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Abstract

Multicountry unions pose stability problems that can be tackled by dynamic game models of non–
conventional form, with payoff functions replaced by subsets of the state–space. A country aspiring
to join a multicountry union must guarantee that a set of economic indicators stay within the bounds
dictated by the union. Mathematically, this translates into membership of the state vector to a convex
set. When such a set–membership holds notwithstanding policy actions of other member countries
(under the domestic constraints imposed to each) the overall system exhibits a kind of macroeconomic
stability termed in this paper an Invariant Equilibrium. The paper presents this theory in the case
of two–person linear discrete–time games and discusses the significance of the results for economic
policy.
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1 INTRODUCTION

In response to financial mobility of capital markets, global competition and ensuing threats to economic
stability, recent developments in western economies witnessed the formation of multicountry unions of
diversified nature - monetary, legislative, commercial, political, etc. The desire of a universal frame within
which economic activity is carried out and the commitment to social and political stability as primary
values, resulted in a pressure to funnel economic behaviour of enterpreuneurs and policy makers into
newly designed and globally shared institutional channels. In macroeconomics, this implied a separation
of previously undiversified government liabilities into a national and a supernational level. Classical in-
struments like monetary and fiscal policy, hitherto centralized and coordinated, were for the first time
after WW2 sharply separated. By relegating monetary policy to supernational sovereignty, a key instru-
ment of economic control was subtracted to the destabilizing pressures of contingent and short-sighted
political needs and of speculative behaviour in the financial market. Fiscal instruments on the other hand,
not only remained in the hands of national goverments but – in the reformers’ aspirations – it was hoped
they would reconquer the power and effectiveness they had lost under the practice and the restraints of
centralized control. It is no surprise that such a doctrinary stand should gain acceptance in Europe after
decades of regional market competition based on devaluation of exchange rates of weaker countries as a
surrogate to productivity, and increase of fiscal pressure combined to import barriers of richer ones, as a
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defense against inflationary effects of domestic demand. With the net result of an increase of the public
debt of fragile countries; export stagnation and suboptimal growth of the stronger ones.

Whatever the degree of success of unions in terms of stability and growth, there is no doubt the new
framework poses new problems that only in part can be tackled by traditional methodology. The interplay
between a centralized and a decentralized control level has become so pronounced as to make game-
theoretic approaches prominent not only for their own merits but also as a complement to more traditional
tools like macroeconomic general equilibrium models. On the other hand, traditional game-theoretic
models based on a normative principle - maximization of utility, welfare or other aggregate - hardly
reflect the spirit and the content of newly created multi-country institutions. Maastricht Treaty, for
instance, prescribes tolerance intervals for a selected subset of economic variables. Permanence in the
union is better represented by the efforts of member countries to respect set-membership of controlled
variables than by abstract maximization of artificially construed aggregates. What modeling implications
does this have at a theoretical level?

A theoretical concept relevant to this framework is proposed in this paper - the Doubly Invariant Equi-
librium. The formalization starts with a discrete–time linear dynamic game with full–state information
and feedback strategies [3]. The novelty is that payoff functions are replaced by subsets of state space.
Permanence in a multicountry union requires country variables to stay within a constraining subset, once
the union is adhered to. This requires of each member country the adoption of a policy-path divided
into two segments. The first leads from the initial state (identified to the moment the country decides
to join the union) to a state within the constraints imposed by the union. The second, starting from the
formal entry in the union onwards, where the goal is to keep within union bounds. Methodologically, the
first policy segment can be dealt with by traditional policy & planning tools (target–instrument analysis,
optimal control etc). The post–entry segment poses essentially new and challenging control problems.
Namely, the need to maneuvre policy instruments under domestic restraints (like for example limits to
fiscal pressure) so as to stay in the union irrespective of policies of other members. Due to the dynamic
coupling between country variables, there are spillover effects posing essentially a decentralized stability
problem with feedback information. The main finding of the paper is that invariant equilibria dictated
by membership in multi-country union indirectly impose domestic restrictions to economic policies. Such
restrictions in turn make tolerance margins for the development paths of endogenous variables stricter
than originally imposed by the union rules. In other words, there are hidden stability implications that
– when brought to the surface – result in narrower margins than explicitly dictated by the union. When
an aggregate low-order linear econometric model of a multicountry economy is available, these margins
can be calculated and provide normative basis for economic policy as well as deeper insight into the
medium–long term consequences and sustainability of union rules.

2 PROBLEM STATEMENT

Consider the linear discrete–time game in state space form

x(t + 1) = Ax(t) + Bu(t) + Cv(t) (1)

where x(t) ∈ IRn, u(t) ∈ U, v(t) ∈ V for t = 0, 1, 2 . . . and U ⊂ IRm1 , V ⊂ IRm2 are compact convex sets
containing the origin. Without loss of generality we assume that B, C are full (column) rank matrices.
In our context the control variables u, v are policy instruments in the hands of two countries while state
components collect endogenous variables. U and V embody domestic policy restraints to which each
country is subject. Extension to the n–country case adds nothing but notational clutter and is omitted
for ease of discussion.
def 1. There exists an invariant equilibrium for (1) if two closed convex sets X1 �= IRn and X2 �= IRn

exist such that

∀x ∈ X1 ∃u ∈ U : Ax + Bu + Cv ∈ X1 ∀v ∈ V

∀x ∈ X2 ∃v ∈ V : Ax + Bu + Cv ∈ X2 ∀u ∈ U

Evidently, if an invariant equilibrium exists it is possible to find a policy û(t) such that once the state is
in X1 country one is able to keep it there no matter what policy v(t) is used by country 2 – and a policy
v̂(t) with symmetric properties for country 2. In the definition it was necessary to rule out the entire
state space (Xi �= IRn) as this would – trivially and uninterestingly – satisfy the definition. Structure
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and mutual relationship between the sets X1 and X2 can be extremely varied. Examples can be found
with Xi coinciding, partially overlapping, orthogonal or even disjoint [4]. In the present context, state
variables are typically partitioned into

x =
[

x1

x2

]

with xi denoting variables of country i. Then Xi reflects a constraint on xi only and we are in the
orthogonal case. An existence condition for invariant equilibrium was proved in [5] for symmetric U, V
Theorem 1 If Xi are bounded sets a necessary condition for the existence of an invariant equilibrium
is that A be a stable matrix. If X1 +X2 has an interior not containing the origin, then A must be a stable
matrix with an eigenvalue equal to 1.

Symmetry of the sets U, V means that they contain −u,−v whenever they contain u, v. This requisite is
harmless when interpreted in terms of policy. It says essentially that instruments cannot deviate either
side from their reference value more than a given amount.

Contrary to [5] where sets Xi were parametrized in a class of assigned convex polyhedra we assume here
no knowledge of Xi except that they are contained in closed convex sets Ki. We think of Ki as the
set of constraints imposed by the union. As remarked in the introduction, our concern is for the second
segment of the economic maneuvre, the one originating from the date a point (called feasible) within
union bounds Ki has been reached. Therefore we make the following assumption
A1. the origin of the state space is a feasible point contained in Ki

There is no loss of generality to assume 0 ∈ Ki as state variables can be re-interpreted as deviations from
a feasible point by a suitable coordinate change. The definition of invariant equilibrium entails a double
requirement which seen from the viewpoint of a single player (say player 1) takes on the following form.
Given K1, find the largest subset of K1 which is a V –robust controlled invariant wrt U for (1). We recall
that a set X is a V –robust controlled invariant wrt U for (1) if

∀x ∈ X : ∃u ∈ U : Ax + Bu + Cv ∈ X, ∀v ∈ V.

Given any X, let R(X) be the set of states that for some u ∈ U reach in one step a state in X for
whatever v ∈ V

R(X) = {x ∈ X : ∃u ∈ U : Ax + Bu + Cv ∈ X, ∀v ∈ V }

A necessary and sufficient condition for invariance of X is the Nagumo condition [2, 1] which in the case
of discrete–time systems takes up the form

X ⊂ R(X). (2)

The set R(X) can be computed with different techniques depending on the nature of X. We shall denote
X̂ the maximal subset of K satisfying (2). In the next section it will be shown how to compute X̂ in
general, and later on particularly when K is a closed convex polyhedron.

3 CONSTRUCTION OF INVARIANT EQUILIBRIA

For given A, B, C the set X̂ can be regarded as the image of a mapping U, V into subsets of K. Precisely,
def 2. The mapping FK(U, V ) = X̂ denotes the (possibly empty) largest V –robust invariant set wrt U
contained in K for (1).

Proposition 2. The mapping U, V �→ FK(U, V ) satisfies

FK(Û , V ) ⊂ FK(U, V ) ⊂ FK(U, V̂ ) ∀ Û ⊂ U, ∀ V̂ ⊂ V

whenever the lhs is non-empty.
Proof. If X �= ∅ is V -robust invariant wrt Û

∀x ∈ X ∃u ∈ Û : Ax + Bu + CV ⊂ X

3



which implies for Û ⊂ U

∀x ∈ X ∃u ∈ U : Ax + Bu + CV ⊂ X

that is, X is also V -robust invariant wrt U . In particular, for X = FK(Û , V ) we see that FK(Û , V ) is also
invariant wrt U hence it must be contained in the maximal V -robust invariant wrt U which is precisely
FK(U, V ) and this proves the left inclusion. Similarly, if X is V -robust invariant wrt U

∀x ∈ X ∃u ∈ U : Ax + Bu + CV ⊂ X

which implies for V̂ ⊂ V

∀x ∈ X ∃u ∈ U : Ax + Bu + CV̂ ⊂ X

that is X = FK(U, V ) is also V̂ -robust invariant wrt to U hence it must be contained in the maximal
V̂ -robust invariant wrt to U which is precisely FK(U, V̂ ) and this proves the right inclusion.

Let us now introduce amplitudes µ, ν > 0 and parametrize U, V as U = µU0 V = νV0, with U0, V0 given
compact convex sets containing the origin. Next define a function β : IR �→ IR

β(µ) = sup ν : FK(µU0, νV0) �= ∅

and the set S = {µ, ν : FK(µU0, νV0) �= ∅}. Think of β(·) as the maximal disturbance ”tolerated” under
control amplitude µ. Notice that if a robust invariant wrt µU0 exists in K, then the domain of β(·) is
µ ≥ µ0 with µ0 = 0 if 0 ∈ K.

Proposition 3. β(µ) is non-decreasing and S is convex.
Proof. (non decr.) Assume µ1 < µ2 and let ν1 = β(µ1), ν2 = β(µ2). If it were ν1 > ν2, then

FK(µ1U0, ν1V0) �= ∅ and FK(µ2U0, ν1V0) = ∅.

But µ1U0 ⊂ µ2U0 (since 0 ∈ U0) and, by Prop. 2, we would get

∅ �= FK(µ1U0, ν1V0) ⊂ FK(µ2U0, ν1V0) = ∅

hence µ1 < µ2 ⇒ β(µ1) ≤ β(µ2).
(convex.) If X1 = FK(µ1U0, ν1V0) and X2 = FK(µ2U0, ν2V0) are non-empty

AX1 + Cν1V0 ⊂ X1 − Bµ1U0

AX2 + Cν2V0 ⊂ X2 − Bµ2U0

hence for α ∈ [0 1]

(1 − α)[AX1 + Cν1V0] + α[AX2 + Cν2V0] ⊂ (1 − α)[X1 − Bµ1U0] + α[X2 − Bµ2U0]

or

AX + CνV ⊂ X − BµU0

with

µ = (1 − α)µ1 + αµ2, ν = (1 − α)ν1 + αν2

and X = (1 − α)X1 + αX2 is non-empty.

We are now in a position to rephrase the existence of an invariant equilibrium as per def. 1 in terms of
the sets Fk(U, V ) by stating that an invariant equilibrium exists if and only if

FK1(µU0, νV0) �= ∅ (3)
FK2(νV0, µU0) �= ∅. (4)

Notice that a trivial equilibrium {0} = FKi({0}, {0}) always exists (0 ∈ Ki) so we need only be concerned
with non-trivial equilibria. A pair µ, ν satisfying (3–4) will be called a non-trivial invariant equilibrium
if µU0 �= {0}, νV0 �= {0}. Denote by

E = {µ, ν : FK1(µU0, νV0) �= ∅, FK2(µV0, νU0) �= ∅}
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the set of all invariant equilibria for fixed Ki. Since E is the intersection of convex sets (Prop.3) it is
either empty or convex. Let

β1(µ) = sup ν : FK1(µU0, νV0) �= ∅
β2(ν) = supµ : FK2(νV0, µU0) �= ∅

and let µ ≥ µ0, ν ≥ ν0 be the domains of β1(·) and β2(·). Assuming that Ki contain robust invariants, a
typical graph of β1, β2 is shown in Fig. 1

µµ0

ν

0

N

E

β1(·)
β2(·)

Fig. 1 Tolerated amplitudes and the tatonnement process.

with invariant equilibria in the cross-hatched region E.

Theorem 4. A non-trivial invariant equilibrium exists if and only if β2 (β1(µ))−µ ≥ 0, for some µ > µ0.
Proof. Assume

0 < µ ≤ β2(ν), (5)

for ν = β1(µ). Then FK1(µU0, β1(µ)V0) �= ∅, hence

FK1(µU0, νV0) �= ∅

and (2) holds. On the other hand (5) implies µU0 ⊂ β2(ν)U0 hence, by Prop.2

∅ �= FK2(νV0, β2(ν)U0) ⊂ FK2(νV0, µU0) µ, ν > 0

and (3) holds, so a non-trivial invariant equilibrium exists. If, on the contrary β2(β1(µ))−µ < 0 ∀µ > µ0,
then β2(ν) < µ for ν = β1(µ) hence FK1(µU0, β1(µ)V0) = FK1(µU0, νV0) �= ∅ but, due to Prop.2,
FK2(νV0, µU0) = ∅ so (3) is violated and no invariant equilibrium exists.

When E is non-empty, we say an invariant equilibrium µ̂, ν̂ is Nash if it satisfies

ν̂ ≥ ν ∀(µ̂, ν) ∈ E (6)
µ̂ ≥ µ ∀(µ, ν̂) ∈ E (7)

(see point N in Fig. 1). Notice if an invariant Nash equilibrium exists, the condition of Thm 4. must
hold in some interval µ0 < µ ≤ µ1 < ∞.

Proposition 5. An invariant Nash equilibrium exists if and only if an invariant equilibrium exists.
Proof. The ”only if” part is obvious. To prove the ”if” part notice that if no ν̂ satisfies (6) then
V = νV0 is unbounded and

AX1 + CV ⊂ X1 − BU

with U, X1 bounded. But this is impossible if C is full rank. Similarly if no µ̂ satisfies (7).
We close this section with a brief note on computational aspects. An invariant Nash equilibrium can be

approximated by tatonnement, as sketched in Fig. 1. This requires computation of βi(·). These functions
are computable if their value at each point of the domain can be obtained in a finite number of steps.
This entails to check non-emptyness of FK1(µU0, νV0), FK2(νV0, µU0). Two algorithms are available for
this task, an external and an internal algorithm. For reasons of space we only recall the former and we
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address the reader to [6] for more details. The external algorithm, known as the Invariance Kernel
Algorithm [7] is based on the recursion for t = 0, 1, 2, . . .

Kt = K if t = 0
Kt = R(Kt−1) ∩ K if t > 0.

The algorithm generates a sequence

K ⊃ K1 ⊃ K2 ⊃ . . .

A property of Kt is that it contains nothing but the initial states for which it is possible to stay in K at
least t times with some control in U for all disturbances in V . Thus the sequence either converges to X̂
if X̂ �= ∅ or, it yields Kt = X̂ = ∅ at some t < ∞. To guarantee finite time termination when X̂ �= ∅ a
modification has been proposed in [7] and address to that ref for details.

4 THE CASE OF POLYHEDRAL SETS

When the sets K, U, V are closed convex polyhedra, the computation R(Kt) and the testing of the
invariance condition (2) can be reduced to a sequence of LP programs as briefly sketched below. Let us
now define

K = {x : Gx ≤ g} U = {u : H1u ≤ h1} V = {v : H2v ≤ h2}.

Then

R(K) = {x : ∃u : G(Ax + Bu + Cv) ≤ g, H1u ≤ h1 ∀v : H2v ≤ h2}

If the inequality is to hold for all v ∈ V it must hold with GCv replaced by

ŵ =
{

max
H2v≤h2

[GC]i v

}
.

Notice that the computation of this vector requires solving as many LP problems as there are rows in G.
Then

R(K) = {x : ∃u : G(Ax + Bu) ≤ g − ŵ H1u ≤ h1}

which can be expressed as

R(K) = {x : ∃u :
[

GB
H1

]
u ≤

[
g − GAx − ŵ

h1

]
}.

It is known from convex analysys [5] that the set of b ∈ IRp such that the system Mx ≤ b has a solution
can be expressed as Qb ≥ 0 where the rows of Q are the generators of the cone N (M ′)∩ IRp

+. Thus if M

is identified to
[

GB
H1

]
we get

R(K) = {x : Q

[
g − GAx − ŵ

h1

]
≥ 0} = {x : Q1GAx ≤ Q1(g − ŵ) + Q2h1}

where Q = [Q1|Q2]. The external and internal algorithms require intersection of convex polyhedra and
these can be determined by simply appending inequalities. Finally, invariance condition (2) requires
polyhedral inclusion and this can be checked up by solving, again, linear programs.

5 NUMERICAL RESULTS

In this section we test the theory with data from Italy and the rest of the European Monetary Union
(REMU). A least–squares regression over a sample of 10 yrs data led to the state-space model x(t + 1) =
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Ax(t) + Bu(t) + Cv(t) with

A =




1.5162 −0.0218 −0.5858 −0.2202
0.3090 −0.1839 0.5385 −0.1352
1.3716 0.5631 −0.4503 −0.0449
2.9261 −0.0664 −0.6754 −0.8782




B =




0.3285
−0.8157

0
0


 C =




0
0

0.1423
−1.3108




y1(t) =
[
−2.3833 −2.0444 0 0

]
x(t)

y2(t) =
[

0 0 −4.9845 1.5999
]
x(t)

where x1, x2 are current debt and unemployment, u fiscal pressure and y1 inflation indexes for Italy (and
correspondingly x3, x4, v, y2 for REMU). The state matrix is asymptotically stable, with eigenvalues in
modulus

|λ| ∈ {0.8246, 0.8246, 0.4686, 0.7912}.

Maastricht treaty imposes bounds to inflation rate (≤ 2.7%) and public debt (≤ 60% of GDP). The
indexes are set up so that each variable in the model represents deviations from a feasible point which is
chosen centrally within the Maastricht bounds. This is 1.35% (2.7/2) for inflation rate; 30% (60/2) for
the ratio of debt to GDP. Hence a nominal margin of 1.35 points for the inflation rate and 30 points for
debt to GDP ratio are left either side of the feasible point. When projected in state space the bounds
define two convex regions as shown in fig 2 (large polygons, Italy on the left). It is assumed that the
first segment of the economic maneuvre has been completed. Therefore u, v reflect variables concerning
post-entry maneuvres only. At u = v = 0 the state is identically zero implying no deviations from
the origin. Computing the invariant Nash equilibrium with the Invariance Kernel Algorithm we get the
results shown in Figs. 3 (small polygons). The invariant set for Italy (small polygon on the left) turns
out to be 4.74% of the nominal margin whereas the invariant set for REMU is about 42% of the nominal
margin.

Fig. 2 Maastricht feasible regions.

Fig. 3 Invariant Nash equilibrium sets.
In terms of the original variables, this means for Italy a tolerance for inflation 1.35± .062, that is between
1.29% and 1.41% and for REMU of 1.35± .567, that is between 0.79% and 1.92%. Similarly, for the ratio
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of debt to GDP: this parameter for Italy must be comprised between .3± .014, that is between 28.6% and
31.4% of GDP and for REMU of .3± .126, that is between 17.4% and 42.6% of GDP. Neglecting the lower
bounds (that clearly reflect a purely theoretical value) the original Maastricht bound on inflation rate
(2.7%) is lowered to 1.41% for Italy and to 1.92% for REMU. Likewise, the original Maastricht bound on
debt to GDP ratio (60%) is lowered to 31.4% for Italy and to 42.6% for REMU.

6 DISCUSSION AND CONCLUSION

The main finding of our analysis is that when dynamic interactions among member countries are taken
into account the theoretical constraints fixed by a supernational economic authority, monetary unions
being a case in point, are considerably reduced. This is so because union dictated constraints are – in
general – not invariant: one country may comply and yet, due to dynamic cross–coupling, push another
one out. To preclude this destabilizing occurrence one should adopt the notion of invariant equilibria, as
amply discussed in the paper. The end effect is that original bounds must be duly restrained. This has
a three–fold implication

1. Although non-economic criteria (historical, political, etc) concur in the choice of union rules, the
choice should be supplemented by adequate analysis. Given a set of candidate countries wishing to
form a union, invariant equilibria should be studied in order to assess the degree of confidence or
realism that union bounds be sustainable in the long run.

2. The question of the enlargement of the union to new members should be discussed, along with
politically inspired criteria, with economic – indeed game theoretic – analysis aimed to assess the
likelyhood that the prospective member will be able to comply with union rules. In this respect
traditional tools may fail to recognize limits that only emerge with invariant equilibrium analysis.

3. The bounds emerging from invariant equilibrium analysis may be strongly asymmetric, as the
numerical case we discussed clearly shows. Some member countries typically have larger margins
of tolerance than others∗. What determines the stability of the union is the country with narrower
bounds. If union stability is a shared and primary concern, it may not be inappropriate that union
efforts be directed to sustain the member country which is closer to critical conditions, that is the
one with smaller equilibrium set.
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