
LINEAR DISCRETE TIME SYSTEMS

WITH BOX CONSTRAINTS

P. Caravani, E. De Santis

Electrical Engineering Department, University of L’Aquila
Monteluco di Roio, 67040 L’Aquila, Italy.

caravani@ing.univaq.it
desantis@ing.univaq.it

Key words: Constrained Systems, Control Invariance, Box Invariance

1 Extended Abstract

We consider systems described by

x(t + 1) = Ax(t) + Bu(t) + Cv(t) (1)

where t is the time-index, x ∈ IRn is the state, u ∈ IRm the control, v ∈ IRp

the disturbance and matrices A,B,C are assumed known.

We define three sets

X = {x : x ≤ x ≤ x̄} (2)

U = {u : u ≤ u ≤ ū} (3)

V = {v : v ≤ v ≤ v̄}. (4)

A control is feasible if it takes values in U . A disturbance is admissible if it
takes values in V . We assume

A1. the disturbance v(t) is unknown but admissible for all t.
A2. the state x(t) is observed at all t.

We recall

Definition 1 X is invariant for (1) if for any x(0) ∈ X there exists a se-
quence of feasible controls such that for t > 0, x(t) ∈ X for all admissible
disturbances.
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Definition 2 X0 ⊂ X is safe if for any x(0) ∈ X0 there exists a sequence of
controls u(t) ∈ U such that x(t) ∈ X for all admissible disturbances.

We tackle the following problems

P1. Given X find U such that X is invariant.
P2. Given U find X such that X is invariant.
P3. Given X find U,X0 such that X0 is safe.

We use repeatedly the notion of a reach set R(X). With reference to (1),
R(X) is the set of states that can reach X in one step with a feasible control
for all admissible disturbances. We recall the obvious but basic result

Theorem 3 Invariance of X holds if and only if

X ⊂ R(X). (5)

We give analytic form to condition (5) in a number of particular cases. Before
proceeding we introduce the following notation. We denote by Ai the i−th
row of A. Given matrix A = [aij], A

+ = [max(aij, 0)], A− = [min(aij, 0)] (and
A = A+ + A− with A+ ≥ 0, A− ≤ 0).

2 Case B = I

In this case

R(X) = {x : ∃u ∈ U : x ≤ Ax + u + Cv ≤ x̄, ∀v ∈ V }
= {x : ∃u ∈ U : x− w ≤ Ax + u ≤ x̄− w̄} (6)

with

wi = min
v≤v≤v̄

Civ = C+
i v + C−

i v̄ (7)

w̄i = max
v≤v≤v̄

Civ = C+
i v̄ + C−

i v (8)

R(X) �= ∅ ⇒ w̄ − w ≤ x̄− x (9)
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R(X) = {x : ∃u ∈ U : x− w − Ax ≤ u ≤ x̄− w̄ − Ax}
= {x : x− w − Ax ≤ ū} ∩ {x : u ≤ x̄− w̄ − Ax}
∩ {x : x− w − Ax ≤ x̄− w̄ − Ax}

In view of (9) the last intersection can be dropped and the first is equivalent
to

R(X) = {x : x− w − ū ≤ Ax ≤ x̄− w̄ − u}. (10)

It is important to remark that the coefficients of the above linear inequalities,
when put in the form




A

−A


x ≤




x̄− w̄ − u

−x + w + ū




are just the entries of A and their opposites, making the computation of R(X)
exceedingly simple: exactly 2n inequalities are required for an n − th order
system.

Next, invariance requires

X ⊂ R(X) ⇔




max Aix ≤ [x̄− w̄ − u]i

max −Aix ≤ [−x + w + ū]i

x ≤ x ≤ x̄ i = 1 . . . n

(11)

or

A+x̄ + A−x≤ x̄− w̄ − u (12)

−A−x̄− A+x≤−x + w + ū (13)

We assume x ∈ IRn.

Collecting constraints (9,12,13)




A+ − I A−

−A− −A+ + I

−I I






x̄

x


 ≤




−w̄ − u

w + ū

w − w̄




(14)

existence of an invariant box obtains if and only if (14) with x ≤ x̄ is feasible.
Under (9), invariance is achieved by controls satisfying (10) or
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k(x) = max(u, x− w − Ax) ≤ u ≤ min(ū, x̄− w̄ − Ax) = k̄(x)

with min,max taken componentwise. Notice that the bounds are piecewise
linear–affine functions of x. A possible control law is the midpoint control law,
where u is chosen as the arithmetic mean of its bounds.

Notice that, for a given control law satisfying the above inequalities, control
values belong to a set U(x) which is contained in U for all x ∈ X. We define
a control set S as

S = ∪x∈X U(x).

To illustrate, a typical control set is shown below for the case

A =


 0 1

2 3


 , C =


 1 0

0 1


 , |vi| ≤ 1, |ui| ≤ c.

Solving (14) it is found that no solution exists for c < 5.05. At c = 5.05 the
box |x1| < 1, |x2| ≤ 1.025 (dashed rectangle) is invariant. A disturbance v(t) of
200 random vectors between −1 and 1 is considered. Using midpoint control,
the control values are the points included (as they should) in the control set.
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Fig. 1. Control set. Points are control values for a 200 pt sample.
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3 Unbounded Box

The general case of unbounded box constraints in state space can be described
as



x̄i = ∞ if i ∈ Ω

xi = −∞ if i ∈ Σ

where Σ and Ω are (possibly overlapping) subsets of the index set {1 . . . n}.
Then inequalities with row-index in Ω should be deleted from (12) and those
with index in Σ should be deleted from (13). With this proviso, (14) holds
(with entries suitably re–defined).

4 Tight Constraints

It is interesting to examine the case when (14) holds with =. Clearly we must
assume

x̄− x = w̄ − w (15)

and this shows that this is the smallest 1 box in state space that is invariant
wrt to w, w̄. It also follows that under (14) the smallest control box achieving
invariance is given by



u

ū


 =



−A+ + I A−

A− −A+ + I






x̄

x


 −



w̄

w


 (16)

When (16) holds we shall say that tight invariance holds (or, control bounds
u, ū achieve tight invariance). In the particular case x̄ = w̄, x = x we get



u

ū


 = −



A− A+

A+ A−






w

w̄


 (17)

1 In the sense of min volume.
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5 Case Square B �= I

Consider

x(t + 1) = Ax(t) + Bu(t) + Cv(t) (18)

under constraints (2–4). We seek conditions of invariance. In principle one
should calculate

R(X) = {x : ∃u ∈ U : x− w −Bu ≤ Ax ≤ x̄− w̄ −Bu} (19)

= {x : ∃u :




B

−B

I

−I



u ≤




x̄− w̄ − Ax

−x + w + Ax

ū

−u



}. (20)

Using the dual feasibility condition[1], it is known that R(X) is a convex
polyhedron defined by as many linear inequalities as there are columns in

G = gen




B

−B

I

−I




where gen(·) is shorthand notation for the generators of the cone

Range (·)⊥ ∩ IRn
+

(see [1] for details). The difficulty in computing G is evidenced in the table
below, obtained 2 by choosing for B a random square matrix of order n

SYSTEM ORDER SIZE(G)

n =1 4 × 4

n = 2 8 × 12

n = 3 12 × 36

n = 4 mem overflow

2 computation performed in MATLAB 4.2, on a Power Mac 6100/60
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It appears that when B is a generic full-rank matrix (rather than I) the number
of inequalities defining R(X) grows as 3n rather than n. We circumvent the
difficulty by introducing a fictitious control c = Bu and then proceed as in
Sec. 2. In the case of tight constraints we get



c

c̄


 =



−A+ + I A−

A− −A+ + I






x̄

x


 −



w̄

w


 (21)

It is straightforward to prove

Proposition 4 The smallest control box achieving invariance for (18) is

minbox (B, c, c̄) = {u : β ≤ u ≤ β̄}

with β̄i = minui, β
i
= max ui i = 1, 2, . . . n subject to

{u : c ≤ Bu ≤ c̄} ⊂ {u : β ≤ u ≤ β̄}.

PROOF. Since constraints (14) are tight, there are no controls c outside
{c ≤ c ≤ c̄} achieving tight invariance of {x ≤ x ≤ x̄}. Assume u∗ outside
{β ≤ u ≤ β̄} achieves tight invariance. Then control c∗ = Bu∗ achieves tight
invariance. But this is impossible as c∗ falls outside {c ≤ c ≤ c̄}.

6 Case of Scalar Control

Let B ∼ n× 1 and define

(S) : x(t + 1) = Ax(t) + Bu(t) + Cv(t) t = 0, 1, 2, · · · (22)

(S̃) : z(t + n) = Anz(t) + Pnũ(t) + Qnṽ(t) t = 0, n, 2n, · · · (23)

with z(0) = x(0) and

(A,B) reachable

Pn = [An−1B · · · AB B]

Qn = [An−1C · · · AC C]

Notice that if
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ũ(t) =




u(t)

u(t + 1)
...

u(t + n− 1)




and similarly for ṽ(t) then z(t) = x(t) at t = 0, n, 2n, · · · . It follows that if
a set is invariant for S̃, the trajectories of S originating in this set return to
it at most every n−th time step. We call such a property n–step invariance.
Clearly, invariance is the same as 1–step invariance.

In the case of box constraints (2-4) the set of controls achieving n-step invari-
ance of S is given by

max(β
τ
, x− wτ − Ax(t)) ≤ u(t + τ − 1) ≤ min(β̄τ , x̄− w̄τ − Ax(t))

where τ ∈ {1 . . . n− 1} denotes the τ–th component of β, etc.

As n–step invariance does not rule out m–step invariance for m < n, it is
of interest to estimate the smallest box that contains all trajectories of S
originating in X. We proceed in steps, checking this condition for t, t+1, . . . t+
n.

Let x(t) lie in X. Then there exists a finite λ such that x(t+1) ∈ λ(X−x0)+x0,
with x0 chosen so as to have 0 ∈ X−x0. Choosing x0 as the center of the box,
we have

x̄ + x

2
− λ

x̄− x

2
≤ Ax + Bu + Cv ≤ x̄ + x

2
+ λ

x̄− x

2
.

As this must hold for all v ∈ V, we re-write the above as

x̄ + x

2
− λ

x̄− x

2
− w ≤ Ax + Bu ≤ x̄ + x

2
+ λ

x̄− x

2
− w̄ (24)

with w , w̄ given by (7,8). The search is restricted to those Bu ensuring invari-
ance of X. These are of the form

k(x) ≤ Bu ≤ k̄(x). (25)

Finally, trajectories start in X so

x ≤ x ≤ x̄. (26)
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For given x we can compute λ̂(x) = minu λ subject to (24–26) – a LP problem.

Proposition 5 The function λ̂(x) is convex on X.

PROOF. The function λ̂(x − x0) is the Minkowski functional of the convex
set X − x0 so it is a convex function[2] of x− x0, hence of x.

This convexity property ensures

Corollary 6 Let K = 1 . . . 2n and let vk be the k−th vertex of X. Then

λ̂(x) ≤ max
k∈K

λ̂(vk)

The procedure above applies to the one-step transition from X. The computa-
tion should be repeated for the τ–step transition up to τ = n−1. This simply
entails replacing A by Aτ , B by Pτ , C by Qτ and appropriate selection of the
control and disturbance bounds.

Letting λ̂τ be the solution of (24–26) at transition τ, we have the following

Proposition 7

∃τ : λ̂τ = λ̂τ+1 = 1 ⇔ X is invariant for (S).

7 An example

Consider system (1) with

A =




0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0.2190 0.0470 0.6789 0.6793 0.9347 0.3835 0.5194



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and B = C = I under a disturbance vector 1 ≤ v(t) ≤ 2. We consider a
disturbance attenuation problem. Namely, we want to find the smallest box U
centered at the origin that makes a box X invariant for (1). The results are

U = {u : |ui | ≤ 2.2 i = 1 . . . 7}

X = {




−0.6358

−0.5291

−0.9209

−0.9211

−0.8731

−0.6731

−0.4731




≤ x ≤




0.3642

0.4709

0.0791

0.0789

0.1269

0.3269

0.5269




}

Using midpoint control, the results for a simulated random disturbance v(t) ∈
V are shown below.
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Fig. 2. State trajectories
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Fig. 3. Control

8 Extensions

When a box X is not invariant for a given system the procedure in Sec. 6 per-
mits to determine U and a set of control laws able to achieve n-step invariance
and, at the same time evaluate the maximal departure from X of a state orig-
inating in X. Departure can be minimized by solving a suitable LP problem.
When this is done, one can determine a safe set X0 by a re-scaling technique,
the details of which are discussed in the full version of the paper. Also, the
present study allows to evaluate safe or invariant sets under disturbance by a
systematic procedure. An important problem in the control of Hybrid Systems
(and in other areas) is to determine the largest invariant subset contained in
a polyhedral bounding set. In principle, such an invariant can be obtained re-
cursively, and convergence conditions are well known. However, the invariant
set can be approximated from the outside or from the inside. In the first case,
each approximant fails to be an invariant for the system and, in most cases
serious numerical problems hinder the algorithmic success of the procedure.
In the latter case, the approximants belong to an ever growing family of in-
variant sets, and the difficulty just mentioned largely vanishes. However, in
order to start the inner approximation procedure, an invariant set must be
known. Building a safe or invariant box, as discussed in this paper, might be
precisely the way to overcome the difficulty. Again, these aspects are discussed
at greater length in the full version of the paper.
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