent to computing

, where is the solution of the system of linear equations . The system

is free from an explicit matrix inverse and can be effectively solved by conjugate gradient or

another iterative method. Computing is essentially reduced to the computation of the i-th

ρ

Worig W D 1– Worig=

D

Worig

Ws D1 2/ WD 1 2/–=

trWs trW= trWs I ρWs–() 1– trW I ρW–() 1–=

trWs I ρWs–() I ρWs–()′Ws′ trW I ρW–() I ρW–()′W′=

trA trS trSI trS eiei′
i 1=
∑ ei′Sei

i 1=
∑= = = =

S Ws I ρWs–() 1–= ei

ei′Sei ei′Ws I ρWs–() 1– ei=

ei′Wszi zi I ρWs–()zi ei=

ei′Sei

11

component of vector . The advantage of conjugate gradient methods is that vector can

also be used in computing other trace terms.

Follow symmetry consideration as in the (8), the treatment of the term is also signifi-

cantly simplified

 , (9)

where denotes Euclidean norm of a vector. Computing (9) is further simplified using vector

 already computed in (8). The only necessity is to compute the square of its norm.

Term represents trace of a symmetric matrix , which is not equal to . Use of

 and leads to

.

Similarly, using symmetry of matrix S, can be presented as

. (10)

Since matrix D is diagonal and has all zeros except at the i-th component, the use of

 further simplifies (10):

. (11)

Re-use vector from (8), and (11) becomes

 . (12)

The outlined approach for computing trA, trAA, and uses conjugate gradient method

and does not require storing of the inverse of matrix . The main advantages of the

approach are low computer memory requirements on all stages, no need for symbolic computa-

tion or reordering of rows and columns of matrix W and suitability for multiprocessing computing

environments. The major computational task of the method is computing vector

vi Sei= vi

trAA

trAA trSS trSSI trSS eiei′
i 1=
∑ ei′SSei

i 1=
∑ Sei

2

i 1=
∑= = = = =

x

vi Sei=

trAA′ AA′ trSS′

A W I ρW–()= W D 1 2/– WsD
1 2/=

trAA′ trD 1– Ws I ρWs–() 1– D I ρWs′–() 1– Ws′ trD 1– SDS= =

trSS′

trD 1– SDS trD 1– SIDS tr D 1– Seiei′ DS
i 1=
∑ ei′ DSD 1– Sei

i 1=
∑= = =

ei′

ei′D diei′=

ei′ DSD 1– Sei
i 1=
∑ ei′ SdiD

1– Sei
i 1=
∑=

vi Sei=

trAA′
di

d

j
v2

ij
j 1=
∑

i 1=
∑=

trAA′

I ρW–

12

, . The fact that this task must be performed for each i,

emphasizes the need for finding more efficient ways for computing vector .

4.3. Computing information matrix for originally non-symmetric spatial weights matrix

Non-symmetry of the original spatial weights matrix requires additional manipulations to

reduce the problem of computing traces. The simplest solution is to replace the non-symmetric

system of linear equations with the equivalent symmetric system

. Although he latter uses symmetric matrix

, it would take two matrix-vector multiplications on each iteration to compute

solution update.

Once the system of linear equations is solved using con-

jugate gradient method, equation

(13)

becomes a simple matter of extracting i-th component from vector :

 .

Computation of trAA requires additional step of solving

. Further, and are used to compute the desired

trace term:

. (14)

Term can be computed as

 . (15)

vi Ws I ρWs–() 1– ei= i 1 … N, ,=

vi

I ρW–()zi ei=

I ρW′–() I ρW–()zi I ρW′–()ei=

I ρW′–() I ρW–()

I ρW′–() I ρW–()zi I ρW′–()ei=

trA ei′Aei

i 1=

N

∑=

zi

trA ei′ zi

i 1=

N

∑=

I ρW–() I ρW′–()zw
i I ρW–()W′ei= zi zi

w

trAA zi′W′zi
w

i 1=

N

∑=

trAA′

trAA′ zi′ W′Wzi

i 1=

N

∑ Wzi

i 1=

N

∑= =

13

Equations (13)-(15) constitute the basis for computing the elements of the information matrix if

the spatial weights matrix is not symmetric. Since they involve more computations than (8), (9),

and (12), it is always advisable to use symmetric cases whenever possible.

5. Sparse Conjugate Gradient Method

For a given matrix , computing vector is a linear computa-

tional complexity process, i.e., the larger the dataset, the higher the computational burden. Since

there are N vectors to be sequentially computed, the total computational complexity of computing

traces trA, trAA, and becomes which is comparable to the computational complex-

ity of performing sparse Cholesky decomposition for a typical spatial weights matrix. Sparse con-

jugate gradient method allows to reduce the computational complexity of computing traces from a

quadratic to linear. This is achieved by utilizing the specifics of computing the trace terms -- spar-

sity of vectors .

The starting point of the sparse conjugate gradient method is that vectors e are sparse, i.e. they

contain only single non-zero component. Initial value for vector z is e. Vector of residuals

 is also sparse. At each iteration, the direction for updating vector z is chosen as

, where is the ratio of squared norms of vectors and . Conse-

quently, vector of residuals r0 is updated by adding a multiple of vector .

The iterative nature of conjugate gradient method contributes to the phenomenon, that the

number of non-zero entries in vectors z, r, and d increases. The set of non-zero entries is expanded

by adding elements in their immediate neighborhood at each iteration. Thus, if vector contains

only one non-zero entry, which corresponds to location i, vector will have first order neighbors

to i, vector will have second order neighbors to i and so on. Adding spatial neighbors to the

I ρW– vi Ws I ρWs–() 1– ei=

trAA′ O N2()

ei

r0 ρWe= dk

dk rk 1– αdk 1–+= α rk 1– rk 2–

I ρWs–()dk

d0

d1

d2

14

sparse vector does not alter its sparsity, because most first order neighbors to non-zero entries

have been already included.

In a typical spatial weights matrix, the number of non-zero entries in the higher order neigh-

bors is not dependent on the size of the data set; it rather depends on the criteria used to define

locality and neighborhood conditions. For example, in a banded matrix with bandwidth b, the

number of non-zero entries in vector is equal to . For a spatial weights matrix

computed over a regular grid with rook criteria of contiguity, the number of non-zero entries in

vector is no more than . While this number increases with the number of itera-

tions, it remains negligibly small for large data sets. Thus, the significant improvement to the per-

formance of the conjugate gradient method can be done by replacing sparse matrix—dense vector

multiplication requiring bN arithmetic operations with a sparse matrix—sparse vector

application requiring bp arithmetic operations, where b is the average number of non-zero ele-

ments in matrix and p is the total number of non-zero elements in vector . For example,

for a spatial weights matrix originating from a regular grid with the rook criteria of contiguity and

size of the data set N=100,000, the original implementation requires 400,000 operations and the

improved - less than 20,004 operations for . The difference becomes more dramatic for

larger data sets, because the latter does not change significantly with the size of the data set.

The efficient implementation of the sparse conjugate gradient method depends on the efficient

implementation of sparse vector operations. The major gain in performance of sparse operations

over the dense vector operations is attributed to elimination of unnecessary operations with com-

ponents that are known to be zeros. Thus, sparse vector operations have to keep track of the non-

zero components, i.e., to identify which components differ from zero and what are the values in

dk b k 1+() 1+

dk 2 k 1+()2 1+

I ρWs–()dk

I ρW– dk

k 49=

15

these components. Vector operations of addition and multiplication are carried out only with the

non-zero components.

Data structures for efficient sparse vector operations should be efficient yet flexible enough to

accommodate the dynamic nature of most sparse vectors used in the sparse conjugate gradient

method. Intermediate sparse vectors change form iteration to iteration and the number of non-zero

entries in these vectors typically increases. The number of non-zero elements in a vector is

unlikely to reach the upper limit, N. The best data structure should contain the list of non-zero

entries in the vector, so that the major vector operations would involve only non-zero vector com-

ponents. In addition, it should provide the efficient vector update, i.e., insertion of new non-zero

elements or updating the value of the existing non-zero entry.

I use regular one-dimensional array to store the values of elements of the vector which is

accompanied by the list of indices of non-zero elements in the vector. While such combination is

not the most efficient from point of view of memory requirement, it is the most computationally

efficient, because it provides a constant computational complexity for operations of inserting,

accessing and updating single element and enables to list all non-zero elements bypassing zero

components.

6. Numerical experiments

The main purpose of the numerical experiments is to test viability of the sparse gradient

method for computing the elements of the information matrix for the models with spatial interac-

tion.

First, I want to establish if the method is practical for computing the information matrix for

large data sets in the regular workstation environment. This issue is wider than just confirming

16

that a particular computational problem can be solved given the limitations on computational

resources of a specific workstation. After all, the notion of modern workstation has being con-

stantly upgraded and advances in computing techniques relax the limitations on the size and com-

plexity of the problems that can be solved. However, the notions of a typical or large spatial data

sets are inflating even faster. For these reasons, the practicality of the method depends on how an

increase in the size of the data set affects the method s performance.

The experiment that aim to establish how the data set size affects the performance of the

sparse conjugate gradient method has to include several spatial weights matrices that preferably

differ in the size and not other characteristics (average number of neighbors, presence or absence

of spatial clusters, connectivity, etc.). Spatial weights matrices generated over the regular grids

give the best fit for the purpose. I used rook criteria of contiguity6 to define spatial neighbors.

This criterion results in a symmetric spatial weights matrix with 2, 3, or 4 neighbors per observa-

tion. The size of regular grid determines the number of observations and, consequently, the size of

the data sets and the dimension of spatial weights matrix.

The series of regular grids presented in Table 1 cover a range of spatial data sets. The smallest

data set has 1,024 and the largest has 3,001,556 observations. The spatial weights matrices are

originally symmetric binary sparse matrices. Explanatory and dependent variables are generated

in such a way that the model to be estimated had a given true value of the coefficient of spatial

association.

According to Table 1, the timing of the method increases with the size of the matrix7. It is

increasing a bit faster than the theoretically established linear complexity of the method suggests,

6. i.e., two cells on the regular rectangular grid are neighbors if and only if they have a common boundary
7. All computations have been performed on a Macintosh computer equipped with PowerPC G4 processor

rated at 800 MHz and 512 MB installed memory, operating system - Mac OS X. Programming language
is C++.

17

but slower than the rates of or . It appears that the best curve to fit the tim-

ing for the method in Table 1 is . The actual timing and predicted timing are

depicted in Figure 1. Both horizontal and vertical axes in Figure 1are correspondingly the loga-

rithms of the size of the data sets and timing. Visually, the predicted values for are

practically identical to the actual values of logarithm of timing.

The evidence in Table 1 and Figure 1 indicates that actual timing of the sparse conjugate gra-

dient method is rather than a theoretical . This raises two important questions:

why does this occur and what factors affect practical performance of the sparse conjugate gradient

method?

Theoretical linear computational complexity of the method relies on the assumption that the

memory access operations are scale-independent. In practice, common hierarchical structure of

random access memory (via one or more levels of cache) in modern computers makes smaller

Table 1: Performance of sparse conjugate gradient method for computing the
Information matrix for various spatial layouts,

Regular grid Data set size

Non-zero
elements in the
spatial weights

matrix

Time, seconds
Performance,

rows/sec.

32 x 32 1,024 3,968 0.22 4,655

50 x 60 3,000 11,780 0.67 4,478

71 x 71 5,041 19,880 1.15 4,383

100 x 100 10,000 39,600 2.32 4,310

316 x 317 100,172 399,422 25.46 3,935

500 x 600 300,000 1,197,800 80.88 3,709

1,000x1,000 1,000,000 3,996,000 291.08 3,435

1,732x1,733 3,001,556 11,999,294 835.50 3,593a

a. Computations have been performed over night; fewer running applications result in lower CPU load
and memory segmentation.

ρ 0.25=

O n nln() O n nlnln()

O n nlnln()

O n nlnln()

O n nlnln() O n()

18

tasks disproportionately easier to accomplish than the larger ones. The larger tasks require more

frequent access to slower layers of memory, which increases the execution time even if the float-

ing point operations are not affected. Nonetheless, the overhead associated with memory access is

relatively modest; as Table 1 indicates, tenfold increase in the size of the data set causes the per-

formance of the method to slow down by less than 15 percent.

The answer on the second question depends on the size of the problem. For smaller problems,

when the spatial weights matrix and most of the intermediate vectors fit into faster access cache,

the computational power of the processor is important and RAM architecture and bus speed are of

Figure 1. Actual and predicted timing of the
method

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

3.0103 3.4771 3.7025 4 5.0007 5.4771 6 6.4773

Logarithm of the size of the dataset

L
o

g
a
ri

th
m

 o
f

ti
m

in
g

ac
pr

19

lesser significance. For larger problems, the computational power of the processor becomes less

important because the memory access becomes the limiting factor and the processor is mostly

idling. Thus, the systems with slower processor but faster bus and better architecture can outper-

form those with faster processor and slower memory access.

Other factors that affect the performance of the sparse conjugate gradient method include the

number of non-zero elements in the spatial weights matrix and the value of the coefficient of spa-

tial association. Computing spatial lag of a sparse vector is the major operation of the method.

The fewer non-zero entries in the spatial weights matrix, the faster the computation of the spatial

lag.

The importance of the value of the coefficient of spatial association for the convergence of the

spatial conjugate gradient method is demonstrated in Table 2. The timing data in Table 2 are

obtained by computing the information matrix for the model with 100,172 observations and vari-

ous values of the coefficient of spatial association. While I compute the information matrix for all

the values listed in Table 2, it should be noted, that in practice the accurate computation of the

information matrix is desirable mostly for lower values of the coefficient (less than 0.5), because

higher values of coefficient are rare in correctly specified models.

It takes approximately 56 seconds to obtain ML estimates using characteristic polynomial

method described in (Smirnov, Anselin, 2001). Using this timing as a benchmark, the sparse con-

jugate gradient method is reasonably fast for vast majority of practical applications when spatial

coefficient is not exceeding 0.7. As Table 2 indicates, the performance of sparse conjugate gradi-

ent method dramatically deteriorates for extremely high values of the coefficient of spatial corre-

lation (0.7 and higher). The simplest way to reduce the timing for such cases is to find a

reasonable compromise between the timing and the accuracy. The iterative nature of the method

20

provides a base for such a compromise; the iterations can be terminated much earlier than in the

exact.version of the method. The termination condition in the exact method stipulates that the

squared norm of the correction vector is less than . This ensures exactness of the informa-

tion matrix. However, if the exact values are not needed and a good approximation suffices, less

stringent termination condition reduces the number of iterations and decreases timing. For exam-

ple, terminating value of reduces timing from 1,290.86 for the exact method with correla-

tion 0.9 to just 152.83 seconds while ensuring four significant digits in the results. Terminating

value further reduces timing to 70.32 seconds and provides only three significant digits in

the result. Memory requirements for exact and approximate versions are the same.

7. Conclusion

In this paper, I identify the computation of trace terms of the inverse of spatial difference oper-

ator as the key issue for computing the information matrix for either spatial lag and spatial error

Table 2: Performance of the method for various values

of spatial correlation coefficienta

Coefficient Time, seconds

0.05 8.66

0.10 13.02

0.15 18.39

0.25 25.46

0.35 43.96

0.50 87.73

0.70 245.20

0.90 1,290.86

a. The spatial weights matrix is obtained from a regular grid
with 316 row and 317 columns using rook criterion of conti-
guity.

1 16–×10

1 8–×10

1 6–×10

21

models. While the formulas needed for computing the information matrix are well-known, they

cannot be easily applied for arbitrary large spatial problems. The conventional methods for com-

puting such terms impose substantial requirements on the computational resources, CPU and

memory. Excessive demands for the resources preclude efficient application of existing methods

for solving models with large spatial data sets. In addition, the requirements for sparse matrix fac-

torization methods are unknown in advance, thus introducing additional inconveniencies in the

practice of estimating models with spatial interaction.

The major contribution of this paper is in devising and analyzing an innovative approach for

computing the information matrix for the models with spatial interaction. The core of the

approach is build on sparse conjugate gradient method for computing necessary trace terms and

other quantities. Unlike sparse or dense matrix inverse methods, it does not explicitly store and

compute the inverse of a large matrix. Small memory requirements of the method enable compu-

tation of the information matrix for large spatial datasets, up to 1 million observations and more.

Computational efficiency and theoretical linear computational complexity of the sparse conjugate

gradient method allow to equally effectively deal with small and large models. In addition, the

method can be deployed in the multiprocessing or distributed computing environments.

Numerical experiments have been conducted to test practicality of the sparse conjugate gradi-

ent method on a series of spatial data sets ranging in size from 1,024 to 3,001,556 observations. It

has been established that the actual timing of the method is close to linear complexity, with per-

formance declining less than 15 percent when the size of the problem rises tenfold. The actual

timing is described by function, which can be explained by the hierarchical struc-

ture of memory and includes a modest penalty for accessing slower layers of memory.

O n nlnln()

22

Sparse conjugate gradient method is an effective solution that is modest in computational

requirements and applicable to small and large scale problems. The only limitation of the exact

version of the method is associated with extremely high (and rare high) values of the coefficient

of spatial association (greater than 0.7). The timing, but not memory requirement or accuracy of

the method, substantially increase in such cases. When the value of the coefficient is known and a

good approximation of the information matrix is sufficient, the approximate version of the

method can be utilized. Flexibility of the sparse conjugate gradient method allows to control the

accuracy of the method and to compute approximate information matrix. Less precise results can

be computed faster.

In sum, unlike sparse matrix inverse methods, sparse conjugate gradient method is predict-

able, modest in requirements, has linear computational complexity (i.e., very fast), allows for con-

trol of the accuracy of the results, and is easy to implement in single- or multiprocessing

environments.

References

Anselin, Luc, 1988. Spatial Econometrics: Methods and Models. Kluwer Academic, Dor-
drecht, Netherlands.

Anselin, Luc, 1992. SpaceStat, a Software Program for the Analysis of Spatial Data.
National Center for Geographic Information and Analysis. University of California, Santa Bar-
bara, CA.

Anselin, Luc and Anil K. Bera. 1998. Spatial dependence in linear regression models with
an introduction to spatial econometrics. In: Ullah, A., Giles, D.E. (Eds.), Handbook of Applied
Economic Statistics, Marcel Dekker, New York, pp. 237-289.

Benirschka, M. and J. K. Binkley. 1994. Land Price Volatility in a Geographically Dis-
persed Market, American Journal of Agricultural Economics, 75, 185-195.

Cressie, Noel, 1993. Statistics for Spatial Data. Wiley, New York, NY.

23

Driscoll, J. C. and A. C. Kraay. 1998. Consistent covariance matrix estimation with spa-
tially dependent panel data, The Review of Economics and Statistics, Vol. 80, pp. 549-560.

George, A. and J. W. H. Liu. 1981. Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, Englewood Cliffs, NJ.

Gilbert, John R., Cleve Moler, and Robert Schreiber, 1992. Sparse matrices in MATLAB:
design and implementation, SIAM Journal on Matrix Analysis and Applications, Vol. 13, No.
1:333-356.

Golub, Gene H. and Charles F. Van Loan, 1996. Matrix Computations. Third Edition. John
Hopkins University Press.

Griffith, Daniel A., 2000. Eigenfunction properties and approximations of selected inci-
dence matrices employed in spatial analyses, Linear Algebra and its Applications, Vol. 321, Issues
1-3: 95-112.

Haining, Robert, 1990. Spatial data analysis in the social and environmental sciences.
Cambridge University Press, Cambridge, United Kingdom.

Mathsoft, 1996. S+SpatialStats Users’s Manual for Windows and Unix. Mathsoft, Seattle,
WA.

Ng, G. Esmond and Padma Raghavan. 1999. Performance of greedy ordering heuristics
for sparse Cholesky factorization, SIAM Journal on Matrix Analysis and Applications, Vol. 20,
No. 4: 902-914.

Ord, Keith. 1975. Estimation methods for models of spatial interaction, Journal of the
American Statistical Association, Volume 70, Number. 349: 120-126.

Pace, R. Kelley and Ronald Barry. 1997. Sparse spatial autoregressions, Statistics and
Probability Letters, Vol. 33, Issue 3: 291-297.

Pace, R. Kelly and James P. LeSage. 2002. Semiparametric maximum likelihood estimates
of spatial dependence, Geographical Analysis, 34:76-90.

Smirnov, Oleg and Luc Anselin. 2001. Fast maximum likelihood estimation of very large
spatial autoregressive models: a characteristic polynomial approach, Computational Statistics and
Data Analysis, Vol. 35, Issue 3:301-319.

Watkins, David S., 2002. Fundamentals of Matrix Computations. Second Edition. Wiley.

Whittle, P., 1954. On stationary processes in the plane. Biometrika, Vol. 41: 434-49.

