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Abstract

The objective of a government’s economic policy is to promote sustained economic growth and rising living standards. This requires a stable macroeconomic environment based on low inflation on a permanent basis. Macroeconomic theory shows that there is a strong relationship between the quantity of money and the price level.  Some economists even believe that this relationship is so strong that the indicator based inflation targeting practiced by many central banks today should be abandoned in favour of monetary targeting. This paper uses UK data and a new modelling strategy in this context, the Artificial Intelligence technique of neural networks, to provide evidence of the inflation forecasting potential of different measures of broad money.  We examine the empirical performance of a theoretically consistent ‘Divisia’ (MSI) measure of the economy’s monetary services flow (Barnett and Serletis, 2000), extending the analysis to account for information contained in Divisia growth rate variances and also comparing performance with that of a traditional simple sum measure.  This is the first time that Divisia Growth rate variances have been used with UK data.  Results presented demonstrate that a superior inflation forecasting model is achieved when the Quantity Growth Rate second moment is used alongside the Divisia index measure of money. 

Introduction

By the mid-1980s it was becoming apparent that financial innovation, resulting from increased competition within the banking sector and the succumbing of the financial world to the computer revolution, was seriously distorting the seemingly stable relationships between the monetary aggregates and the ultimate policy target variables (inflation, nominal GDP, etc.). The case for monetary targeting was discredited and some countries, such as the USA and Canada, abandoned it altogether in the late 1980s.  In the UK monetary policy has been reformulated in terms of a direct target for inflation. Thus the role of monetary aggregates in major economies today has largely been relegated to one of a leading indicator of economic activity, along with a range of other macroeconomic variables.  

However some observers have focused on the possibility that fundamental problems of measurement may be responsible for the recent monetary turmoil.  This view is based on the widely established belief is that the broad money aggregates generally used by governments (derived by simply summing the various constituent liquid liabilities of commercial and savings banks) are seriously flawed and based on untenable assumptions. From a microeconomic perspective it is hard to justify adding together assets which have differing and varying yields.  The accepted view is that only goods that are perfect substitutes can be aggregated based on the method of simple summation. There is a growing body of evidence from empirical studies around the world which demonstrate that weighted index number measures such as the Divisia index may be able to overcome the drawbacks of the simple sum, provided the underlying economic assumptions are satisfied. Ultimately, such evidence could reinstate monetary targeting as an acceptable method of controlling inflation. 

The current research is directed to providing further empirical evidence on this last proposition.  The construction of the Divisia index (or MSI) relies on very restrictive representative agent and separability assumptions.  If these conditions are not met, the Divisia higher moments may contain economically relevant information about the dispersion of the component growth rates that is not contained in the index (first moment) itself.  For this reason, Barnatt and Serletis (1990) advocate the use of second moments.  For an overview and further references see Barnett and Serletis (2000) and Anderson et al (1997).  Formal tests of the assumptions underlying the construction of the Divisia index lie far beyond the scope of this paper.  However, in an inflation forecasting experiment it seems very pertinent to enquire whether the information contained in the second moments does provide additional information and improve the predictive ability of the forecasting model.  We have therefore constructed a new series from the variance of the growth rates of the individual components of Divisia, and include this Divisia Quantity Growth Rate variance as an additional indicator in our model.  The variance Kt is defined (Anderson et al 1997, op cit) as follows:
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The use of neural networks to explore the explanatory power of measures of broad money allows a completely flexible mapping of the variables, hence approximation of highly non-linear functions is possible and the model is not constrained by the requirement to estimate regression parameters, as in standard econometric methodology. Moreover, neural networks are inductive. Hence, when there is no exact knowledge of the rules determining the features of a given phenomenon, knowledge of empirical regularities can still allow it to be modelled, and the process of training allows the network, in effect, to ignore excess input variables. Results presented in this paper are thus generated by use of a powerful and flexible tool which allows greater variety of functional form than that currently attainable by the use of conventional econometric methodology.

Data and Method

The level of monetary aggregation selected for this analysis has been chosen to match the level of aggregation used by the Bank of England in the construction of their official MSI.  Assets included are notes and coins, non-interest-bearing-bank deposits, interest-bearing bank sight deposits, interest-bearing bank time deposits and building society deposits.  Two quarterly series were prepared, a simple sum series and a Divisia series, both seasonally adjusted, and a Divisia Quantity Growth Rate variance series was also constructed.  The GDP deflator (source: the OECD Statistical Compendium) was used for the price series and inflation was constructed as year on year growth of prices.  All monetary data were obtained from the Bank of England Statistical Abstract, Part 2.  After lagging, the time period represented was 1981 Q2 to 2000 Q1 (80 quarters).

A very simple model was chosen to allow the information content of the monetary variables to be evaluated on an equal footing. The model takes inflation in the current quarter to be a function of money measures in preceding quarters and inflation for the preceding quarter, thereby including an autoregressive term,  t-1.  An additional input T taking the values 1 to 80 was also introduced to represent time as a variable.  This time trend variable allows for the possibility that external factors, connected with the passage of time from 1981 to 2000, could have an effect on the inflation rate. Lags for the money measures of the preceding quarter (Mt-1) and one year before (Mt-4) were chosen.

 t  = F(Mt-1, M t-4,  t-1, T)

The model was applied to the Divisia monetary aggregate (and the simple sum aggregate for comparison purposes).  In a third condition, the Divisia second moment Quantity Growth Rate (QGR) was introduced as an additional input alongside the Divisia series, similarly lagged by one, and four quarters.

 t  = F(Mt-1, M t-4,  t-1, T, Qt-1, Q t-4)

An artificial neural network is a system composed of many simple processing elements (‘nodes’ or ‘neurons’), interconnected and operating in parallel, usually in several layers.  A back-propagation network for example, will contain an input layer, an output layer and one or more ‘hidden’ layers in between.  Connections between nodes are weighted, to provide the equivalent of signal strength in a biological system.  At a node some processing takes place in which the combined inputs may simply be summed, but likely are more likely to be transformed using some nonlinear function before the resultant single value is passed on to other nodes for further processing.  The network has a specific architecture (number of layers, nodes and their connections) and there are various other parameters.   The learning rate learning rate determines how much the weights in the network are changed during each cycle.  A high learning rate will change the weights faster, but may cause the weights to continually "overshoot" the optimum, while a low learning rate converges very slowly but improves the chances of locating an optimal error-minimizing solution.   Similarly, the momentum determines how quickly learning accelerates or decelerates in response to the current error, and high values can assist faster convergence.  Artificial neural networks do exist in various forms, but in this case are implemented as software.  

Training data, which includes input data and desired output, is presented to the network and processing takes place to minimize the error between the desired output and the current output.  This takes place many times until the error is reduced as far as possible.  The outcome is a trained network which consists of a given architecture and a set of optimal weights, to which new data (a test set) can be presented so that an estimated output can be obtained.  

The neural network architecture used for all the networks was a simple design, being a back-propagation network with hidden neurons in one layer only.  The sigmoidal  transfer was used for outputs.  In each of the three conditions, three of the experimental parameters were also varied.  These were:

· Network size (2, 3, 4, 5 or 6 hidden neurons)

· Learning Rate (values of 0.01, 0.05, 0.1 or 0.3), and

· Momentum (values of 0.1, 0.3, 0.5 or 0.9)

Of the 80 quarters, the first 70 were used for training and the last 10 for testing.  The random number seed which determines the initial conditions for the network was kept constant throughout.  All networks were trained for 20000 iterations of the whole data set in order to avoid the problems associated with premature stopping.  The opposite problem, of overfitting, should have been avoided by including a range of network sizes.

Thus 81 networks were constructed for each model, making 243 networks in total.  The results for the best three (by Root Mean Squared Error out-of-sample) for each model are presented here.  

Results and conclusions

	In-sample
	1.1
	1.2
	1.3

	RMS error
	0.007288
	0.003935
	0.003951

	Mean absolute difference
	0.0060
	0.0030
	0.0030

	Mean percent error
	15.5%
	7.2%
	7.2%

	Out-of-sample
	
	
	

	RMS error
	0.005612
	0.006880
	0.007551

	Mean absolute difference
	0.0044
	0.0059
	0.0064

	Mean percent error
	51.9%
	62.5%
	67.2%


Table 1:  Divisia alone: best 3 networks from 81 networks

	In-sample
	2.1
	2.2
	2.3

	RMS error
	0.009587
	0.007931
	0.002842

	Mean absolute difference
	0.0080
	0.0066
	0.0023

	Mean percent error
	20.0%
	15.9%
	5.5%

	Out-of-sample
	
	
	

	RMS error
	0.005271
	0.005808
	0.006108

	Mean absolute difference
	0.0045
	0.0047
	0.0051

	Mean percent error
	45.4%
	53.4%
	56.5%


Table 2:  Divisia + QGR: best 3 networks from 81 networks

	In-sample
	3.1
	3.2
	3.3

	RMS error
	0.007694
	0.012337
	0.014001

	Mean absolute difference
	0.0064
	0.0114
	0.0132

	Mean percent error
	16.7%
	27.7%
	32.2%

	Out-of-sample
	
	
	

	RMS error
	0.005022
	0.005120
	0.006042

	Mean absolute difference
	0.0042
	0.0041
	0.0045

	Mean percent error
	33.9%
	33.0%
	29.6%


Table 3:  Simple Sum: best 3 networks from 81 networks

	
	Divisia alone
	Divisia + QGR
	Simple Sum

	In-sample
	
	
	

	RMS error
	0.005058
	0.006786
	0.011344

	Mean absolute difference
	0.004025
	0.005604
	0.010348

	Mean percent error
	9.9%
	13.8%
	25.5%

	
	
	
	

	Out-of-sample
	
	

	RMS error
	0.006681
	0.005729
	0.005395

	Mean absolute difference
	0.005562
	0.00478
	0.004251

	Mean percent error
	60.5%
	51.7%
	32.2%


Table 4:  Average of best 3 networks from 81 networks: All three models

It can be seen from Table 4 that while Divisia alone presents the best in-sample results of the three models (meaning a closer fit), the addition of the Quantity Growth Rate variable improved out-of-sample results.  Consequently it is evident that the Divisia Quantity Growth Rate Variance does contain information that it valuable for forecasting inflation.  Work is currently in progress to perform non-parametric tests that allow for measurement errors of separability assumptions underlying the Divisia approach. The results (Binner et al, 2003) indicate that there have been shifts in consumer preferences over time, which provides additional motivation for the inclusion of QRS in the current study.

	
	Divisia alone
	Divisia + QGR
	Simple Sum

	
	1.1
	1.2
	1.3
	1.1
	1.2
	1.3
	1.1
	1.2
	1.3

	Number of hidden

neurons
	4
	6
	6
	6
	6
	6
	4
	2
	2

	Learning Rate
	0.30
	0.01
	0.01
	0.30
	0.30
	0.01
	0.30
	0.30
	0.30

	Momentum
	0.30
	0.30
	0.10
	0.50
	0.30
	0.10
	0.30
	0.01
	0.03


Table 5:  Experimental parameters for the best 3 networks from 81

It seems that high values for both learning rate and momentum can produce superior results.  It also seems that of the three models, the model using Simple Sum as the monetary variable is able to produce superior results with a very small network of only two hidden units.

A surprising finding in this study is that the simple sum model outperforms the Divisia model in the forecasting experiment.  Divisia has previously been found to be superior in several countries, using the neural network approach  (Gazely and Binner, 2000).  It is possible that the finding is related to the smaller networks which seem to produce the best forecasts for the simple sum model and further investigations are in progress.

However, the improved performance of the model which includes Quantity Growth Rate variances is a more important finding.  This is the first time to our knowledge that this variable has been used with UK data, and from the early evidence presented it appears that the inclusion of the additional information could make a significant difference in empirical studies such as this one.  It is hoped that this research will contribute to the widespread acceptance of Divisia monetary indices as macroeconomic policy tools. Ultimately, such evidence could reinstate monetary targeting as an acceptable method of macroeconomic control, including price regulation.  Further, the artificial neural network in combination with enhanced measures of money offers a promising technique for the development of an improved model of inflation.
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