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Abstract

Credit contagion refers to the propagation of economic distress from one
firm or sovereign government to another. In this paper we model credit
contagion phenomena and study the fluctuation of aggregate credit
losses on large portfolios of financial positions. The joint dynamics of
firms’ credit ratings is modeled by a voter process, which is well-known
in the theory of interacting particle systems. We clarify the structure of
the equilibrium joint rating distribution using ergodic decomposition.
We analyze the quantiles of the portfolio loss distribution and in partic-
ular their relation to the degree of model risk. After a proper re-scaling
taking care of the heavy tails induced by the contagion dynamics, we
provide a normal approximation of both the equilibrium rating distri-
bution and the portfolio loss distribution.
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1 Introduction

Credit contagion refers to the propagation of economic distress from one firm

or sovereign government to another. In this paper we study the fluctuations

of aggregate losses due to credit contagion on large portfolios of financial po-

sitions.

A number of studies, for example Duffee (1998) and Keenan (2000), have

investigated historical default data. They found, quite plausibly, that aggre-

gate default rates are strongly related to general macro-economic factors such

as the level of default-free interest rates, GDP growth rates, equity index re-

turns and other business cycle indicators. This sensitivity of firms’ financial

health on common factors leads to cyclical correlation of defaults. A more di-

rect sort of default dependence arises from direct links across firms, in that

the financial distress of one firm can directly trigger the distress of some other

firm(s). This ’infectious’ propagation or contagion of defaults can develop au-

tonomous dynamics, as the banking crises in Japan and South Korea show.

While cyclical dependence between firms corresponds more to ’normal’ fluctu-

ation of aggregate default rates, contagious cascading defaults typically result

in excessive fluctuations in default rates up to disruption of financial markets.

The possibility of disruption corresponds to systemic risk, and would call for

intervention of financial market supervising authorities or central banks.

Existing studies on the aggregation of credit risks have exclusively fo-

cused on the modeling of cyclical correlations. In these so-called Bernoulli

mixture models [Frey & McNeil (2001)], fluctuations of aggregate losses are

due to the fluctuation in some exogenous macro-economic variables. Impor-

tantly, conditional on the macro-state variables defaults of different firms and

the associated losses are assumed to be independent. Examples include the

models put forward by KMV [Kealhofer (1998)], J.P. Morgan [Gupton, Finger

& Bhatia (1997)], and Credit Suisse Financial Products [CSFP (1997)], which

have become a standard for credit risk measurement and management in fi-

nancial institutions. In these approaches, aggregated loss risks are typically

measured by some quantile of the distribution of total losses for some horizon.

Large-deviations approximations of the tail distribution of total losses were

very recently considered by Dembo, Deuschel & Duffie (2002).

Financial institutions as holders of multiple defaultable claims are partic-

ularly vulnerable to excessive fluctuations in default rates and the associated

losses on their portfolio positions. Being an integral part of the financial system,

a financial institution’s exposure to contagious credit quality deterioration of

portfolio positions is directly linked to the amount of systemic risk. A thorough
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understanding of the credit contagion process driving aggregated loss risk is

therefore essential for the regulation of financial institutions and the efficient

control of systemic risk in financial markets. Our contribution aims, for the

first time, at assessing the aggregate loss risk on large portfolios of financial

positions whose counterparties are subject to credit contagion.

Credit contagion phenomena rest on the existence of proper transmission

channels. Direct links between firms in the form of borrowing and lending

contracts constitute a typical distress propagation channel. In the banking

sector, interbank lending refers to banks’ mutual claims, such as overnight and

term interbank lending in the Fed funds market or its equivalents. To the extent

that interbank loans are neither collateralized nor insured against, the distress

of a bank may trigger the subsequent distress of other banks in the lending

chain. Here the central bank is forced to intervene in order to stop the contagion

process right at the beginning. Rochet & Tirole (1996) provide a framework

for the analysis of systemic risk with respect to interbank lending and central

bank policy. Freixas, Parigi & Rochet (2000) study the stability of the financial

system and the coordination role of the financial authorities if an insolvent

institution affects the system in various ways depending on the cross-payment

pattern in the interbank market. Allen & Gale (2000) propose an equilibrium

model where different sectors of the banking system have overlapping claims

on one another in order to buffer liquidity preference shocks. This arrangement

is however financially fragile: depending on the degree of connectedness of the

buffer system, a small liquidity preference shock in one institution can spread

through the economy and cause distress in other institutions as well.

Credit contagion is also a serious concern in manufacturing, where trade

credits link suppliers and buyers of goods through a chain of obligations: a

firm lends to its customers and borrows from its suppliers. In this sense inter-

firm trade lending is similar to interbank lending. Kiyotaki & Moore (1997)

develop a model of trade credit and study how a liquidity shock, which leads to

distress of an individual customer in the first place, can propagate through the

borrowing-lending network and result in a chain reaction in which producers

and in turn their suppliers run into financial distress as well.

The aforementioned contributions study simple micro-economic models of

direct inter-firm financial linkages and the associated contagion mechanisms.

Our intention is, in contrast, to directly consider the consequences of explicit

linkages between firms in a descriptive statistical way. In fact, the distress

propagation pattern in lending and borrowing networks as established above

motivate the contagion dynamics we are going to propose. Specifically, our

interaction mechanism is based on the voter-model, which is well-known in the
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theory of interacting particle systems [Liggett (1985), Liggett (1999)]. We sup-

pose that a firm can be in one of two credit rating classes, ’high’ or ’low’. The

joint evolution of firms’ credit ratings over time is modeled by a continuous-

time Markov process. Direct interdependence between firms’ credit quality is

induced through assuming that the transition rate of a given firm’s rating is

proportional to the number of ’neighboring’ firms with opposite rating. That

is, the migration probability of a firm’s credit quality is explicitly linked to

the credit quality status of other neighboring firms. The neighborhood of a

specific firm is given by all those firms with which this firm is in some direct

business or financial relation. This direct relation provides the transmission

channel through which economic distress can be propagated.

We then consider the long-run behavior of the rating process. The struc-

ture of the invariant (equilibrium) rating distribution depends on the com-

plexity of the inter-firm connectivity structure in the economy. If the degree

of connectedness is low (firms have only few business partners), then the state

of an individual firm is highly dominated by connected firms’ state. Clusters

of firms with the same rating are relatively stable. Their size fluctuates ran-

domly; they grow and merge with other clusters. In the long run only one type

of rating appears: either all firms are low-rated, or all firms are high-rated.

The probability of these scenarios depends only on firms’ marginal credit risk.

This implies a high degree of systemic risk. In the micro-economic model of

Allen & Gale (2000), where a liquidity shock faced by an individual bank may

be buffered by the interbank-lending network, one obtains qualitatively similar

implications. With a simple lending network structure, the buffer capacity is

low and a sufficiently severe shock may spread quickly through the banking

system and result in bankruptcy of all banks. In this sense a low degree of

connectedness corresponds to a high degree of instability and systemic risk in

the economy.

With an increasingly complex interdependence structure, the equilibrium

rating distribution becomes non-trivial. Random clusters of firms with the

same rating appear only locally and their size fluctuates heavily. In particular,

they do not merge and grow in the same way as with a less complex network

structure, but they are more unstable and less persistent. There are again

qualitative parallels to the micro-economic models of Allen & Gale (2000) and

Kiyotaki & Moore (1997). In the former, if the pattern of inter-connectedness

generated by the cross-holdings of claims is complete in the sense that each

bank is in a lending relationship with all other banks, the impact of an initial

shock may be reduced through an exploitation of the buffer network. In the

latter, if the structure of the credit chain is highly complex, i.e. each firm
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has a wide network of business/lending partners, then this arrangement is

quite robust against firms in the chain becoming distressed. Here some of the

connected firms may act as substitutes for a distressed link in the chain, so

that default effects may not be as severe as with few credit relationships.

We investigate the structure of the equilibrium rating distribution in a

large complex inter-linked economy, where firms are homogeneous with re-

spect to their marginal credit risk. In the ergodic case, the equilibrium ratings

are governed by a so-called extremal distribution corresponding to the fixed

degree of marginal credit risk. In the general case the equilibrium ratings are

governed by a mixture of extremal rating distributions. The mixing distribu-

tion corresponds to the distribution of the average number of low-rated firms

in the whole economy, which is a random quantity. The mixing distribution,

as well as the expected proportion of low-rated firms, is not changed through

the interdependence of firms. What interaction changes is, however, the corre-

lation between firms’ ratings. For any finite number of firms the probability to

find many firms with the same rating is higher than with independent firms;

the equilibrium rating distribution exhibits ’heavy tails’.

In a next step we associate with each firm a random variable describing

the loss a financial institution suffers by holding financial positions, such as

loans, bonds, stocks, or derivatives, with that firm. The distribution of this loss

depends on the rating class to which the firm belongs; conditional on the rating,

position losses are assumed to be independent. We then consider aggregate

losses on large portfolios of positions, whose interdependent counterparties are

subject to credit contagion processes.

Average losses on infinite portfolios are determined through the average

proportion of low-rated firms and the expected conditional position losses for

both rating classes. While loss uncertainty stemming from the fluctuation of

conditional position losses averages out, loss uncertainty remains from the

average proportion of low-rated firms, which is in general a random quantity.

Average loss randomness is hence governed by the mixing distribution. In the

ergodic case the mixing distribution is degenerate and average loss uncertainty

vanishes. The same results hold if all interdependence of firms is removed, i.e.

in a benchmark economy of independent firms where the probability of a firm

to be in the low rating is random and governed by the mixing distribution.

We can thus conclude that average losses in infinitely large portfolios are not

governed by the interaction of firms.

We show that the quantiles of the distribution of aggregate losses on large

portfolios are essentially governed by the quantiles of the mixing distribution.

This means that the tail behavior of the distribution of the empirical average
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of low-rated firms essentially determines the tail behavior of aggregate losses,

i.e. the extent to which losses on large portfolios fluctuate excessively. This

parallels a result of Frey & McNeil (2001) for Bernoulli mixture models, in

which losses are conditionally independent given some set of macro-economic

factors. There the tail of the factor distribution essentially determines the tail

of the loss distribution.

Using the recent general voter model results of Zähle (2001), we provide

an explicit normal approximation for the distribution of total losses on large

finite portfolios. This approximation is the key to the measurement and man-

agement of the portfolio’s aggregated credit risk. Since the contagion dynamics

induce heavy tails in the extremal equilibrium rating distribution, the appro-

priate re-scaling in this approximation is non-classical. Let us emphasize two

distinct features of the approximate loss distribution. First, the mixing distri-

bution governs average portfolio losses, which can be random. Second, losses

fluctuate around their (possibly random) averages, where the degree of fluc-

tuation depends on the degree of interaction of firms. This effect can most

easily be understood in the ergodic case where average portfolio losses are de-

terministic; in comparison with the benchmark case of independent firms, the

loss distribution exhibits heavy tails when firms are interdependent and credit

contagion phenomena are present. That is, the probability of exceeding a given

loss amount above average losses is larger than with independent firms. The

excess probability depends on the complexity of the economy’s network struc-

ture: the lower the degree of inter-firm connectedness and the higher the degree

of firm interaction, the fatter is the tail of the loss distribution, and the higher

the likelihood of extreme losses. Also, quite intuitive, the lower the degree of

marginal credit risk, the lower is the probability of extreme loss fluctuations.

Empirical studies suggest that there is a close relation between credit con-

tagion, macro-economic shocks, and the degree of systemic risk. In a companion

paper Giesecke & Weber (2002), we consider the distribution of aggregate port-

folio losses in the presence of credit contagion phenomena and cyclical default

correlations. Alternative and quite different approaches to model cyclical and

contagion-like effects have been proposed by Giesecke (2001) and Schönbucher

& Schubert (2001). These contributions focus directly on default events and

their evolution over time.

The remainder of this paper is organized as follows. In Section 2 we pro-

pose a model for the dynamics of credit contagion. In Section 3, we analyze the

asymptotic behavior of the rating process and the structure of the invariant

equilibrium rating distribution implied by the contagion model. Losses on large

portfolios of positions with interdependent firms are considered in Section 4,
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where we provide an explicit approximation of the distribution of aggregate

losses. Section 5 concludes. The appendix contains the proofs.

2 Modeling Credit Contagion

In this section we provide a statistical model for the effects of credit contagion

phenomena as we discussed them in the Introduction. In contrast to the micro-

economic approaches, we describe the interactions of the firms probabilistically

and consider their consequences on the level of both the whole economy and

large portfolios. Based on the discussed propagation pattern, we postulate a

basic voter process for the dynamics of the contagion process. The voter model

is well-known in the theory of interacting particle systems [Liggett (1985),

Liggett (1999)].

We consider an economy with a collection S of firms. A firm i ∈ S can

be in two states, denoted 0 and 1. State 0 corresponds to a high credit rating

and a low default probability, while state 1 corresponds to a low credit rating

and a high default probability. The state of the economy is characterized by

a configuration in the state space {0, 1}S. We are interested in the evolution

of firms’ credit ratings over time and the interdependence of the ratings of

different firms.

Motivated by our discussion in the Introduction, we assume that the evolu-

tion of the rating of an arbitrary firm i is influenced by the state of a collection

N (i) ⊆ S \ {i} of business partners. N (i) will be called the set of neighbors of

firm i. For simplicity, we assume that firms influence each other in a symmetric

way: if firm i’s rating is influenced by firm j, then firm j’s rating is influenced

by firm i. Expressed in terms of the neighborhoods, this means:

j ∈ N (i) ⇒ i ∈ N (j).

If we connect all firms i ∈ S to their neighbors j ∈ N (i), we get an

undirected graph which characterizes the business relations of the firms. For

tractability, we assume a simple neighborhood structure which is specified by

a d-dimensional lattice. In particular, all firms have the same finite number of

business partners.

Hence, we consider an economy with a countably infinite number of firms.

Firms are identified with their location on the d-dimensional integer lattice S =

Zd. The evolution of firms’ credit rating over time is described by a continuous-

time Feller process (ηt)t≥0 with state space X = {0, 1}Zd
and transition rate c

7



given by

c(i, ξ) =





1
2d

∑
j:|i−j|=1

ξ(j) if ξ(i) = 0

1
2d

∑
j:|i−j|=1

[1− ξ(j)] if ξ(i) = 1
.

That is, a firm i ∈ Zd with a high rating (ξ(i) = 0) migrates to a low rating

(ξ(i) = 1) at a rate proportional to the number of low-rated neighboring

firms j ∈ {j : ξ(j) = 1, |i − j| = 1}, and vice versa. It is easy to see that

if all firms i ∈ Zd are either in good or in bad shape, then the transition

rate is zero. Put another way, after a unit exponential waiting time in one

state, a firm i ∈ Zd migrates to the state of some neighboring firm j ∈ {j :

|i− j| = 1} which is chosen with probability 1/2d. A rating transition is hence

a Poisson event, whose intensity is proportional to the number of neighboring

firms with opposite rating. In this sense our credit contagion model belongs

to the class of intensity based credit risk models [see, e.g., Jarrow & Turnbull

(1995), Duffie, Schroder & Skiadas (1996), Duffie & Singleton (1999), Jarrow,

Lando & Turnbull (1997), and Lando (1998) for single-firm models]. The idea

that some firm’s intensity of default may also directly depend on the state of

other firms in the economy has recently appeared in Jarrow & Yu (2001) and

Davis & Lo (2001).

This formal model of firms’ joint credit migration probabilistically de-

scribes the pattern of credit contagion phenomena as we discussed them in

the Introduction. Let us pick the specific example of trade credit. If a highly

rated firm’s business partners in a trade credit (the ’neighboring’ firms) are

distressed, i.e. have the low credit rating, then the probability that this firm

runs into distress as well (i.e. migrates to the low rating) due to a payment

default in the credit chain increases with the number of distressed partners. If

a distressed firm’s business partners in the credit chain are in good shape (and

hence a default in the chain is unlikely), then the probability of that firm’s

recovery from distress increases with the number of healthy partners.

3 Equilibrium Behavior

Let us now look at the equilibrium distributions and the asymptotic behavior

of η. It turns out that the structure of the equilibrium distributions depends on

the dimension d. The dimension d can be interpreted as the degree of connect-

edness of firms in the economy; with increasing d the structure of inter-firm

connections becomes more complex. The larger d, the more business partners

has any individual firm. At the same time the number of indirect inter-firm
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links of given length increases. More specifically, if i and j are two firms, a

sequence (i0, i1, . . . , in) of firms is a link of length n between i and j, if ik is a

neighbor of ik+1 for k ∈ {0, 1, . . . , n−1}, i0 = i and in = j. The number of links

of length n emanating from a given firm equals 2d·n and grows exponentially

in n and d.

3.1 Low Degree of Inter-Firm Connectedness

Let µ denote the initial distribution of η. The process η has càdlàg paths; for

convenience, we will work with the canonical version of the process. Ω denotes

the space of càdlàg functions on R+ with values in X endowed with the usual

augmented filtration. For the law of the process η we will write P µ.

We shall assume that µ is translation-invariant and denote by

ρ = µ{ξ : ξ(i) = 1} (1)

the Bernoulli parameter of the initial marginal rating distribution for an ar-

bitrary firm i. ρ can hence be thought of as a measure of an individual firm’s

marginal credit risk. With respect to this marginal risk the firms in the econ-

omy are homogeneous. For d = 1, 2 and translation-invariant initial law µ, as

t →∞ the distribution of ηt converges weakly to the mixture

ρδ1 + (1− ρ)δ0, (2)

cf. Liggett (1999). δξ is the Dirac measure placing mass 1 on configuration

ξ ∈ X; in (2) the indices 0 resp. 1 refer to the configurations with all firms

being of good resp. bad type. The process of ratings η clusters, i.e. for all

i, j ∈ Zd we have

lim
t→∞

P µ[ηt(i) 6= ηt(j)] = 0. (3)

For a low degree of connectedness between firms (d ≤ 2), in the long run t →∞
only one type of rating appears: with probability ρ all firms are lowly rated,

and with probability 1− ρ all firms are highly rated. The economy ends up in

one of these two possible extreme scenarios. The marginal rating distribution

of any individual firm is invariant under the contagion dynamics: the degree

of marginal credit risk is not affected by the interaction process. Nevertheless,

the economy can change drastically on the macroscopic level.

This behavior is quite intuitive in the trade credit chain interpretation. If

initially the marginal probability ρ of individual firms to have the low rating

is high, then it is quite likely that healthy firms in the credit chain become
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infected. Random clusters of firms with low ratings emerge with high probabil-

ity, while clusters of firms with high ratings emerge only with low probability.

In any case, if the chain a firm operates in is ’short’, then the state of the rel-

atively few business partners highly dominates the state of a firm in the chain

and clusters of firms of the same type are relatively stable. The size of the

clusters changes through random fluctuations, but for low dimensions d ≤ 2

some of the clusters merge and form large growing clusters. Asymptotically,

with high probability ρ all firms are in the bad state, and with low probability

1− ρ all firms are in the good state. Vice versa, if ρ is low, then it is unlikely

that a firm gets distressed. In the limit, with high probability 1 − ρ all firms

will have the good rating, with low probability ρ the bad rating.

3.2 High Degree of Inter-Firm Connectedness

The limiting behavior of η differs for higher dimensions d > 2. In this case, for

any translation-invariant ergodic initial distribution µ with

ρ = µ{ξ : ξ(i) = 1}, (4)

as t → ∞ the distribution of ηt converges weakly to the non-trivial extremal

invariant measure νρ of the voter model in dimension d with parameter

ρ = νρ{ξ : ξ(i) = 1}, (5)

cf. Liggett (1999). In this case the rating process η coexists, referring to the lack

of rating clustering in the long run. If there is a high degree of connectedness in

the economy, then the credit contagion process is non-trivial and the long-run

ratings are distributed according to νρ. Random clusters of firms of equal rating

do not grow in the same way as we observed in the case d ≤ 2. In contrast, for

high degrees of connectedness the empirical average of the number of low-rated

firms is a preserved quantity under the dynamics and equals ρ forever.

Let us now study the equilibrium rating distribution in case d > 2 for

general, i.e. not necessarily ergodic, translation invariant initial rating distri-

butions. By Me we denote the space of ergodic probability measures on X

endowed with weak topology. We write Me,ρ for the closed subspace of Me of

probability measures ν with ν{ξ : ξ(i) = 1} = ρ ∈ [0, 1]. For any translation

invariant probability measure µ on X, the theorem of Choquet states that

there exists a probability measure γ on Me such that

µ =

∫

Me

νγ(dν), (6)
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so that µ can be represented as a mixture of ergodic measures ν. In Theorem

A.2 in the Appendix we prove a refined Choquet decomposition which can be

used to establish the complete convergence theorem for η in case d > 2 for

general translation invariant initial rating distributions:

Theorem 3.1. Let d > 2 and denote by µκ
t the distribution of ηt for given

initial distribution κ on X. Let κ be a translation invariant measure, and let

κ =

∫

[0,1]

(∫

Me

νγρ(dν)

)
Q(dρ) (7)

be the refined ergodic decomposition of κ, cf. Theorem A.2. Then we have that

µκ
t =

∫

[0,1]

(∫

Me

µν
t γρ(dν)

)
Q(dρ), (8)

and

µκ
t =⇒

∫

[0,1]

νρQ(dρ), (9)

where νρ is the extremal invariant measure of the basic voter model in dimen-

sion d > 2 with parameter ρ ∈ [0, 1].

The refined ergodic decomposition (7) describes the initial rating distri-

bution κ as a two-step random process: first the parameter ρ ∈ [0, 1] is chosen

according to the distribution Q, which then prescribes the translation invariant

regime

κρ := κρ,0 :=

∫

Me

νγρ(dν).

The distribution Q governs the mixture of the regimes κρ in the decomposition

of the initial distribution.

The effect of the evolution of the rating distribution in time is described by

(8) and (9). If the initial distribution κ can be decomposed as in (7), then the

rating distributions µκ
t at time t and µκ

∞ = limt→∞ µκ
t can be decomposed anal-

ogously. Theorem 3.1 describes these rating distributions as two-step random

processes: first the parameter ρ ∈ [0, 1] is chosen according to the distribution

Q, which then determines the regimes

κρ,t =

{ ∫
Me

µν
t γρ(dν) if t < ∞

νρ if t = ∞ .
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An understanding of the decompositions

µκ
t =

∫

[0,1]

κρ,t Q(dρ)

for t ∈ [0,∞] requires therefore a characterization of the common properties of

κρ,t for a given ρ ∈ [0, 1] and varying t. Such a characterization can be provided

in terms of the average proportion of firms in the rating classes.

First observe that for translation invariant rating distributions, the empir-

ical average of low-rated firms in the whole economy converges almost surely

to a random variable, i.e.

lim
n→∞

|Λn|−1
∑
i∈Λn

ξ(i) = ρ̄,

where Λn = [−n, n]d. In general, ρ̄ is not deterministic, but random. The

regimes κρ,t have the special property that ρ̄ is a.s. deterministic.

Corollary 3.2. Under the assumptions of Theorem 3.1, we can characterize

the behavior of ρ̄ as follows.

• The average proportion of low-rated firms ρ̄ is κρ,t-almost surely equal to

ρ for ρ ∈ [0, 1] and t ∈ [0,∞].

• For t ∈ [0,∞] the law of ρ̄ under µκ
t equals Q.

This result is a direct consequence of the ergodic decomposition: For er-

godic measures ν ∈ Me,ρ, ρ̄ is ν-almost surely constant and equal to the

parameter ρ. This property is invariant under the contagion dynamics, i.e. ρ̄

is µν
t -almost surely constant and equal to the parameter ρ for given ν ∈ Me,ρ

and for arbitrary t ∈ [0,∞]. Since each measure γρ (ρ ∈ [0, 1]) associated with

κ is concentrated on the ergodic measures Me,ρ, the behavior of ρ̄ under µν
t

is inherited by the mixtures κρ,t. Hence, the average proportion of low-rated

firms ρ̄ is κρ,t-almost surely equal to ρ for ρ ∈ [0, 1] and t ∈ [0,∞].

As discussed above, the rating distribution µκ
t can be interpreted as a

two-step random process where the regime κρ,t is chosen according to the

distribution Q. This implies that the law of ρ̄ under µκ
t equals Q, as stated

in Corollary 3.2. The law of the average number of low-rated firms in the

economy is preserved under the contagion dynamics; it is not changed through

the interdependence of firms. What interaction between firms changes is the

correlation between the ratings of different firms. For any finite number of

firms, the probability to find many firms in the same rating class is higher than
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in the case of independent firms; the equilibrium rating distribution exhibits

’heavy tails’.

Observe the following consequence for the equilibrium rating distribution

which is of particular importance: Asymptotically, the rating distribution µκ
∞

is a probability-weighted average of extremal invariant measures νρ of the voter

model; this mixture is governed by the distribution Q which is given by the

initial law of the average number ρ̄ of low-rated firms in the economy.

4 Aggregate Losses on Large Portfolios

In the previous section we modeled credit contagion phenomena induced by

the interdependence of firms and analyzed the weak convergence of the rating

process η and its distribution in equilibrium. In this section we consider the

aggregate losses associated with credit contagion phenomena. Throughout, we

suppose that the economy is in equilibrium, in the sense that the distribution

of firms’ ratings is invariant.

Consider a financial institution holding some portfolio of financial po-

sitions whose market value is subject to the credit quality of the issuer or

counterparty. Such positions can include not only loans, bonds, or other debt

instruments, but also derivatives written by default-prone counterparties. Due

to adverse changes in the credit quality of counterparties, for example credit

rating downgrades, the market valuation of the corresponding positions can be

severely reduced. Suppose the institution holds positions with firms i ∈ Λn ⊆
Zd, where Λn = [−n, n]d. The parameter n ∈ N determines the size of the port-

folio Λn. Risk measurement aims at evaluating the potential losses induced by

credit quality deterioration of firms in portfolio Λn at some fixed time horizon.

Denoting the losses on positions contracted with firm i ∈ Λn by the random

variable U(i), one is interested in the distribution of aggregate losses

Ln =
∑
i∈Λn

U(i). (10)

We make the following assumptions. Conditional on the rating r ∈ {0, 1} of

a firm, losses are independent. The conditional distribution Mr of losses with

respect to a firm having rating r depends only on r. We suppose that losses

are supported in a bounded interval on R+. We take Mr as given and let

lr =
∫

w Mr(dw) denote the expected loss caused by a firm of rating type r.

Clearly, for highly rated firms the probability of (large) losses is small relative

to firms in the low rating class. M1 is more concentrated on large values than

M0. Specifically, we might assume that M1 stochastically dominates M0, i.e.
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for all bounded increasing functions f : R+ → R:
∫

fdM1 ≥
∫

fdM0. We

however only suppose that l1 > l0.

Throughout, we will focus on the realistic situation in which the economy

exhibits a high degree of connectedness, i.e. the structure of inter-firm linkages

is quite complex and d > 2.

4.1 Deterministic Conditional Losses

We begin our analysis of aggregate portfolio losses Ln in this section under the

simplifying assumption that credit losses U(i) depend deterministically on the

rating class of firm i. Specifically, we simply set Mr = δr for r ∈ {0, 1}. This

implies that the institution suffers no loss from positions with highly rated

firms (where r = 0), and a loss of one unit of account from positions with

firms having the low rating (r = 1).

Let µ =
∫ 1

0
νρQ(dρ) be an equilibrium rating distribution. Consider the

average loss |Λn|−1Ln in portfolio Λn. By a law of large numbers,

lim
n→∞

Ln

|Λn| = ρ (11)

µ-almost surely, where ρ is random with distribution Q. That is, even with

deterministic conditional loss amounts not all loss uncertainty averages out.

There is still uncertainty concerning average portfolio losses which is governed

by the distribution Q. As discussed, only if the initial rating distribution is

a mixture of ergodic measures ν ∈ Me,ρ for some fixed ρ ∈ [0, 1] (or simply

Q = δρ), this uncertainty vanishes. Since

Ln

|Λn| =
1

|Λn|
∑
i∈Λn

U(i) =
1

|Λn|
∑
i∈Λn

ξ(i), (12)

in this case we can identify ρ µ-a.s as the average proportion of low-rated firms

in large portfolios when taking the limit n →∞ (we adopted this interpretation

already in Section 3).

It is important to observe that, due to the ergodicity of the measures

νρ, the average portfolio loss is not governed by the interaction of the firms,

but simply by the distribution Q. Let us compare this with the benchmark

case of independent firms having the same marginal rating distribution. If we

replace νρ by a product measure πρ of Bernoulli distributions with parameter

ρ and consider a rating distribution µ̂ =
∫ 1

0
πρQ(dρ), equation (11) still holds

µ̂-almost surely - despite the fact that contagion is not present any more. The

mixture µ̂ corresponds to an economy in which the ratings of individual firms

14



are not interdependent, but where the marginal probability of individual firms

to have a low rating is uncertain and distributed according to Q.

Let us return to the situation with contagion. We start with the special

case where Q = δρ for ρ ∈ (0, 1) and investigate the portfolio losses associated

with the extremal invariant credit rating distribution νρ. The case of general

Q is considered later.

Theorem 4.1. Let d > 2 and Q = δρ for ρ ∈ (0, 1). Suppose additionally that

Mr = δr for r ∈ {0, 1}. For large portfolios the law of the losses Ln can be

approximated by a normal distribution:

|Λn|− d+2
2d · (Ln − |Λn| · ρ) = |Λn|− d+2

2d ·
∑
i∈Λn

(ξ(i)− ρ) =⇒ N (0, σ2), (13)

where the limiting variance σ2 = σ2(d) is given by

σ2 = ρ(1− ρ) · γd · d
2d+3πd/2

· Γ
(

d− 2

2

)
·
∫

[−1,1]d

∫

[−1,1]d

1

‖x− y‖d−2
2

dxdy, (14)

where Γ is the Gamma-function and γ = γd is given by

1

γ
= (2π)−d

∫

(−π,π)d

(
1− 1

d

d∑
m=1

cos xm

)−1

dx. (15)

The loss distribution can uniformly be approximated:

sup
x∈R+

∣∣∣∣νρ(Ln ≥ x)− Φ

( |Λn|1/2ρ− |Λn|−1/2x

σ · |Λn|1/d

)∣∣∣∣ ≤ εn, (16)

where εn → 0 as n →∞, and Φ is the standard normal distribution function.

We emphasize that the re-scaling in (13) is non-classical. This is due to

the heavy tails in the equilibrium rating distribution, which result from the

contagion dynamics. Unfortunately, we are not able to provide bounds of Berry-

Esseen-type for the errors εn in (16), which would help to understand the speed

of convergence.

By inequality (16) the probability of a loss larger than x ∈ R+ can uni-

formly be approximated by the function

Ψd,ρ(|Λn|, x) = Φ

( |Λn|1/2ρ− |Λn|−1/2x

σ(d) · |Λn|1/d

)
, (17)

where |Λn| = (2n + 1)d is the size of the portfolio Λn = [−n, n]d. Heuristi-

cally, interpolation between sizes of the portfolios Λn allows us to define the

approximate loss probabilities larger than x ∈ R+ for portfolio size r ∈ R+ by

Ψd,ρ(r, x) = Φ

(
r1/2ρ− r−1/2x

σ(d) · r1/d

)
. (18)
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The interaction of the firms leads to strong correlations of the ratings of

different firms. We shall compare the results for the rating distribution νρ to

the benchmark case of independent firms which have the same marginal rating

distribution. That is, we will assume that the benchmark rating distribution

πρ of the firms is given by a product of Bernoulli measures with density ρ. If we

exchange νρ against πρ, we have to replace the normalization factor |Λn|− d+2
2d

in (13) simply by the usual |Λn|− 1
2 and use instead of the limiting variance σ2

the quantity ρ(1− ρ). The uniform approximation (16) becomes in this case

sup
x∈R+

∣∣∣∣∣πρ(Ln ≥ x)− Φ

(
|Λn|1/2ρ− |Λn|−1/2x√

ρ(1− ρ)

)∣∣∣∣∣ ≤ εn, (19)

where εn → 0 as n → ∞. For independent firms the speed of convergence to

the normal distribution can be bounded by the Berry-Esseen theorem (see e.g.

Theorem 4.9. and Remarks in Chapter 2 of Durrett (1996)):

εn ≤ 1 + 2ρ(ρ− 1)√
ρ(1− ρ)

· 1

(2n)d/2
. (20)

By inequality (19) the probability of a loss larger than x ∈ R+ can uniformly

be approximated by the function

Ψ̂ρ(|Λn|, x) = Φ

(
|Λn|1/2ρ− |Λn|−1/2x√

ρ(1− ρ)

)
. (21)

Again interpolation between sizes of the portfolios Λn allows us to define the

approximate loss probabilities larger than x ∈ R+ for portfolio size r ∈ R+ by

Ψ̂ρ(r, x) = Φ

(
r1/2ρ− r−1/2x√

ρ(1− ρ)

)
. (22)

For illustration, let us consider a portfolio of size r = 10.000 and a

marginal rating distribution with parameter ρ = 0.5, i.e. the marginal prob-

ability that a firm has a low rating is 0.5. In Figures 1 and 2 we plot the

approximate loss distribution for the benchmark case and the interaction case,

where for the latter case we vary the degree d of inter-firm connectedness.

As expected, in comparison with the independence case the loss distribu-

tion exhibits heavy tails when firms are inter-connected and credit contagion

phenomena are present. Put another way, firm interdependence leads to the

portfolio being more risky in terms of large losses: with interdependence, the

probability of exceeding a given loss amount above average losses is larger

than in the independence (benchmark) case. We observe that the degree of
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Figure 1: Probability of a portfolio loss exceeding a given

amount, varying the degree d of connectedness (r = 10.000

and ρ = 0.5).

differences in loss probabilities depends on the complexity of the economy’s

network structure: the lower the degree of inter-firm connectedness, the fatter

is the tail of the loss distribution. In this sense, the economy with the low-

est degree d of connectivity (here d = 3) induces the riskiest portfolios. The

higher d, the thinner the tail and the lower the likelihood of extreme losses.

The underlying idea of this effect was already stressed in Section 3.2: the more

complex the economy’s connectivity structure, the lower is the degree of firm

interaction (the lower is the probability of observing persistent and growing

clusters of firms of equal rating), and therefore the less likely is an extreme

loss in a large portfolio of firms. The appearing non-trivial equilibrium rating

distribution depends on the marginal credit risk ρ, and so does the loss dis-

tribution. The dependence of loss probabilities on ρ for a given d is shown in

Figure 3: the lower ρ, the lower is the likelihood of suffering extreme losses in

a large portfolio.

The approximate loss density for benchmark and interaction case (in de-

pendence of d) is shown in Figure 4. While in case Q = δρ all loss uncertainty

averages out in infinite portfolios (cf. (11)), for finite portfolios losses fluctuate

around r · ρ = 5000. Corresponding to our discussion above, with interdepen-

dent ratings losses fluctuate more excessively when compared with the bench-

mark case, where the degree of fluctuation decreases with increasing degree d

of connectedness.

Having investigated the loss distribution in the special case where Q = δρ
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Figure 2: Probability of a portfolio loss exceeding a given

amount, varying the degree d of connectedness (r = 10.000

and ρ = 0.5).

for ρ ∈ (0, 1), we now consider the case of general Q. In this situation the

invariant rating distributions µ are mixtures of the extremal measures νρ, which

we focused on in the special case (for a given ρ). Let µ =
∫ 1

0
νρQ(dρ) be an

equilibrium rating distribution. If Q puts positive mass on 0 or 1, all firms

have the same rating with positive probability. In order to avoid unnecessary

technical complications, we exclude these trivial cases as before and assume

Q({0}) = Q({1}) = 0. In this general case, the exact probability of a loss

larger than x ∈ R+ equals

∫
νρ(Ln ≥ x)Q(dρ).

In a large portfolio, the law of the losses Ln can be uniformly approximated

by a mixture of normal distributions:

Corollary 4.2. Let d > 2 and Mr = δr for r ∈ {0, 1}. The distribution of

portfolio losses Ln can uniformly be approximated, i.e.

sup
x∈R

∣∣∣∣
∫

νρ(Ln ≥ x)Q(dρ)−
∫

Φ

( |Λn|1/2ρ− |Λn|−1/2x

σ(ρ)|Λn|1/d

)
Q(dρ)

∣∣∣∣ ≤ εn, (23)

where the error bound εn → 0 as n →∞.

Based on this result, in close analogy to (18) interpolation between sizes

of the portfolios Λn allows us to define the approximate loss probabilities larger
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Figure 3: Approximate density of portfolio losses, varying the

marginal rating distribution ρ (r = 10.000 and d = 3).

than x ∈ R+ for portfolio size r ∈ R+ by

∫
Φ

(
r1/2ρ− r−1/2x

σ(ρ) · r1/d

)
Q(dρ).

Paralleling (22), in the benchmark case with independent firms the approxi-

mate loss probabilities can be defined by

∫
Φ

(
r1/2ρ− r−1/2x√

ρ(1− ρ)

)
Q(dρ), x, r ∈ R+.

In Figure 5 we illustrate the approximate density of portfolio losses in case

Q = 0.4δ0.3+0.6δ0.7. The portfolio size is again r = 10.000. In infinite portfolios,

according to the distribution Q average losses ρ = 0.3 with probability 0.4 and

ρ = 0.7 with probability 0.6. In finite portfolios losses fluctuate substantially

around 0.3 ·r = 3000 (with probability 0.4) and 0.7 ·r = 7000 (with probability

0.6), as prescribed by Q. In analogy to the (no-uncertainty) case Q = δρ

considered in Figure 4, interaction leads to more excessive fluctuations when

compared to the benchmark case, where the degree of fluctuation depends on

the connectivity structure of the economy.

4.2 Stochastic Conditional Losses

In this section we study the distribution of aggregate portfolio losses Ln in

the general case, i.e. without a particular assumption on the structure of the

conditional distribution Mr.
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Figure 4: Approximate density of portfolio losses, varying the

degree d of connectedness (r = 10.000 and ρ = 0.5).

In a fist step we consider the average losses in the portfolio Λn. Let

µ =
∫ 1

0
νρQ(dρ) again be an equilibrium rating distribution where the av-

erage number of low-rated firms in the whole economy is distributed according

to Q. The joint distribution of losses is given by the mixture

β(dw) =

∫ (⊗i∈ZdMξ(i)

)
(dw)µ(dξ), w ∈ RZd

.

As with deterministic conditional losses, by a law of large numbers we have

lim
n→∞

Ln

|Λn| = ρ(l1 − l0) + l0 (24)

β-almost surely. ρ is random with distribution Q governing the empirical aver-

age of low-rated firms in the economy. Due to the ergodicity of the measures νρ,

in infinite portfolios average losses do not depend on the interaction of firms.

Our next result shows that in large portfolios the quantiles qα(Ln) of the loss

distribution are essentially governed by the quantiles of Q.

Proposition 4.3. Let qα(Q) be the α-quantile of the distribution Q and assume

that the cumulative distribution function G of Q is strictly increasing at qα(Q),

i.e. G(qα(Q) + ε) > α and G(qα(Q)− ε) < α for every ε > 0. Then

lim
n→∞

qα(Ln)

|Λn| = qα(Q)(l1 − l0) + l0.

where lr is the expected loss on a position with a firm in rating r ∈ {0, 1}.

20



0 2000 4000 6000 8000
Loss Amount

0

0.001

0.002

0.003

0.004

0.005

L
os

s
D

en
si

ty
d=5
d=4
d=3
Indep.

Figure 5: Approximate density of portfolio losses, varying the

degree d of connectedness (r = 10.000 and Q = 0.4δ0.3 +

0.6δ0.7).

Frey & McNeil (2001) proved a similar result for exchangeable Bernoulli

mixture models, in which credit losses are conditionally independent given

some exogenous macro-economic factors. In this context the quantiles of the

given factor distribution (the mixing distribution) essentially determine the

quantiles of the loss distribution for large homogeneous portfolios. This has im-

mediate consequences for the degree of model risk in Bernoulli mixture models:

the tail properties of the chosen mixing distribution govern the tail properties

of the loss distribution. This very tail behavior is of central significance for

risk measurement and management, as it corresponds to a probabilistic assess-

ment of the scenarios with extremely large losses. Analogously, in our credit

contagion approach the tail properties of Q essentially govern the tail behavior

of aggregate losses in large portfolios, i.e. the extent of excessive fluctuations

of the losses L∞ in an infinitely large portfolio. Here model risk is associated

with the distribution Q.

Let us now again first focus on the case Q = δρ for ρ ∈ (0, 1), and inves-

tigate the distribution of the losses

β(dw) =

∫ (⊗i∈ZdMξ(i)

)
(dw)νρ(dξ), w ∈ RZd

.

Like in the case of deterministic conditional losses, for large portfolios the law

of the losses Ln can again be approximated by a normal distribution. For the
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expected loss we introduce the following notation:

m = (1− ρ) · l0 + ρ · l1.
From Theorem 4.1 we can derive the weak convergence of the losses in the

stochastic case:

Theorem 4.4. Let d > 2 and suppose that Q = δρ for ρ ∈ (0, 1). For large

portfolios the distribution of losses satisfies

|Λn|− d+2
2d · (Ln − |Λn| ·m) = |Λn|− d+2

2d ·
∑
i∈Λn

(U(i)−m) =⇒ N (0, (l1 − l0)
2 · σ2)

where the σ2 denotes the limiting variance (14). The loss distribution can uni-

formly be approximated, i.e.

sup
x∈R

∣∣∣∣β(Ln ≥ x)− Φ

( |Λn|1/2m− |Λn|−1/2x

(l1 − l0)σ · |Λn|1/d

)∣∣∣∣ ≤ εn, (25)

where εn → 0 as n →∞.

Based on inequality (25), interpolation between sizes of the portfolios Λn

allows us to define the approximate loss probabilities larger than x ∈ R+ for

portfolio size r ∈ R+ by

Φ

(
r1/2m− r−1/2x

(l1 − l0)σ · r1/d

)
.

This result corresponds to formula (18) which we obtained in the case with

deterministic conditional losses. In case of stochastic conditional losses the

limiting variance is multiplied by the factor (l1 − l0)
2 depending only on the

expected value of the loss distributions Mr, r ∈ {0, 1}. Because of the non-

classical re-scaling the random fluctuations of the distributions Mr are averaged

out in the normal approximation.

In analogy to Corollary 4.2, let us now extend our analysis of the loss

distribution to general invariant rating distributions µ, which are mixtures of

the extremal measures we have considered so far. The joint distribution of the

losses is given by the mixture

β(dw) =

∫ (⊗i∈ZdMξ(i)

)
(dw)µ(dξ), w ∈ RZd

.

Corollary 4.5. Let d > 2. For a large portfolio, the distribution of losses Ln

can uniformly be approximated:

sup
x∈R

∣∣∣∣β(Ln ≥ x)−
∫

Φ

( |Λn|1/2m− |Λn|−1/2x

(l1 − l0)σ(ρ)|Λn|1/d

)
Q(dρ)

∣∣∣∣ ≤ εn, (26)

where m = l0 · (1− ρ) + l1 · ρ and εn → 0 as n →∞.
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Compared with inequality (23), the approximate variance σ2(ρ) is mul-

tiplied by a factor (l1 − l0)
2 and the averages of low ratings ρ are replaced

by m, if conditional losses are stochastic. Qualitatively, the approximate loss

distributions behave very similar in both cases (23) and (26). It is interesting

to observe that the fluctuations of the distributions Mr around their means

are averaged out in the normal approximation; only the expectations enter the

inequality (26).

5 Conclusion

A thorough understanding of contagious credit quality deterioration, which

drives aggregated loss risk of portfolios of financial positions, is essential for the

regulation of financial institutions and the control of systemic risk in financial

markets. We model credit contagion phenomena and study the distribution of

aggregate credit losses on large financial portfolios.

The joint dynamics of firms’ credit ratings is modeled by a voter process.

We investigate the long-run behavior of the rating process, and find that the

structure of the equilibrium rating distribution depends on the complexity of

the inter-firm connectivity structure of the economy. While with a low degree

of connectivity the long-run rating behavior is trivial, with a high connectivity

degree this behavior becomes rich and complex. With increasing connectiv-

ity the degree of systemic risk decreases. We further analyze the equilibrium

rating distribution arising in a large homogeneous economy with a complex

connectivity structure. We find that the ratings are governed by a mixture of

extremal distributions. The mixing distribution corresponds to the distribu-

tion of the average number of low-rated firms in the whole economy, which is

a random quantity.

Considering losses on a portfolio of positions contracted with firms subject

to credit contagion, we find that asymptotically not all loss uncertainty aver-

ages out. Due to the randomness of the average proportion of low-rated firms,

average portfolio losses are asymptotically uncertain and governed by the mix-

ing distribution. We show that the mixing distribution essentially governs the

quantiles of the loss distribution.

As the key to the measurement and management of a portfolio’s aggre-

gated credit risk, we provide an explicit normal approximation of the loss

distribution of a large finite portfolio. As expected, this distribution exhibits

large fluctuations and ’heavy tails’ when firms are interdependent and credit

contagion phenomena are present.
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A Ergodic Decomposition

This appendix provides supplementary results and a proof of Theorem 3.1.

Let X = {0, 1}Zd
. By Me we denote the space of ergodic probability

measures on X endowed with weak topology. Let G be the Borel σ-algebra on

Me. We write Me,ρ for the subspace of Me of probability measures ν with

ν{ξ : ξ(0) = 1} = ρ ∈ [0, 1]. The theorem of Choquet states that any shift-

invariant probability measure on X can be represented as a mixture of ergodic

measures [Georgii (1988)]:

Theorem A.1. Let µ be a translation invariant probability measure on X.

Then there exists a probability measure γ on Me such that µ =
∫
Me

νγ(dν),

i.e. for all continuous functions f ∈ C(X) it holds that µ(f) =
∫
Me

ν(f)γ(dν).

The following theorem refines the statement of Choquet:

Theorem A.2. Let µ be a translation invariant probability measure on X.

Then there exists a probability measure Q on [0, 1] and a kernel

γ·(·) :

{ G × [0, 1] → [0, 1]

(A, ρ) 7→ γρ(A)

with γρ(Me,ρ) = 1 such that

µ =

∫

[0,1]

(∫

Me

νγρ(dν)

)
Q(dρ).

Q has the cumulative distribution function G given by

G(ρ) = γ{ν : ν{ξ : ξ(0) = 1} ≤ ρ}.

Proof of Theorem A.2. For ν ∈ Me define Y (ν) := ν{ξ : ξ(0) = 1}. Y is

measurable, since Y is continuous. Define F := σ(Y ). Let

γ(·|F)(·) :

{ Me × G → [0, 1]

(ν, A) 7→ γ(A|F)(ν)

be a regular version of the conditional probability, i.e. for fixed A ∈ G the

random variable γ(A|F) is G-measurable, and for fixed ν ∈Me γ(·|F)(ν) is a

probability measure.

For A ∈ G, γ(A|F) is σ(Y )-measurable. By Doob’s functional represen-

tation theorem there exists a measurable mapping γ·(A) : [0, 1] → [0, 1] such

that

γ(A|F)(ν) = γY (ν)(A).
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Since γ(·|F)(·) is regular, it follows that γ·(·) is a kernel.

For C ∈ G we have

γ(C) =

∫

Me

γ(C|F)(ν)γ(dν) =

∫

Me

γY (ν)(C)γ(dν)

=

∫

[0,1]

γρ(C)Q(dρ),

where Q = L(Y ; γ) = γ ◦ Y −1.

This implies for f ∈ C(X):

µ(f) =

∫

Me

ν(f)γ(dν) =

∫

[0,1]

(∫

Me

ν(f)γρ(dν)

)
Q(dρ).

Note that for ρ ∈ [0, 1] Me,ρ is measurable, since it is a closed set in Me. Then

for any ν ∈Me,ρ:

γρ(Me,ρ) = γY (ν)(Me,ρ) = γ(Me,ρ|F)(ν).

Observe now that
∫

Me,ρ

γ(Me,ρ|F)(ν)γ(dν) = γ(Me,ρ) =

∫

Me,ρ

γ(dν).

Hence, γρ(Me,ρ) = 1.

Finally, we have to show that Q has the cumulative distribution function

G:

Q((−∞, ρ]) = γ(Y ≤ ρ) = γ{ν : ν{ξ : ξ(0) = 1} ≤ ρ} = G(ρ).

This completes the proof.

Having proved this refined decomposition, we are now in a position to

prove Theorem 3.1 in the text:

Proof of Theorem 3.1. Let f ∈ C(X). Writing µξ
t instead of µ

δξ

t , we have

that

µκ
t (f) =

∫
µξ

t (f)κ(dξ)

=

∫ 1

0

(∫

Me

(∫
µξ

t (f)ν(dξ)

)
γρ(dν)

)
Q(dρ)

=

∫ 1

0

(∫

Me

µν
t (f)γρ(dν)

)
Q(dρ)
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Moreover, by the bounded convergence theorem

lim
t→∞

µκ
t (f) = lim

t→∞

∫ 1

0

(∫

Me

µν
t (f)γρ(dν)

)
Q(dρ)

=

∫ 1

0

(∫

Me

( lim
t→∞

µν
t (f))γρ(dν)

)
Q(dρ)

since |µν
t (f)| ≤ ||f ||∞ < ∞. Noting that limt→∞ µν

t (f) = νρ(f) on Me,ρ and

that γρ(Me,ρ) = 1, we have

lim
t→∞

µκ
t (f) =

∫ 1

0

νρ(f)Q(dρ),

which is our assertion.

B Normal Approximation

This appendix is devoted to the proof of Theorems 4.1 and 4.4 as well as Corol-

lary 4.2. We start by considering the escape probability γd.

Theorem B.1. Let Yn be a simple random walk on Zd with d ≥ 3. The escape

probability γd can be calculated by

γd =
1

J(d)
, (27)

where the quantity J(d) is defined by

J(d) = (2π)−d

∫

(−π,π)d

(
1− 1

d

d∑
m=1

cos xm

)−1

dx. (28)

Numerical values are given in the following table:

d J(d) γd

3 1.516386 0.659463

4 1.239467 0.806798

5 1.156308 0.864821

6 1.116963 0.895285

7 1.093906 0.914155

8 1.078647 0.927087

9 1.067746 0.936552
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Proof of Theorem B.1. The proof uses arguments from Chapter 3 of

Durrett (1996). We denote by τn the optional time of the nth return of Yn to

0. Note that P (τ1 < ∞) < 1 by the transience of the random walk. Hence, we

have

∞∑
m=0

P (Ym = 0) =
∞∑

n=0

P (τn < ∞)

=
∞∑

n=0

P (τ1 < ∞)n =
1

1− P (τ1 < ∞)
=

1

γd

.

Thus,

γd =

( ∞∑
m=0

P (Yn = 0)

)−1

It remains to be shown that

∞∑
m=0

P (Yn = 0) = J(d).

By φ we denote the characteristic function of one step of the random walk, i.e.

φ(x) = E(exp(ixY1)) =
1

d

d∑
j=1

cos xj

where the last identity follows from Euler’s formula. The independence of the

increments of the random walk implies that

φn(x) = E(exp(ixYn))

Since Yn is Zd-valued, we have the following simple Fourier inversion:

P (Yn = 0) = (2π)−d

∫

(−π,π)d

φn(x)dx

For r ∈ (0, 1), it holds that

∣∣∣∣∣
∞∑

n=0

rnφn(x)

∣∣∣∣∣ ≤
∞∑

n=0

rn‖φ‖n
∞ =

∞∑
n=0

rn =
1

1− r

By the bounded convergence theorem, we get

∞∑
n=0

rnP (Yn = 0) = (2π)−d

∫

(−π,π)d

1

1− rφ(x)
dx
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Observe that φ is a real function. The term

1

1− rφ(x)

is bounded between 0 and 1 if φ(x) ≤ 0, and increases to (1−φ(x))−1 as r ↗ 1

if φ(x) > 0. Hence, the monotone and bounded convergence theorem imply

that
∞∑

n=0

P (Yn = 0) = (2π)−d

∫

(−π,π)d

(
1− 1

d

d∑
m=1

cos xm

)−1

dx

In order to obtain the numerical values in the table observe that

J(d) = d · I(d; 1) = L(d; 1) + 1

where the functions I and L are defined and evaluated in Kondo & Hara

(1987).

Proof of Theorem 4.1. From Theorem 1 in Zähle (2001) we can derive the

following normal approximation result for the basic voter model in dimension

d > 2: Let p(i) be the transition probability of the first step of a simple random

walk starting at 0, i.e. p(i) = (2d)−1 if i = ±ej where ej is the jth unit vector,

j = 1, 2, . . . , d. Let Z = (Z1, . . . , Zd) be a random vector distributed according

to p. The second moments of Z are given by

Ql,k = E[ZlZk] =
1

d
δl,k,

where δl,k denotes the Kronecker symbol. Let Q = (Ql,k) be the matrix of the

second moments, and |Q| the determinate of Q. Since Q is invertible, we can

define the quadratic form

Q̄(x) = xT Q−1x.

Denoting the identity matrix in Rd×d by I, we get Q = 1
d
I, Q−1 = d · I, and

|Q| = d−d.

From a general result of Zähle (2001) for the linear voter model it follows

in the particular case of the basic voter model for any Schwartz function φ :

Rd → R that as r →∞

r−(d+2)/2
∑

i∈Zd

[ξ(i)− ρ] · φ
(

i

r

)
⇒ N (0, CρB(φ, φ)). (29)

Here B is the bilinear functional on the Schwartz space S given by

B(φ, ψ) =

∫

Rd

∫

Rd

φ(x)ψ(y)

Q̄(x− y)(d−2)/2
dxdy.
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The multiplicative constant Cρ is defined by

Cρ = ρ(1− ρ)
γ

2πd/2|Q|1/2
Γ

(
d− 2

2

)
,

where Γ denotes the Gamma function and γ is the escape probability of a

discrete time simple random walk in dimension d which starts in 0. It can be

shown that the result holds also if φ is chosen to be the indicator of a box, e.g.

φ = 1[−1,1]d .

Hence as n →∞ we get weak convergence,

|Λn|− d+2
2d

∑
i∈Λn

(ξ(i)− ρ) = (2n + 1)−
d+2
2

∑

i∈Zd

(ξ(i)− ρ)1[−1,1]d

(
i

n

)

⇒ N
(

0,
CρB(1[−1,1]d , 1[−1,1]d)

2d+2

)
.

In order to verify the approximation result (13), we have to calculate the

asymptotic variance. It follows that

B(1[−1,1]d , 1[−1,1]d) =
1

d(d−2)/2

∫

[−1,1]d

∫

[−1,1]d
‖x− y‖−(d−2)

2 dxdy,

Cρ = ρ(1− ρ)
γ

2πd/2 · d−d/2
· Γ

(
d− 2

2

)
.

It is now easy to see that

σ2 =
CρB(1[−1,1]d , 1[−1,1]d)

2d+2
, (30)

which proves (14).

Next we derive the uniform approximation (16). Since the distribution

function of the normal distribution is continuous, it follows from Exercise 2.6.

in Chapter 2 of Durrett (1996) that

sup
z∈R

∣∣∣∣∣νρ

(
|Λn|− d+2

2d (Ln − |Λn|ρ)

σ
≥ z

)
− Φ(−z)

∣∣∣∣∣ ≤ εn,

where εn → 0 as n →∞. Approximation (16) follows immediately, since

{Ln ≥ x} =

{
|Λn|− d+2

2d (Ln − |Λn|ρ)

σ
≥ |Λn|− d+2

2d (x− |Λn|ρ)

σ

}
.
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Finally, rewrite the last term in the last bracket:

|Λn|− d+2
2d (x− |Λn|ρ)

σ
=
|Λn|−1/2x− |Λn|1/2ρ

σ · |Λn|1/d
.

The escape probability γ = γd is calculated by Theorem B.1.

Proof of Corollary 4.2. The distribution of

|Λn|− d+2
2d

∑
i∈Λn

(ξ(i)− ρ)

under the measure νρ will be denoted by ςn
ρ . We define the quantity

δn
ρ := sup

n′≥n
sup
z∈R

∣∣∣∣ςn′
ρ ([z,∞))− Φ

(
− z

σ(ρ)

)∣∣∣∣ .

Inequality (16) implies that δn
ρ converges to 0 for all ρ ∈ (0, 1) as n →∞. Ob-

serve that ρ 7→ δn
ρ is measurable. For ε > 0 we can therefore define measurable

sets

An
ε = {ρ ∈ (0, 1) : δn

ρ < ε}.
Then An

ε ⊆ An+1
ε , and Q(An

ε ) ↗ 1 as n → ∞. Choose n0 large enough such

that

Q(An0
ε ) ≥ 1− ε.

Let ρ 7→ z(ρ) be a measurable mapping. Then for all n ≥ n0 we get
∣∣∣∣
∫ [

ςn
ρ ([z(ρ),∞))− Φ

(
− z(ρ)

σ(ρ)

)]
Q(dρ)

∣∣∣∣

≤ 2(1−Q(An
ε )) + sup

ρ∈An
ε

sup
z′∈R

∣∣∣∣ςn
ρ ([z′,∞))− Φ

(
− z′

σ(ρ)

)∣∣∣∣
≤ 3ε

Let x ∈ R be arbitrary, and let n ≥ n0. We can choose

z(ρ) = |Λn|− d+2
2d (x− |Λn|ρ).

It follows that for any x ∈ R and n ≥ n0 the following inequality holds
∣∣∣∣
∫

νρ(Ln ≥ x)Q(dρ)−
∫

Φ

( |Λn|1/2ρ− |Λn|−1/2x

σ(ρ)|Λn|1/d

)
Q(dρ)

∣∣∣∣ ≤ 3ε.

Proof of Theorem 4.4. This is a corollary of the normal approximation

results in the deterministic case. Define the function f : {0, 1} → {l0, l1}
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by f(0) = l0 and f(1) = l1. f is used to introduce the random variables

mi = f(ξ(i)), i ∈ Zd. It is easy to see that (13) implies

|Λn|− d+2
2d

∑
i∈Λn

(mi −m) ⇒ N (0, (l1 − l0)
2 · σ2). (31)

Denote now by (Xr,i)i∈Zd independent random variables with distribution Mr,

r ∈ {0, 1}. Then we can rewrite the renormalized losses as

|Λn|−
d+2
2d (Ln − |Λn|m) = |Λn|−

d+2
2d

∑

i∈Λn, ξ(i)=0

(X0,i −m0)

+ |Λn|−
d+2
2d

∑

i∈Λn, ξ(i)=1

(X1,i −m1)

+ |Λn|−
d+2
2d

∑
i∈Λn

(mi −m)

The last summand on the right hand side converges weakly according to (31).

The other two terms converge almost surely to 0; w.l.o.g. we will prove this

fact only for the first term, i.e.

|Λn|−
d+2
2d

∑

i∈Λn, ξ(i)=0

(X0,i −m0) = |Λn|−
d+2
2d

∑

i∈Λn, ξ(i)=0

(X0,i − l0). (32)

The random number of summands in (32) equals c(n) = |{i ∈ Λn : ξ(i) = 0}|
and is almost surely increasing to ∞ as n →∞. Theorem 8.7. of Chapter 1 in

Durrett (1996) implies for ε > 0 that

c(n)−1/2(log c(n))−(1/2+ε)
∑

i∈Λn, ξ(i)=0

(X0,i − l0) (33)

converges to 0 as n →∞. The last result can also be viewed as a consequence

of the law of iterated logarithm.

Now observe that for ε > 0 the sequence c(n) satisfies

c(n)1/2(log c(n))1/2+ε

|Λn| d+2
2d

≤ |Λn|1/2(log |Λn|)1/2+ε

|Λn| d+2
2d

=
(log |Λn|)1/2+ε

|Λn|1/d
.

The last term converges to 0 as n → ∞. This fact together with (33) implies

that the terms in (32) converge to 0 as n →∞.

Altogether we obtain for n →∞ the weak convergence,

|Λn|− d+2
2d · (Ln − |Λn| ·m) ⇒ N (0, (l1 − l0)

2 · σ2).

The uniform approximation (25) is obtained with the same arguments as in

the deterministic case.

Proof of Corollary 4.5. Analogous to the proof of Corollary 4.2.
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C Loss Quantiles

Proof of Proposition 4.3. First observe that, due to (24),

lim
n→∞

νρ

(
Ln

|Λn| − l0

l1 − l0
≤ a

)
=

{
1 , ρ < a

0 , ρ > a

Let ε > 0 and let G be the cumulative distribution function of Q. Then

lim sup
n→∞

µ
{
Ln − l0|Λn| ≤ |Λn|(l1 − l0)(qα(Q)− ε)

}

= lim sup
n→∞

∫ 1

0

νρ

{
Ln − l0|Λn| ≤ |Λn|(l1 − l0)(qα(Q)− ε)

}
dG(ρ)

≤
∫ 1

0

lim sup
n→∞

νρ

(
Ln

|Λn| − l0

l1 − l0
≤ qα(Q)− ε

)
dG(ρ)

≤
∫ 1

0

1(−∞,qα(Q)−ε](ρ)dG(ρ)

= G(qα(Q)− ε) < α,

where the last equality is strict by assumption. The first inequality follows

from Fatou’s lemma. Analogously,

lim inf
n→∞

µ
{
Ln − l0|Λn| ≤ |Λn|(l1 − l0)(qα(Q) + ε)

} ≥ G(qα(Q) + ε) > α.

Hence, for n large enough:

|Λn|(l1 − l0)(qα(Q)− ε) ≤ qα(Ln − l0|Λn|) ≤ |Λn|(l1 − l0)(qα(Q) + ε).

The claim follows from observing that qα(Ln − l0|Λn|) = qα(Ln)− l0|Λn|.
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