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Stable distribution has become a very popular tool for describing distribution of
empirical variables since the Fama (1965ab) papers!. A natural question arise
about behaviour of econometric tests if variables are not normal, but stable.
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Abstract

In the paper we propose a modification of the Dickey-Fuller (1979) test
for AR(1) process with symmetric stable disturbance. It is an extension of
Rachev et al. (1998, 1999ab), and Rachev and Mittnik (2000) researches
which anylyse asymptotic properties of DF tests for AR(1) process with
symmetric stable disturbance with known characteristic exponent alpha.
We consider finite sample properties of the tests, including finding so
called response surfaces.

We also propose two modifications of the tests for unknown alpha.
Firstly, we replace unknown value of parameter alpha by its estimator
and secondly we use linear combination of DF tests. To investigate prop-
erties of proposed tests, we use Monte-Carlo simulations. We test if real
sizes of our tests differ significantly from assumed values. We also deter-
mine the best proposed unit root test in the sense of its power.
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1The stable distributions are used to model stock returns (Blume, 1970; Roll, 1970; Te-
ichmoeller, 1971; Officer, 1972; Hagernman, 1978; Akgiray and Booth, 1988; Diebold, 1993);
exchange rate (Koedijk and Kool, 1992; Miiller et al. (1998); Jorion, 1988; Yang and Brorsen,
1995; Scheicher, 1999); inflation rate (Bidarkota and McCulloch, 1998); real estate prices

(Young and Graff, 1995) etc.



In the paper we propose a modification of the Dickey-Fuller (1979) test (DF
test) for AR(1) process with symmetric stable disturbance. It is an extension of
Rachev et al. (1998, 1999ab), and Rachev and Mittnik (2000) researches which
anylyse asymptotic properties of DF tests for AR(1) process with symmetric
stable disturbance with known characteristic exponent alpha. We consider finite
sample properties of the tests and also propose a modification of the tests for
unknown alpha.

The paper is constructed as follows: the second section contains the defi-
nition and properties of stable distribution; section three reports classical unit
roots testing when applying the Dickey-Fuller (DF) test; the next section dis-
cusses asymptotic behaviour of the DF test for stable disturbance with known
alpha and section five contains our modification of the DF test in case of un-
known alpha and finite sample.

2 Stable distributions

Stable distributions are a rich class of distributions, including (among others)
normal, Cauchy and Lévy distributions. According to the generalized central
limit theorem, the limit of (scaled) sum of independent, identically distributed
random variables is (if it exists) stable. It can be shown that the logarithm of
characteristic function of stable distribution is equal to (see DuMouchel, 1975)

i6t — |et|® [1 — iBsign(t) tan 2] for o # 1

log E(exp(iXt)) = { i6t — |et| [1 +iB2sign(t)log|t]] fora=1 " (1)
which is denoted X ~ S(a, 8, ¢, ). For a discussion of other parameterizations,
see Zolotarev (1983), Nolan (1999).

The stable distribution is defined by four parameters.

Parameter o € (0,2] is a characteristic exponent. For & = 2 we have the
Gaussian distribution with variance 2¢2. For a < 2, the distribution is "heavy-
tailed”.

The skewness parameter S determines the shape of the distribution. For
B > 0 the distribution is skewed to the right, for < 0 it is skewed to the
left, and for § = 0 it is symmetric (except the normal case which is always
symmetric).

Parameter ¢ € R is the scale parameter and § € R is the location param-
eter.

In almost all cases a close formula of density of the stable distribution is not
known, so we cannot use directly the maximum likelihood method of parameter
estimation. In the paper we use the quantile method of estimation for the
symmetric case proposed by McCulloch (1986).

More information about stable distributions are to be found in: Gnedenko
and Kolmogorov (1957), Kendall and Stuart (1963-1968), Feller (1966), Zolotarev
(1983), McCulloch (1986, 1996), Christoph and Wolf (1993), Samorodnitsky and
Taqqu (1994), Nikias and Shao (1995), Nolan (1999).



3 Testing stationarity of normal AR(1) process

In the section we recount the classical Dickey-Fuller (1979) test. Let us consider
a normal AR(1) process

Y=o +ar-yi_1 +ep, e ~iid.N(0,0%), t=2,...,T, (2)

The null hypothesis for DF test is the random walk hypothesis?. That means
that for (2) we assume that:

HO : Qg = 07 Q] = ]-7 Y1 € Ra (3)

and
2

Qp g
H - R 1, y~N — ) 4
1 @ €R, |a|<1, u <1—a1’1—a%> (4)

The Dickey-Fuller (DF) statistics is simply a t-Student statistics for ay =1
hypothesis, i.e. DF = O‘sl—_l It has two versions, denoted DF,, and DF, o,:
a1

- AT — 1
DF,, =%, (5)
Sdl—
at -1
DFao,m = g ) (6)
O21

where:
a; — OLS estimator of the parameter ay in the equation (y; = ay - ys—1 + €¢),
s5; — standard error of a; estimator,

df — OLS estimator of the parameter a4 in the equation (y; = ap+ay-yi—1+¢€¢),
a4t ~ standard error of &7 estimator.
The critical values of DF statistics are given in Fuller (1976, pp. 371, 373).
Since the distribution of DF,,, statistic depends on y; distribution, we sub-
tract the first observation from the whole sample if y; # 0. More precisely,
instead of the statistic (5) we use the following statistic (compare Dickey and
Fuller, 1979)

DFy, = ; (7)

where:
&7 — OLS estimator of the parameter ; in the equation

(e —y1) =01 - (Yye—1 — Y1) + &4,

s,- — standard error of & estimator.
1

2We do not anylyse other unit root tests such as the Phillips-Perron (1988) test, or the
KPSS test (Kwiatkowski et al., 1992) etc.



4 Testing stationarity of stable AR(1) process
with known alpha

Rachev et al. (1998, 1999ab) find asymptotic distribution of DF statistics when
disturbance ¢; is symmetric stable with known alpha. Asymptotic critical values
can be found in Rachev and Mittnik (2000). In the paper we compute critical
values for finite samples. Thus, we assume that e; is symmetric stable. That
means that for

Y =ap+ a1 Y1 +e, e~ S(a,0,¢0), t=2,...,T, 8)
we assume that:
Hy ap=0, ag=1, y1 €R, (9)
c Qp
Hy R 1 ~ S 0 ) 10
1 ap € R, |a1|< y Y1 (a, :(1_a?)1/a’1_a1> ( )

Assumption y; ~ S (a,O, 0 < 20 ) is necessary for stationarity time

a7 ooy
series defined by the alternative hypothesis (Hj).

For testing the null hypothesis we use DF,,, and DF,, ., statistics defined
by the equations (7) and (6). Distributions of DF statistics will be determined
using the Monte-Carlo simulations. Since under null hypothesis the distributions
do not depend on parameters y; and ¢, we can assume for example that y; =0
and ¢ = 1, which leads to

¢
Hy: y=> e, e ~58a,010), t=2...,T, y=0. (11
=2

It has to be stressed that H{ is not a new null hypothesis — it is only the
assumption for Monte-Carlo simulations.

Distributions of DF,,, and DFj, o, statistics depend on parameters a and
T. We choose 11 values of the characteristic exponent (a = {1.0,1.1,...,2.0})
and three values of the number of observations (I' = {100, 500,1000}). For
every value of parameters we generate n = 50 000 times time series {y;} us-
ing formula (11). In all simulations we generate stable pseudo-random num-
bers using McCulloch GAUSS procedure rndssta (download from web-page
http://www.econ.ohio-state.edu/jhm/jhm.html) which is an application of the
Chambers et. al. (1976) method. All procedures are written in GAUSS-386i.

In the figures 1 and 2 we show some empirical density functions for DF
statistic without an intercept (DF,,) and in the figures 3 and 4 — with an
intercept (DFyq,a,)-

The figures show, first of all, that density functions for 100 and 1000 observa-
tions are very similar. Secondly, modes of DF,,, distributions are moved to the



Figure 1: Density functions of DF statistic without an intercept for 7" = 100.
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Figure 2: Density functions of DF statistic without an intercept for T' = 1000.
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Figure 3: Density functions of DF statistic with an intercept for 7' = 100.
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Figure 4: Density functions of DF statistic with an intercept for 7" = 1000.

fu]

-50 -40 =30 -20 -10 0.0 1.0 20 30

[0 dpte1 —8— dlphe=1.5 —— alphe=2|




right, as compared to modes of DF,, ,, distributions, especially for "heavy-
tailed” case (o = 1). Thirdly, if tails of disturbance’s distribution become
“heavier”, modes of DF statistics move to the right.

In table 1 we put critical values of DF tests. For a = 2 (normal case, i.e.
the classical DF test) critical values for the test without an intercept are similar
to the Charemza and Deadman (1997) results (differences are due to a different
assumption about y;), and for the test with an intercept the results are the
same as the Fuller (1976) results.

The lower characteristic exponent (i.e. "heavier tails” of the distribution),
the smaller absolute values of DF,, critical values are, and the higher are ab-
solute values of DF,, o, critical values higher (compare Table 1). As a result
of non-normality of disturbance of random walk, the classic DF test without
an intercept rejects nonstationarity hypothesis too seldom, and the classical DF
test with an intercept rejects this hypothesis too often.

To construct confidence intervals for the critical values, we use the follow-
ing nonparametric method (see e.g. Niemiro, 1999, pp. 158-159). Confidence
intervals for a p-th quantile (= critical value at critical level p) of random vari-
able X (= test X) are of form [X.p, Xj.,], where Xj.,, — k-th order statistic.
If the cumulative distribution function is continuous and strictly increasing in
neighbourhood of the p-th quantile, then we can easily prove that for large n
the following approximations are valid:

k=~ np —u/np(l —p),

and
k ~ np+ uy/np(1 — p),

where u — appropriate quantile of normal distribution (e.g. 1.96 for confidence
level equal to 0.95).

For n = 50 000 replications of Monte-Carlo simulation and 0.95 level of
confidence we use the following order statistics:

— k = 456 and k = 544 for p = 0.01 (= critical level),
— k = 2404 and k = 2596 for p = 0.05,
— k = 4868 and k = 5132 for p = 0.10.

The results of Monte-Carlo simulations are listed in Table 2.

In the next step we approximate critical values by a function (o +p1 -+ e -
a® + pz - T~1) (using OLS, parameters with t-values below 1 has been omitted
— see Table 3) (we find so called response surfaces).

Increase of characteristic exponent « by 0.1 declines 1% critical values for
DF,, by 0.019, 5% critical values by 0.019-0.031, and 10% critical values by
0.019-0.033. Changing length of time series from 100 to 1000 causes usual
unsignificant or not substantial (= 0.02) change in critical values.

For DFy,, «, statistic, increase of the characteristic exponent by 0.1 increases
1% critical values by 0.073-0.300, 5% critical values by 0.008-0.057, and 10%



critical values by below 0.012. Changing length of time series from 100 to 1000
increases critical values from 0.016 (10% level of significance) to 0.151 (1%).
Standard errors of estimated response surfaces are not very high; except for
1% DF,, q, critical values they are not higher than 0.02.
We use response functions to estimate asymptotic critical values. They are
very similar to Rachev and Mittnik (2000, p. 727) results (see Table 4).

5 Testing stationarity of stable AR(1) process
with unknown alpha

The purpose of this section is to propose a modification of DF tests if the
characteristic exponent « of process disturbance is unknown. Since in the real
life we usually do not know parameters of the DGP, critical values given in Table
1 are not very useful.

We propose two modifications of DF tests, denoted DFy and DFy.

Firstly (DF}; tests), we replace unknown value of parameter a by its es-
timator &. Following from null hypothesis (the equations (8)-(9)) we have
Ay; ~ 1i.d.S(e,0,¢,0). So for empirical time series {y:} in the first step we
estimate characteristic exponent for the first differences {Ay;}. To compute
critical values we use parameters of response surfaces (Table 3). If we use con-
sistent estimator of characteristic exponent, we can expect that DF}j tests are
asymptotically equivalent to DF,, and DF,, ., tests.

Secondly, we use combination of DF tests. Consider a following test

DFf = f(DFOq +DFC¥07C¥1):

where f(-) is a function for which critical values of DF test do not depend on
characteristic exponent of disturbance. It is not easy (or perhaps even impos-
sible) to prove that the function f(-) exists. However, we are able to construct
the test with the same critical values for two border a’s: a =1 and o = 2.

Let f(-) be a linear function:

DFy=¢-DF,, +(1—¢)-DF,, q,, (12)

where 0 < ¢ < 1. From Monte-Carlo simulation (Table 1) we know that the
difference between critical values for « = 1 and a = 2 is positive for ¢ =1 (i.e.
DF,, test) and negative for ¢ = 0 (DF,, o, test). Since critical values of the
DF}y test are continuous functions of ¢ (see Appendix 1 for proof), following
from the Bolzano-Cauchy theorem, there exists ¢ € (0, 1), for which the dif-
ference between critical values for « = 1 and a = 2 is equal to 0. We should
note, however, that for a € (1,2) critical values of the test can differ, even in
an asymptotic case.

We find ¢’s with precision 0.01 by Monte-Carlo simulations (50 000 repli-
cations). Simulation is repeated for ¢ = {0.00,0.01,...,1.00}. The criterion is
minimum (square) difference between critical values for « = 1 and o = 2. All
simulations are made under the same conditions: parameter seed (starting point



in GAUSS random number generating procedure) is set at the level 28031970.
The results of the simulation are in Table 5 (critical values are averages for
a =1snd a = 2). As we see, for different sizes and numbers of observations
optimal ¢’s are different.

To investigate properties of proposed tests, we use Monte-Carlo simulations.
Firstly, we find real small-sample sizes of the proposed tests.

In the first step of Monte-Carlo simulation for DF} tests we simulate {y;}
series using modified null hypothesis (11) (for assumed « and T values). Sec-
ondly, we estimate characteristic exponent « for the first differences {Ay;} using
McCulloch GAUSS procedure (download from web-page http://www.econ.ohio-
state.edu/jhm/jhm.html), which is an application of McCulloch (1986) quantile
method. Next for & we compute critical values of the tests, using response sur-
faces (Table 3). Null hypothesis is rejected if DF statistics are smaller than the
critical values. The results of simulations are in table 6.

Standard error of estimator of probability p (= size of the test) is equal to

@ (n — number of observations). Therefore standard error of estimator

of significance level is equal to 0.04% for assumed size equal to 1%, 0.10% for
assumed size equal to 5% and 0.13% for assumed size equal to 10%. Estimators
of sizes differ significantly from assumed values in 26 cases of total 198 (= 13%)
which is not acceptable fraction for 5% level of significance.

For DFy tests results are much worse. Using the results from Table 5 we
compute real sizes of the test (see Table 7). Real sizes of the test differ signifi-
cantly from assumed sizes in too many cases (47 of total 99 = 47%).

In comparison, powers of above tests are computed. We also take into ac-
count DF tests for known alpha — so three types of tests are considered. In every
case null and alternative hypotheses are given by the equations (9) and (10). In
addition autoregressive parameter a; in alternative hypothesis is chosen to be
equal 0.95. Since distributions of DF statistics do not depend on parameters ap
and ¢ in alternative hypothesis (10), we can set them arbitrarily, e.g. ag = 1
and c=1:

Hy : (13)

ye=1+4+095 y;_1 +e¢, &t ~1i.d.S(e,0,1,0),
t=2,....,T, yp1~8 (a,o, (1_0.915a)1/a7 1—(1).95) :

We should distinguish between assumption a; = 0.95 which is essential for the
results and assumptions ag = 1 and ¢ = 1 which have no impact on results.

Powers of DF tests are found in the Monte-Carlo simulations. We generate
n = 50 000 time series for which DGP is the alternative hypothesis. Power of
the tests is a fraction of rejecting null hypothesis, if:

(i) We use critical values depending on known characteristic exponent « (table
1),

(ii) We use critical values computed as a function of estimator of character-
istic exponent &. The function is estimated response surface (Table 3).
Estimator & is estimated for time series {Ay;},



(iii) We use DF} test, where ¢’s and critical values are given in table 5.

We can compare directly powers of the tests (ii) and (iii). Simulations for
tests (i) inform us about lack of power due to lack of information about distur-
bance distribution. The results of simulations are in Tables 8, 9 and 10.

If alpha is known, power of DF test without an intercept is higher for 100
observations, and lower for 1000 observations, except 1% critical level with
a < 1.25 (see Table 8). There is no rule for behaviour of power as a increases;
it can increase or decrease with a or have the maximum for certain alpha value.

Powers of DF tests using response surfaces (see Table 9) are similar to the
previous case. It is probably the result of the length of time series — for 1000
observations RMSE of a estimator is about 0.004.

Comparing Tables 9 and 10 we can indicate which modification of DF tests
is better in sense of power. For 100 observations we should use DF test without
an intercept and for 1000 observations and large a’s — DF test with an intercept
(among tests for unknown «). On the other hand, for the intermediate case (500
observations) and for 1000 observations with small a’s, the DF}, test has the
highest power. Let us note, that this test does not take into account information
about observed estimator of characteristic exponent.

A Proof that critical values of DI, test are con-
tinuous functions of ¢

Full proof is available from the author upon request. For lim ¢, = ¢ there
n—oo

is DFy, 4 DF,. Therefore cumulative distributions and quantile functions
converge. There is a little problem if the distribution of DFj is not strictly
increasing.
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Table 1: Critical values of DF statistics, depending on characteristic exponent
and number of observations (50 000 Monte-Carlo replications).

— for 1% level of significance
DF test without an intercept DF test with an intercept

alpha | T =100 | T'= 500 T = 1000 T =100 | T=500 | T =1000
1.0 -2.38 -2.36 -2.40 -5.47 -5.10 -5.20
1.1 -2.40 -2.39 -2.41 -5.20 -5.03 -5.01
1.2 -2.45 -2.38 -2.43 -4.95 -4.75 -4.80
1.3 -2.45 -2.40 -2.41 -4.67 -4.46 -4.42
1.4 -2.48 -2.42 -2.44 -4.37 -4.19 -4.22
1.5 -2.50 -2.47 -2.47 -4.24 -4.03 -4.06
1.6 -2.52 -2.48 -2.49 -3.98 -3.91 -3.84
1.7 -2.53 -2.48 -2.53 -3.83 -3.75 -3.72
1.8 -2.52 -2.51 -2.53 -3.68 -3.61 -3.65
1.9 -2.54 -2.56 -2.53 -3.55 -3.53 -3.53
2.0 -2.59 -2.59 -2.56 -3.52 -3.45 -3.45

— for 5% level of significance
DF test without an intercept DF test with an intercept
alpha | T=100 | T=500 | T=1000 | T =100 | T =500 | T = 1000

1.0 -1.68 -1.69 -1.69 -3.22 -3.20 -3.21
1.1 -1.70 -1.73 -1.72 -3.18 -3.14 -3.13
1.2 -1.76 -1.75 -1.76 -3.13 -3.06 -3.12
1.3 -1.79 -1.77 -1.76 -3.07 -3.04 -3.03
1.4 -1.81 -1.79 -1.79 -3.04 -2.98 -3.01
1.5 -1.84 -1.83 -1.83 -3.01 -2.96 -2.96
1.6 -1.86 -1.84 -1.86 -2.98 -2.95 -2.94
1.7 -1.87 -1.87 -1.89 -2.96 -2.92 -2.93
1.8 -1.90 -1.90 -1.91 -2.93 -2.90 -2.91
1.9 -1.91 -1.92 -1.91 -2.90 -2.89 -2.88
2.0 -1.93 -1.94 -1.94 -2.89 -2.87 -2.87

— for 10% level of significance
DF test without an intercept DF test with an intercept
alpha | T=100 | T=500 | T=1000 | T'=100 | T =500 | T = 1000

1.0 -1.35 -1.36 -1.36 -2.64 -2.62 -2.64
1.1 -1.38 -1.39 -1.39 -2.63 -2.62 -2.61
1.2 -1.43 -1.42 -1.42 -2.63 -2.60 -2.62
1.3 -1.45 -1.44 -1.44 -2.60 -2.60 -2.59
1.4 -1.47 -1.47 -1.47 -2.59 -2.58 -2.59
1.5 -1.50 -1.50 -1.50 -2.60 -2.57 -2.58
1.6 -1.53 -1.53 -1.53 -2.59 -2.58 -2.57
1.7 -1.55 -1.55 -1.56 -2.60 -2.57 -2.57
1.8 -1.57 -1.57 -1.58 -2.59 -2.59 -2.58
1.9 -1.59 -1.60 -1.60 -2.58 -2.57 -2.57
2.0 -1.61 -1.61 -1.61 -2.58 -2.57 -2.57

14



Table 2: Confidence intervals for critical values of DF statistics (confidence level

0.95) depending on characteristic exponent and number of observations (50 000

Monte-Carlo replications).
— for 1% level of significance

DF test without an intercept DF test with an intercept
alpha T =100 T = 500 T = 1000 T =100 T =500 T = 1000
1.0 (-2.42, -2.34) | (-2.41, -2.34) | (-2.44, -2.36) | (-5.57, -5.32) | (-5.24, -4.99) | (-5.35, -5.04)
1.1 (-2.44, -2.37) | (-2.43, -2.36) | (-2.45, -2.38) | (-5.41, -5.04) | (-5.22, -4.89) | (-5.18, -4.84)
1.2 (-2.50, -2.41) | (-2.41, -2.35) | (-2.47, -2.39) | (-5.08, -4.79) | (-4.89, -4.64) | (-4.94, -4.68)
1.3 (-2.48, -2.41) | (-2.44, -2.36) | (-2.46, -2.39) | (-4.82, -4.55) | (-4.58, -4.39) | (-4.52, -4.30)
1.4 (-2.50, -2.43) | (-2.45, -2.39) | (-2.48, -2.41) | (-4.48, -4.30) | (-4.29, -4.11) | (-4.36, -4.13)
15 (-2.53, -2.47) | (-2.51, -2.44) | (-2.51, -2.44) | (-4.32, -4.18) | (-4.10, -3.97) | (-4.13, -3.99)
1.6 (-2.56, -2.49) | (-2.51, -2.45) | (-2.53, -2.47) | (-4.05,-3.90) | (-3.98, -3.85) | (-3.91, -3.77)
1.7 (-2.56, -2.50) | (-2.52, -2.46) | (-2.57,-2.51) | (-3.89, -3.79) | (-3.80, -3.68) | (-3.76, -3.68)
1.8 (-2.55, -2.49) | (-2.53, -2.48) | (-2.56, -2.50) | (-3.73, -3.64) | (-3.65, -3.56) | (-3.69, -3.62)
1.9 (-2.56, -2.50) | (-2.59, -2.53) | (-2.55, -2.50) | (-3.58, -3.52) | (-3.56, -3.49) | (-3.56, -3.49)
2.0 (-2.62, -2.55) | (-2.62, -2.56) | (-2.59, -2.53) | (-3.56, -3.49) | (-3.48, -3.42) | (-3.48, -3.43)
— for 5% level of significance

DF test without an intercept DF test with an intercept
alpha T =100 T =500 T = 1000 T =100 T =500 T = 1000
1.0 (-1.70, -1.66) | (-1.71, -1.68) | (-1.71, -1.67) | (-3.26, -3.19) | (-3.23, -3.17) | (-3.24, -3.17)
1.1 (-1.73, -1.69) | (-1.75, -1.71) | (-1.74, -1.71) | (-3.22, -3.15) | (-3.17, -3.11) | (-3.16, -3.09)
1.2 (-1.78, -1.74) | (-1.77, -1.73) | (-1.78, -1.74) | (-3.15, -3.10) | (-3.10, -3.04) | (-3.15, -3.09)
1.3 (-1.80, -1.77) | (-1.79, -1.75) | (-1.77,-1.74) | (-3.10, -3.05) | (-3.07, -3.01) | (-3.06, -3.01)
1.4 (-1.82, -1.79) | (-1.81, -1.77) | (-1.80, -1.77) | (-3.06, -3.01) | (-3.01, -2.96) | (-3.03, -2.99)
15 (-1.85, -1.82) | (-1.84, -1.81) | (-1.84, -1.81) | (-3.03, -2.99) | (-2.98, -2.94) | (-2.99, -2.94)
1.6 (-1.88, -1.84) | (-1.86, -1.83) | (-1.87, -1.84) | (-3.00, -2.95) | (-2.97, -2.93) | (-2.96, -2.92)
1.7 (-1.89, -1.86) | (-1.89, -1.85) | (-1.90, -1.87) | (-2.98, -2.94) | (-2.94, -2.90) | (-2.94, -2.91)
1.8 (-1.01, -1.88) | (-1.92, -1.89) | (-1.92, -1.89) | (-2.95, -2.91) | (-2.92, -2.89) | (-2.92, -2.89)
1.9 (-1.93, -1.90) | (-1.94, -1.90) | (-1.93, -1.90) | (-2.91, -2.88) | (-2.91, -2.87) | (-2.89, -2.86)
2.0 (-1.95, -1.91) | (-1.96, -1.92) | (-1.95, -1.92) | (-2.90, -2.87) | (-2.88, -2.85) | (-2.88, -2.85)
— for 10% level of significance

DF test without an intercept DF test with an intercept
alpha T =100 T = 500 T = 1000 T =100 T =500 T = 1000
1.0 (-1.36, -1.33) | (-1.37, -1.35) | (-1.37, -1.34) | (-2.66, -2.62) | (-2.64, -2.60) | (-2.66, -2.62)
1.1 (-1.39, -1.37) | (-1.41, -1.38) | (-1.40, -1.37) | (-2.65, -2.61) | (-2.64, -2.61) | (-2.63, -2.59)
1.2 (-1.44, -1.41) | (-1.43, -1.41) | (-1.43, -1.40) | (-2.65, -2.62) | (-2.61, -2.58) | (-2.63, -2.60)
1.3 (-1.46, -1.44) | (-1.45, -1.43) | (-1.46, -1.43) | (-2.62, -2.59) | (-2.61, -2.58) | (-2.61, -2.58)
1.4 (-1.49, -1.46) | (-1.48, -1.46) | (-1.48, -1.45) | (-2.61, -2.58) | (-2.59, -2.57) | (-2.61, -2.57)
1.5 (-1.52, -1.49) | (-1.51, -1.49) | (-1.52, -1.49) | (-2.62, -2.59) | (-2.59, -2.56) | (-2.59, -2.56)
1.6 (-1.54, -1.52) | (-1.55, -1.52) | (-1.54, -1.52) | (-2.61, -2.58) | (-2.60, -2.57) | (-2.59, -2.56)
1.7 (-1.57, -1.54) | (-1.56, -1.54) | (-1.57, -1.55) | (-2.61, -2.58) | (-2.58, -2.56) | (-2.59, -2.56)
1.8 (-1.58, -1.56) | (-1.58, -1.56) | (-1.59, -1.56) | (-2.60, -2.58) | (-2.60, -2.57) | (-2.59, -2.56)
1.9 (-1.60, -1.58) | (-1.61, -1.59) | (-1.61, -1.59) | (-2.59, -2.57) | (-2.59, -2.56) | (-2.59, -2.56)
2.0 (-1.62, -1.60) | (-1.62, -1.60) | (-1.62, -1.60) | (-2.59, -2.57) | (-2.58, -2.55) | (-2.58, -2.55)
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Table 3: Response surfaces for critical values (standard errors in brackets).
— for 1% level of significance

parameter | DF test without an intercept | DF test with an intercept
intercept -2.18 (0.02) -9.39 (0.26)

@ -0.189 (0.011) 5.279 (0.364)

o? 0(-) -1.138 (0.121)

7! -2.3 (0.8) -16.8 (2.6)

R’ 0.915 0.991

Oc 0.019 0.061

— for 5% level of significance

parameter | DF test without an intercept | DF test with an intercept
intercept -1.32 (0.04) -4,00 (0,05)

e} -0.433 (0.052) 1,054 (0,073)

a? 0.062 (0.017) -0,243 (0,024)

T 1 0(-) -3,7 (0,5)

R’ 0.989 0,988

Oc 0.009 0,012

— for 10% level of significance

parameter | DF test without an intercept | DF test with an intercept
intercept -0.96 (0.02) -2,81 (0,03)

e -0.470 (0.029) 0,255 (0,044)

a? 0.070 (0.010) -0,066 (0,015)

7! 0(-) -1,7 (0,3)

R’ 0.997 0,893

O 0.005 0,007

Table 4: Asymptotic critical values of DF statistics: empirical (simulated values

in brackets) [computed from response function in square brackets].

DF test without an intercept | DF test with an intercept
alpha 1% 5% 10% 1% 5% 10%
1.1 -2.43 -1.72 -1.38 -4.82 -3.12 -2.61
(-2.42) | (-1.72) (-1.38) (-5.01) | (-3.13) (-2.62)
[-2.39] | [-1.72] [-1.39] [-4.96] | [-3.13] [-2.61]
1.5 -2.46 -1.83 -1.5 -3.99 -2.94 -2.56
(-2.49) | (-1.84) (-1.51) (-4.05) | (-2.96) (-2.58)
[-2.46] | [-1.83] [-1.50] [-4.03] | [-2.96] [-2.58]
1.9 -2.54 -1.92 -1.6 -3.5 -2.86 -2.56
(-2.56) | (-1.93) (-1.60) (-3.53) | (-2.87) (-2.57)
[-2.54] | [-1.92] [-1.59] [-3.47] | [-2.87] [-2.57]

Note: Empirical and simulated values are from Rachev and Mittnik (2000, p. 727).

16




Table 5: ¢’s and critical values for DF}, tests (50 000 Monte-Carlo replications).

—¢'s
level of significance | T'=100 | 7 =500 | T = 1000
1% 0.71 0.63 0.67
5% 0.42 0.40 0.41
10% 0.14 0.18 0.18

— critical values
level of significance | T =100 | T =500 | T = 1000

1% -2.67 -2.70 -2.65
5% -2.27 -2.28 -2.26
10% -2.37 -2.30 -2.29
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Table 6: True sizes of DF} tests (50 000 Monte-Carlo replications).
— for assumed 1% critical value

DF test without an intercept DF test with an intercept

alpha | T=100 | T =500 | T = 1000 T =100 | T =500 | T =1000
1.0 0.010 0.011 0.010 0.011 0.010 0.011
1.1 0.010 0.010 0.011 0.010 0.009 0.010
1.2 0.010 0.010 0.010 0.010 0.010 0.010
1.3 0.010 0.010 0.010 0.010 0.010 0.010
1.4 0.010 0.010 0.010 0.010 0.010 0.010
1.5 0.010 0.011 0.009 0.010 0.010 0.011
1.6 0.010 0.010 0.010 0.010 0.010 0.011
1.7 0.010 0.010 0.010 0.009 0.011 0.011
1.8 0.011 0.010 0.010 0.009 0.010 0.011
1.9 0.010 0.011 0.011 0.008 0.010 0.011
2.0 0.011 0.011 0.010 0.006 0.010 0.010

— for assumed 5% critical value

DF test without an intercept DF test with an intercept

alpha | T=100 | T=500 | T = 1000 T =100 | T=500 | T =1000

1.0 0.050 0.049 0.049 0.053 0.051 0.050
1.1 0.050 0.049 0.049 0.050 0.050 0.050
1.2 0.050 0.049 0.050 0.049 0.050 0.049
1.3 0.049 0.050 0.048 0.052 0.050 0.050
1.4 0.050 0.048 0.049 0.049 0.050 0.050
1.5 0.051 0.052 0.048 0.050 0.049 0.050
1.6 0.050 0.050 0.051 0.049 0.051 0.050
1.7 0.052 0.051 0.048 0.048 0.050 0.050
1.8 0.052 0.049 0.050 0.049 0.049 0.050
1.9 0.050 0.051 0.052 0.047 0.049 0.051
2.0 0.053 0.053 0.052 0.047 0.048 0.050

— for assumed 10% critical value

DF test without an intercept DF test with an intercept

alpha | T=100 | T=500 | T = 1000 T =100 | T =500 | T =1000

1.0 0.099 0.098 0.097 0.101 0.103 0.100
1.1 0.098 0.099 0.100 0.102 0.101 0.100
1.2 0.098 0.099 0.100 0.098 0.100 0.100
1.3 0.100 0.098 0.098 0.101 0.102 0.102
1.4 0.098 0.097 0.099 0.100 0.100 0.101
1.5 0.101 0.102 0.097 0.101 0.100 0.100
1.6 0.099 0.099 0.101 0.098 0.101 0.100
1.7 0.101 0.100 0.097 0.099 0.101 0.100
1.8 0.100 0.100 0.100 0.099 0.098 0.100
1.9 0.102 0.101 0.101 0.098 0.100 0.103
2.0 0.103 0.103 0.101 0.099 0.101 0.103

18




Table 7: True sizes for DFy tests (50 000 Monte-Carlo replications).

— for assumed 1% critical value

alpha | T =100, =0.71 | T =500,¢ =0.63 | T = 1000, ¢ = 0.67
1.0 0.009 0.009 0.009
1.1 0.010 0.009 0.009
1.2 0.008 0.009 0.008
1.3 0.008 0.009 0.008
1.4 0.009 0.008 0.009
1.5 0.009 0.008 0.009
1.6 0.008 0.008 0.009
1.7 0.009 0.008 0.009
1.8 0.009 0.008 0.010
1.9 0.009 0.008 0.009
2.0 0.010 0.010 0.010

— for assumed 5% critical va

lue

alpha | T =100, = 0.42 | T = 500, ¢ = 0.40 | T = 1000, ¢ = 0.41
1.0 0.051 0.049 0.050
1.1 0.050 0.050 0.048
1.2 0.047 0.050 0.048
1.3 0.049 0.049 0.048
1.4 0.047 0.048 0.047
1.5 0.047 0.048 0.047
1.6 0.047 0.048 0.049
1.7 0.049 0.048 0.047
1.8 0.047 0.046 0.048
1.9 0.048 0.047 0.049
2.0 0.048 0.049 0.051

— for assumed 10% critical value

alpha | T = 100, = 0.14 | T = 500, ¢ = 0.18 | T = 1000, = 0.18
1.0 0.102 0.097 0.102
1.1 0.101 0.098 0.098
1.2 0.099 0.098 0.099
1.3 0.100 0.098 0.097
1.4 0.097 0.099 0.099
1.5 0.096 0.098 0.098
1.6 0.098 0.097 0.008
1.7 0.099 0.095 0.098
1.8 0.097 0.095 0.099
1.9 0.099 0.095 0.008
2.0 0.096 0.098 0.102

19




Table 8: Power of DF tests, for which critical values depend on known « (autore-
gressive parameter is equal to 0.95, 50 000 Monte-Carlo replications) (results
for the tests with higher power are bold.)

— for 1% critical value
DF test without an intercept DF test with an intercept
alpha | T =100 | T =500 T = 1000 T =100 | T=500 | T =1000

1.0 0.039 0.827 0.929 0.032 0.037 0.686
1.1 0.036 0.819 0.930 0.028 0.038 0.682
1.2 0.041 0.815 0.928 0.022 0.054 0.908
1.3 0.040 0.803 0.925 0.018 0.105 0.952
1.4 0.043 0.782 0.925 0.016 0.182 0.986
1.5 0.044 0.761 0.918 0.013 0.270 0.993
1.6 0.046 0.741 0.921 0.012 0.446 0.997
1.7 0.044 0.717 0.917 0.017 0.524 0.998
1.8 0.047 0.696 0.908 0.021 0.628 0.999
1.9 0.047 0.656 0.901 0.023 0.709 1.000
2.0 0.045 0.635 0.888 0.027 0.759 1.000

— for 5% critical value
DF test without an intercept DF test with an intercept
alpha | T=100 | T=500 | T=1000 | T =100 | T =500 | T = 1000

1.0 0.237 0.894 0.951 0.093 0.936 0.998
1.1 0.231 0.892 0.953 0.092 0.935 0.998
1.2 0.229 0.891 0.952 0.087 0.950 0.999
1.3 0.214 0.892 0.955 0.087 0.957 0.999
1.4 0.214 0.889 0.957 0.095 0.959 0.999
1.5 0.210 0.889 0.957 0.093 0.963 0.999
1.6 0.204 0.880 0.961 0.102 0.965 0.999
1.7 0.200 0.872 0.963 0.106 0.968 1.000
1.8 0.190 0.865 0.965 0.112 0.968 1.000
1.9 0.195 0.848 0.969 0.125 0.970 1.000
2.0 0.184 0.839 0.970 0.121 0.971 1.000

— for 10% critical value
DF test without an intercept DF test with an intercept
alpha | T=100 | T=500 | T =1000 | T =100 | T =500 | T = 1000

1.0 0.488 0.916 0.959 0.188 0.991 0.999
1.1 0.455 0.917 0.963 0.200 0.992 0.999
1.2 0.449 0.917 0.963 0.198 0.991 0.999
1.3 0.412 0.921 0.966 0.196 0.992 0.999
1.4 0.400 0.922 0.967 0.205 0.993 0.999
1.5 0.390 0.927 0.969 0.202 0.994 1.000
1.6 0.373 0.922 0.973 0.209 0.994 1.000
1.7 0.358 0.921 0.976 0.217 0.994 1.000
1.8 0.346 0.921 0.980 0.224 0.994 1.000
1.9 0.338 0.919 0.985 0.237 0.995 1.000
2.0 0.324 0.919 0.991 0.229 0.996 1.000
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Table 9: Powers of DF} tests (autoregressive parameter is equal to 0.95, 50 000
Monte-Carlo replications).

— for assumed 1% critical value
DF test without an intercept DF test with an intercept
alpha | T =100 | T =500 T = 1000 T =100 | T =500 | T =1000

1.0 0.034 0.825 0.928 0.047 0.056 0.472
1.1 0.038 0.821 0.927 0.034 0.065 0.660
1.2 0.039 0.806 0.928 0.027 0.089 0.818
1.3 0.041 0.798 0.926 0.021 0.134 0.919
1.4 0.041 0.781 0.922 0.018 0.200 0.968
1.5 0.043 0.760 0.924 0.016 0.302 0.988
1.6 0.045 0.741 0.920 0.016 0.414 0.994
1.7 0.045 0.718 0.916 0.014 0.526 0.998
1.8 0.046 0.692 0.910 0.015 0.616 0.999
1.9 0.047 0.661 0.903 0.017 0.681 1.000
2.0 0.048 0.642 0.894 0.018 0.726 1.000

— for assumed 5% critical value
DF test without an intercept DF test with an intercept
alpha | T=100 | T=500 | T =1000 | T =100 | T =500 | T = 1000

1.0 0.193 0.889 0.950 0.105 0.945 0.998
1.1 0.200 0.891 0.951 0.095 0.950 0.999
1.2 0.206 0.889 0.954 0.093 0.955 0.999
1.3 0.207 0.890 0.953 0.089 0.958 0.999
1.4 0.206 0.886 0.956 0.092 0.961 0.999
1.5 0.201 0.882 0.959 0.094 0.962 0.999
1.6 0.202 0.878 0.960 0.098 0.966 1.000
1.7 0.205 0.874 0.962 0.104 0.967 1.000
1.8 0.197 0.865 0.966 0.108 0.968 1.000
1.9 0.196 0.854 0.969 0.113 0.968 1.000
2.0 0.195 0.844 0.973 0.116 0.968 1.000

— for assumed 10% critical value
DF test without an intercept DF test with an intercept
alpha | T=100 | T=500 | T=1000 | T =100 | T =500 | T = 1000

1.0 0.416 0.911 0.959 0.199 0.991 0.999
1.1 0.415 0.915 0.961 0.195 0.992 0.999
1.2 0.414 0.916 0.963 0.198 0.992 0.999
1.3 0.397 0.920 0.965 0.199 0.993 0.999
1.4 0.389 0.919 0.967 0.202 0.994 1.000
1.5 0.375 0.921 0.971 0.207 0.993 1.000
1.6 0.366 0.921 0.972 0.212 0.993 1.000
1.7 0.362 0.925 0.976 0.218 0.994 1.000
1.8 0.347 0.923 0.981 0.224 0.995 1.000
1.9 0.340 0.920 0.986 0.230 0.995 1.000
2.0 0.336 0.918 0.992 0.230 0.995 1.000

Note: Real sizes of the tests can differ from assumed values. Results for tests with
higher power (including DF}, tests are bold.
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Table 10: Power of DF, tests (autoregressive parameter is equal to 0.95, 50 000

Monte-Carlo replications).

— for assumed 1% critical value

alpha | T = 100,¢ = 0.71 | T = 500, = 0.63 | T = 1000, $ = 0.67
1.0 0.029 0.864 0.960
1.1 0.029 0.857 0.960
1.2 0.030 0.853 0.963
1.3 0.029 0.846 0.964
14 0.033 0.840 0.965
15 0.034 0.829 0.969
1.6 0.036 0.819 0.970
1.7 0.037 0.817 0.975
1.8 0.039 0.805 0.978
1.9 0.043 0.793 0.984
2.0 0.045 0.780 0.989

— for assumed 5% critical va.

lue

alpha | T = 100,¢ = 0.42 | T =500, = 0.40 | T = 1000, ¢ = 0.41
1.0 0.135 0.992 0.999
1.1 0.136 0.992 0.999
1.2 0.138 0.993 0.999
1.3 0.141 0.992 1.000
14 0.149 0.993 1.000
15 0.152 0.993 1.000
16 0.160 0.992 1.000
1.7 0.164 0.993 1.000
1.8 0.173 0.993 1.000
1.9 0.180 0.994 1.000
2.0 0.185 0.994 1.000

— for assumed 10% critical value

alpha | T =100, = 0.14 | T = 500, ¢ = 0.18 | T = 1000, = 0.18
1.0 0.224 0.995 0.999
1.1 0.224 0.995 0.999
1.2 0.222 0.996 0.999
1.3 0.225 0.996 0.999
14 0.231 0.996 1.000
15 0.236 0.996 1.000
1.6 0.243 0.997 1.000
1.7 0.246 0.997 1.000
18 0.255 0.998 1.000
1.9 0.260 0.998 1.000
2.0 0.266 0.999 1.000

Note: Real sizes of the tests can differ from assumed values.

Results for tests

with higher power (including tests using response surfaces) are bold.
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