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1 Introduction

Credit risk refers to the risk of incurring losses due to changes in a counter-

party’s credit quality. Credit derivatives, which have become quite successful

over recent years, allow to isolate and trade that risk by providing a pay-

off upon a credit event arrival, such as rating downgrade, failure to pay, or

bankruptcy of the reference credit. Multi-name or basket credit derivatives

reference a basket of several credits. As such they provide a means to reduce

or gain the credit risk profile exposure associated with a pool of debt securi-

ties. Common structures include nth-to-default swaps, in which the contingent

payment is triggered by the nth default event out of a given basket of refer-

ence names. Other variations pay upon each of the first or last n credit events

out of a given list of names. More complex multi-name structured credit prod-

ucts include Collateralized Debt Obligations (CDOs), which involve prioritized

tranches whose cash flows are linked to the performance of a pool of reference

debt instruments.

In this paper we propose a model and a simulation algorithm for successive

correlated default events, which has direct applications in design, analysis, and

valuation of single and multi-name credit derivatives, credit derivatives signed

with defaultable counterparties, and structured credit products.

There are currently two approaches to the modeling of an individual de-

fault event. One approach, called the structural approach, takes as given the

dynamics of a firm’s asset value and defines default as the first time the value

of the assets falls to some lower threshold. In the second approach, called the

reduced form approach, the default event is given exogenously and its stochastic

structure is directly prescribed by an intensity, which can be interpreted as a

conditional default arrival rate. In general these two approaches are not consis-

tent with each other, since in the structural approach the default is typically

predictable and therefore does not admit an intensity. However, as recently

explored by Duffie & Lando (2001), Giesecke (2001b), and by Cetin, Jarrow,

Protter & Yildirim (2002) in a somewhat different setup, this dichotomy van-

ishes if one allows for incomplete observation of the firm’s assets and/or the

threshold asset level at which the firm is liquidated. This makes the structural

model not only more realistic and empirically more plausible, but also paves

the way for the existence of a default intensity. In fact, the above mentioned

contributions establish the intensity in terms of fundamental firm variables,

thereby providing a bridge between structural and reduced form approaches.

This paper generalizes the incomplete observation models of Duffie &

Lando (2001) and Giesecke (2001b) to the multi-firm case with correlated de-
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faults. As for the information structure, we assume that bond investors observe

the default events as they arrive over time, but have no information on a firm’s

assets and the threshold asset level at which the firm will be liquidated. This

basically leads to defaults becoming unpredictable, which is in accordance with

empirical observations. Specifically, credit spreads do not go to zero with ma-

turity going to zero, as implied by a complete information model. As for firm

interrelation, our model accommodates the effects of two distinct sources of

default correlation: dependence of firms on general (macro-) economic factors,

and direct inter-firm linkages such as parent-subsidiary relationships, trade

credits, or similar lending contracts. While the former finds its expression in

the well-documented cyclical behavior of aggregate default rates, the latter

typically leads to cascading effects, which involve the direct propagation of

financial distress from one firm to one or more other firms. Evidence of such

effects are the jumps in a firm’s credit spreads upon the default of some close

competitor or major stakeholder.

Cyclical effects are introduced through assuming that firms’ assets are

correlated through time, as in the two-firm complete information model of

Zhou (2001). Additionally to these cyclical default correlation effects, cascad-

ing effects are implied by the lack of complete information on fundamental firm

variables, as in Giesecke (2001a). Investors use the publicly available default

status information to constantly update the prior distribution they form on

the firms’ default threshold levels. This updating leads to information based

cascading : upon the unpredictable default of a particular firm in the market,

conditional default probabilities and spreads of closely linked firms jump im-

mediately up or down, reflecting the arrival of new and important information

which bears on the credit quality of the dependent firms. The size of the jump

depends on the extent of the relationship, whereas the sign depends on whether

the firms are positively or negatively related. The fact that such jump pattern

can actually be observed in bond markets allows to calibrate the model implied

cascading effects to market data.

In this multi-firm structural model with incomplete information, we ex-

plicitly characterize the pricing trend of successive correlated default arrivals

in terms of investors’ prior default threshold distribution and the distribution

of the assets’ running minimum (that is, the assets’ historic low). The inten-

sity is the density of the pricing trend; we provide sufficient conditions for the

existence of the intensity of the nth default arrival, and characterize these in-

tensities explicitly. Given this characterization, one can exploit the well-known

intensity based representations of prices of contingent claims with payoffs de-

pendent on the first, the second, etc., default arrival out of a given list of
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reference events. These tractable reduced form pricing relationships allow the

valuation of the multi-name credit derivatives and structured credit products

mentioned above. Another potential application of our results relates to the

analysis and valuation of contingent claims written by counterparties which

are itself subject to default, cf. the recent results of Jarrow & Yu (2001).

Based on the explicitly characterized default pricing trends, we provide

an algorithm for the simulation of successive, correlated, and unpredictable

default arrival times, which proves to be useful in the Monte Carlo based

valuation of more complex instruments. If compared to conventional methods

which involve the simulation of (correlated) jump-diffusion intensity paths, this

algorithm turns out to be quite computationally efficient.

The remainder of this paper is organized as follows. In Section 2, we

begin by discussing the instructive one-firm structural model with incomplete

information, which forms the basis for the subsequent analysis. In Section 3, we

consider the practically most relevant case of the first-to-default arrival, while

in Section 4 we extend to the general case of successive correlated default

arrivals. The specific modeling of default correlation is emphasized in Section

5. In Section 6, we discuss some parametric modeling examples in the first-

to-default context as well as some calibration procedures. Section 7 concludes.

The appendix contains the proofs.

2 Single-Entity Trend and Simulation

We begin in this section by a discussing the instructive single-entity case.

Subsequent sections extent to the general multi-entity situation.

2.1 A Structural Model of Default

We consider an economy where uncertainty is modeled by a probability space

(Ω,G, P ) equipped with a right-continuous and complete filtration (Gt)t≥0 de-

scribing the information flow over time. In risk measurement and management

applications, P is taken to be the physical probability; for derivatives valuation

purposes P is taken to be some risk-neutral probability.

Investors can invest in the bonds of a single firm (we will use the term

’bond’ as a generic term to denote the debt instruments of the firm, which may

not trade publicly). We take as given the dynamics of the firm’s asset value

V and assume that the firm defaults when the assets fall to some threshold D
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for the first time. That is, the firm’s default time τ is given by

τ = inf{t ≥ 0 : Vt ≤ D}, (1)

so that τ is a random variable taking values in (0,∞]. The associated default

indicator process is denoted N = (Nt)t≥0, where Nt = 1{t≥τ}.
Suppose for the moment that assets follow some continuous process and

that investors have complete information on assets and threshold. In this case

the default occurs never unexpectedly: Investors can observe at any time the

nearness of the assets to the default threshold level. Consequently, they are

warned in advance when a default is imminent.1 In practice, however, it is

typically difficult if not impossible to directly observe the assets of an issuer

and the threshold asset level at which the firm will be liquidated. This observa-

tion motivated the contributions of Duffie & Lando (2001), Giesecke (2001a),

Giesecke (2001b), and Cetin et al. (2002), who allowed for incomplete informa-

tion of public investors.2 We will follow this route and suppose that only the

firm’s default is a publicly observable event; the firm’s assets V and its default

threshold D are unknown to investors in the firm’s debt. We set accordingly

Gt = σ(Ns : s ≤ t).

In this situation investors are always uncertain about the nearness of the

assets to the default threshold, so that a default appears completely unex-

pectedly. In fact, below we will provide a sufficient condition under which τ

is a totally inaccessible stopping time in bond investors’ information filtration

(Gt).
3 This property is in accordance with empirical observations.

For unpredictable defaults we can establish tractable reduced form repre-

sentations of default probabilities and default-contingent claim prices in terms

of the corresponding pricing trend, cf. Giesecke (2001b). This is an increasing

function A starting at zero such that the difference process N − Aτ is a mar-

tingale. Here Aτ denotes the function A stopped at default: Aτ
t = A(t∧τ); this

process is called the default compensator. If the trend is absolutely continuous

1In this case τ is called predictable, i.e. there is an increasing sequence of stopping times
(Tn) such that τ > Tn and limn Tn = τ . Intuitively, one can foretell the default event by
observing a succession of ’forerunners’. We also say that (Tn) announces τ .

2Hull & White (2000) and Avellaneda & Zhu (2001) take the threshold to be an unknown
deterministic function of time and show how to determine this function from observed de-
faultable bond prices.

3The stopping time τ is called totally inaccessible or simply unpredictable, if P [τ = T <

∞] = 0 for all predictable times T . Here an announcing sequence does not exist.
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with respect to Lebesgue measure,

A(t) =

∫ t

0

λ(s)ds, (2)

then the density λ is called the intensity for τ . From (2) and the martingale

property of the process N − Aτ we find that

λ(t) = lim
h↓0

1

h
P [τ ≤ t + h | Gt] a.s. t < τ,

so that the intensity λ can be interpreted as a conditional default arrival rate.

Without loss of generality we normalize V0 = 0. The following basic result

characterizes the pricing trend in terms of the given prior distribution G(x) =∫ x

−∞ g(y)dy investors form on the default threshold D ∈ (−∞, 0) and the

distribution function H(t, ·) of the running minimum asset value Mt, defined

by

Mt = min{Vs | 0 ≤ s ≤ t}.

We assume that D is independent of V .

Proposition 2.1. Let H(t, x) be continuous in t for fixed x ≤ 0. Then the

pricing trend is given by

A(t) = − ln

(
1−

∫ 0

−∞
H(t, x)g(x)dx

)
.

If the derivative Ḣ(t, x) = ∂
∂t

H(t, x) is well-defined and uniformly bounded for

x ≤ 0, then the default time τ admits the unique intensity λ given by

λ(t) =

∫ 0

−∞ Ḣ(t, x) g(x)dx

1− ∫ 0

−∞ H(t, x) g(x)dx
on {t < τ}. (3)

Let us recall that the default time τ is totally inaccessible if and only

if the default compensator Aτ is continuous (see, for example, Dellacherie &

Meyer (1982, Theorem IV.78)). The continuity of the conditional distribution

function H(t, ·) of the running minimum asset value Mt in time t is therefore

a necessary and sufficient condition for the default to be unpredictable.

Example 2.2. Assume, in line with the majority of structural approaches,

that firm’s assets V follow a Brownian motion with drift µ ∈ R and volatility

σ > 0:

dVt = µdt + σdBt,
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where B is a standard Brownian motion. For x ≤ 0 and t > 0 we then have

for the distribution function of the running minimum asset value

H(t, x) = P [Mt ≤ x] = Φ

(
x− µt

σ
√

t

)
+ exp

(
2µx

σ2

)
Φ

(
x + µt

σ
√

t

)
, (4)

where Φ is the standard normal distribution function. It is clear that H(t, ·) is

continuous on (0,∞), so that the default is unpredictable with Brownian asset

dynamics. The derivative Ḣ(t, x) is given by

Ḣ(t, x) =
1

2σ

[(
µ√
t
− x√

t3

)
e

2µx

σ2 φ

(
x + µt

σ
√

t

)
−

(
x√
t3

+
µ√
t

)
φ

(
µt− x

σ
√

t

)]

where φ is the standard normal density function, so that τ admits the intensity

(3) with Brownian asset dynamics.

The intensity has an instructive interpretation: it constitutes the short

credit spread, i.e. the excess interest bond investors demand over the riskless

rate in compensation for assuming the risk of default of the bond issuer over an

infinitesimal time period. Proposition 2.1 shows that this excess short interest

is positive, which is in accordance with empirical data. This is in contrast

to the usual structural model with complete information, where the default is

predictable and such an intensity does not exist (indeed, here we have Aτ = N).

According to Proposition 2.1, the intensity can be calculated by uninformed

bond investors in terms of their prior belief on the firm’s default threshold

D as well as the distribution of the assets’ historic low Mt. In fact, under

the conditions of Proposition 2.1 the price of a zero-recovery defaultable zero

coupon bond, paying 1 at T if there is no default by T and zero otherwise, can

be represented in terms of A for t < τ and t ≤ T as

E[e−
R T

t rsds1{τ>T} | Gt] = E[e−
R T

t rsds+A(t)−A(T ) | Gt]

= E[e−
R T

t [rs+λ(s)]ds | Gt], (5)

where r is some bounded riskless short rate process and where we take our refer-

ence probability P be some risk-neutral probability. The right side of equation

(5) shows that the price of the defaultable bond can be calculated as if it were

default-free, by just using the default-adjusted short rate r+λ for discounting.

Analogous price representation results can be derived for general defaultable

claims; see, for example, Elliott, Jeanblanc & Yor (2000), Rutkowski (1999), or

Giesecke (2001b) (these contributions also provide reduced form price represen-

tations in terms of A if this function is merely continuous). Default probabilities

can be similarly characterized: on the set {t < τ} we have

P [τ ≤ T | Gt] = 1− eA(t)−A(T ) = 1− e−
R T

t λ(s)ds, t ≤ T. (6)
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2.2 Simulating the Default

In some complex valuation problems, estimation of security prices by Monte

Carlo methods may be unavoidable. One conventional method of simulating

the default in a structural model would consist of simulating a sample path

of V and an independent random variate d from G, and then recording the

paths’ first passage time to d. Besides the fact that path simulation for (jump-)

diffusion asset processes V might be burdensome for a large number of entities

over long time horizons, the discretization of V may lead to a biased Monte

Carlo price estimate. We now devise a default time simulation algorithm which

does not require the simulation of paths.

Taking the continuous increasing function A as given through Proposition

2.1, our basic idea is to construct an inaccessible stopping time δ such that

A(· ∧ δ) is its compensator. The resulting algorithm is in fact equivalent to the

standard inverse transform approach (cf. for example Devroye (1986)).

Basic Algorithm:

(1) Simulate an independent standard uniform random variable U .

(2) Set δ = inf{t ≥ 0 : A(t) ≥ − ln U}.

From Step (2) we obtain immediately

P [δ > t] = P [U < e−A(t)] = e−A(t) = P [τ > t], (7)

where the last equality follows from (6). This means that δ is equivalent in

distribution to τ , as desired.

In the intensity based reduced form credit risk literature, Step (2) of the

basic algorithm is in fact often used to define the default time δ associated

with some typically exogenously given intensity process h via

δ = inf{t ≥ 0 :

∫ t

0

hsds ≥ − ln U}, (8)

see, for example, Lando (1998), or Schönbucher & Schubert (2001). Proposition

2.1, where the intensity is calculated in terms of fundamental firm variables,

provides the economic rationale for this procedure in terms of an underly-

ing structural model of default. Definition (8) also provides immediately the

algorithm for default time simulation via simulation of intensity paths. How-

ever, for the very common (jump) diffusion models for h, this algorithm may
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be relatively computationally intensive. The basic algorithm we suggest here

avoids the simulation of intensity paths by directly considering the ”integrated

intensity” A, cf. (2).

3 First-to-Default Pricing Trend

We now extend our basic one-name setup to n correlated firms, where we focus

on the default event which arrives first out of a given list of events. This is

instructive and constitutes a practically most relevant case. We extend our

analysis to general successive defaults in Section 4.

3.1 A Multi-Firm Structural Model

Given the dynamics of its asset value V i satisfying V i
0 = 0, we assume that firm

i ∈ {1, 2, . . . , n} defaults when its assets fall to the threshold Di ∈ (−∞, 0) for

the first time:

τi = inf{t ≥ 0 : V i
t ≤ Di}, (9)

with associated indicator process N i. In analogy to the single-entity model,

investors observe the defaults of firms as they are arriving, but they have no

information on the firms’ assets and default thresholds. We thus set

Gt = σ(N i
s : s ≤ t, i = 1, . . . , n).

In lack of threshold information, investors form a continuous prior distribution

G on the threshold vector D = (D1, . . . , Dn) on Rn
−, which we take as given.

D is assumed to be independent of assets V 1, . . . , V n.

The ordered sequence of default times (τi) is denoted by (Ti). The following

result characterizes the first-to-default pricing trend in terms of G and the

density h(t, ·) of the running minimum asset vector Mt = (M1
t , . . . , Mn

t ), where

M i
t = mins≤t V

i
s (assuming that h exists).

Proposition 3.1. If the density h(t, x) is continuous in t for x ∈ Rn
−, then

the first-to-default pricing trend is given by

A1(t) = − ln

∫

Rn
−

G(x) h(t, x) dx. (10)

If additionally the derivative ḣ(t, x) = ∂
∂t

h(t, x) is well-defined and uniformly

bounded for x ∈ Rn
−, then the first-to-default time T1 admits the unique inten-
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sity λ1 given by

λ1(t) = −
∫
Rn
−

G(x) ḣ(t, x) dx
∫
Rn
−

G(x) h(t, x) dx
on {t < T1}. (11)

Again, the continuity of the running minimum asset density h(t, ·) is a

necessary and sufficient condition for the first-to-default time to be totally

inaccessible in bond investors’ information filtration (Gt).

Given the intensity, reduced form representations of general first-to-default-

contingent claims can be derived analogously to the single-entity case (5). In

particular, conditional first-to-default probabilities can be written as

P [T1 ≤ T | Gt] = 1− eA1(t)−A1(T ) = 1− e−
R T

t λ1(s)ds, t ≤ T, t < T1.

Let us compare our first-to-default intensity formula (11) with a related

result of Duffie (1998), who constructs an intensity of the first default as the

sum of the exogenously given single-entity default intensities λ(i, t):

λ1(t) =
n∑

i=1

λ(i, t), t ≥ 0, (12)

under the assumption that P [τi = τj] = 0 for all i 6= j. The surprising feature

of this result is that it does not require knowledge of the joint distribution of

the default times, once the single-entity intensities λ(i, t) are taken as given.

The key to this is the choice of the reference filtration (Gt). In Duffie (1998), the

λ(i, t) are defined with respect to the large filtration generated by the default

indicators N i for all i. That means that single-entity intensities directly reflect

the defaults of dependent firms as they arrive over time. Given some strong

kind of interdependence (perhaps some parent-subsidiary or similar contrac-

tual relationship), this would correspond to jumps in the single-entity intensity

upon defaults of dependent entities. However, the construction of such inten-

sities appears to be very difficult, and requires of course knowledge of the

complete default dependence structure. A first step in this direction has been

recently made by Jarrow & Yu (2001). If the intensities are only correlated

trough time within a diffusion setup, then one would ignore the information

on defaults of correlated firms which becomes available over time (defaults of

dependent firms do not feed back). That means that commonly applied dif-

fusion intensity models do not seem to be an appropriate basis for Duffie’s

(1998) result (12); it appears that this result is in fact only of limited applica-

bility. A similar conclusion, though based on different arguments, is drawn by

Rutkowski (1999).
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We circumvent these potential difficulties by constructing the first-to-

default intensity directly without reference to the single-entity intensity (3).

In our model, the latter is defined with respect to the (small) filtration gener-

ated by N i for a single fixed firm i only. Clearly, this intensity need not be an

intensity with respect to the large filtration (Gt), and therefore Duffie’s (1998)

result (12) and our result (11) are not consistent in general.

3.2 Simulating the First-to-Default

We now wish to simulate an unpredictable first-to-default stopping time δ1. Our

algorithm proceeds in two steps: Given the continuous increasing function A1

from Proposition 3.1, we first construct a stopping time δ1 having compensator

A1(· ∧ δ1). This proceeds as described in Section 2.2, and results in δ1 being

equivalent in distribution to T1. The second step is similar to the intensity

based algorithm of Duffie (1998), and consists of simulating the identity of the

first defaulter given δ1. For this step we define the identity density q1 by

q1(i, t)dt = P [δ1 = τi, δ1 ∈ (t, t + dt)]

= P [τi ∈ (t, t + dt), τj > t (j 6= i)].

Assuming that the partial derivative Gzi
(z1, . . . , zn) of G with respect to its

ith argument is well-defined and that each V i is continuous, using the fact that

{τi = t} = {Di = M i
t} we can express q1 in terms of the given Gzi

and h as

follows:

q1(i, t) =

∫

Rn
−

Gzi
(x) h(t, x) dx, i = 1, . . . , n, (13)

which differs from Duffie (1998) in the respect that we construct this density

directly without reference to the single-name intensities.

First-to-Default Algorithm:

(1) Simulate an independent standard uniform random variable U .

(2) Set δ1 = inf{t ≥ 0 : A1(t) ≥ − ln U}.
(3) Simulate the identity of the first defaulter, i.e. simulate a random variable

Ii valued in {1, . . . , n}, with the conditional probability given δ1 that

I1 = i (that is, T1 = τi) equal to

P [I1 = i |σ(δ1)] =
q1(i, δ1)

q1(1, δ1) + . . . + q1(n, δ1)
. (14)
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This algorithm appears to be computationally more efficient than ap-

proaches relying on the simulation of single-entity intensity paths to generate

unpredictable correlated default times via (8), as in Schönbucher & Schubert

(2001), for example. In the first-to-default context, an approach based on (8)

might be even more burdensome than in the single-entity context, as one might

have to simulate intensities of up to n entities in order to obtain a single first-to-

default time. The same type of criticism applies for simulation of first-to-default

times via the simulation of n individual firms’ first passage times (generate as-

set paths and default thresholds for each firm, and record the minimum of the

individual first passage times).

If the vector D can be easily simulated from G, then a further reduction

in computational expenses may be achieved as follows. Denote by H̄(t, x) =

P [Mt > x] for x ∈ Rn
− the joint survival function of Mt. Assuming that h(t, x)

is continuous in t, we get from Proposition 3.1 that

A1(t) = − ln H̄(t,D).

Likewise, we have for the first-to-default identity probability (13) that

q1(i, t) = −H̄zi
(t,D),

given that the derivative H̄zi
(z1, . . . , zn) = ∂

∂zi
H̄(z1, . . . , zn) is well-defined. De-

pending on the structure of H̄ and the ability to simulate D, by exploiting these

simpler expressions for A1 and q1 the efficiency of first-to-default simulation

may be improved for higher dimensions.

4 Successive Correlated Defaults

4.1 Pricing Trends

In this section we extend our first-to-default results to general successive cor-

related default arrivals. The setting is as in Section 3: the ordered sequence of

default times (τi) is denoted by (Ti). We denote by G the prior distribution

function of D and by h(t1, . . . , tn; ·) the density of (M1
t1
, . . . , Mn

tn) (assuming

that h exists). Let Gm and hm denote the m-dimensional marginal of G and

h, respectively, with respect to their first m arguments.

Proposition 4.1. Fix some k ≥ 2 and assume that the first default times

have identities Ii = i for 1 ≤ i ≤ k − 1. Assume that the partial deriva-

tive Gz1···zk−1
of G with respect to its first k − 1 arguments is well-defined. If
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h(τ1, . . . , τk−1, t, . . . , t; x) is continuous in t for x ∈ Rn
−, then the kth-to-default

pricing trend is given by

Ak(t) = − ln

∫
Rn
−

Gz1···zk−1
(x)h(τ1, . . . , τk−1, t, . . . , t; x)dx

∫
Rk−1
−

Gk−1
z1···zk−1

(x)hk−1(τ1, . . . , τk−1; x)dx
on {t > Tk−1}.

If the derivative ḣ(τ1, . . . , τk−1, t, . . . , t; x) = ∂
∂t

h(τ1, . . . , τk−1, t, . . . , t; x) is well-

defined and uniformly bounded for x ∈ Rn
−, then Tk admits the unique intensity

λk given by

λk(t) = −
∫
Rn
−

Gz1···zk−1
(x)ḣ(τ1, . . . , τk−1, t, . . . , t; x)dx

∫
Rn
−

Gz1···zk−1
(x)h(τ1, . . . , τk−1, t, . . . , t; x)dx

on {Tk−1 < t < Tk}.

Let us remark that the assumption Ii = i for 1 ≤ i ≤ k − 1 is chosen for

notational convenience only; for arbitrary identities of the first k−1 defaulters

the calculations are analogous.

In analogy to the single-entity case, using this result we can exploit conve-

nient and tractable reduced form representations of prices of claims contingent

on the kth default. Moreover, we can establish an algorithm for the simulation

of successive correlated default times, to which we turn next.

4.2 Simulating Successive Defaults

Simulation of m ≤ n successive correlated and unpredictable default times

δ1, . . . , δm is possible by iterating the first-to-occur algorithm. Given the con-

tinuous increasing function A1 provided by Proposition 3.1 with A1(t) = 0,

we start by constructing an unpredictable first-to-default stopping time δ1.

Conditional on δ1, subsequently the identity of the first defaulter is simulated.

Now we iterate this procedure: given the continuous increasing GT1-measurable

function A2 provided by Proposition 4.1 with A2(t) = 0 for 0 ≤ t ≤ δ1, we

next simulate the second-to-default time δ2 with identity, and so on.

For the successive-event algorithm, we fix some k ≥ 2 and let Rk denote

the set of surviving entities after the kth event arrival. Letting Zk = (δi, Ii)i≤k

be the first k simulated default times and their identities, we define the identity

density

qk(i, t)dt = P [δk = τi, δk ∈ (t, t + dt) |σ(Zk−1)]

= P [τi ∈ (t, t + dt), τj > t (j ∈ Rk−1 − {i}) |σ(Zk−1)].

In order to provide an example for the calculation of qk, let us assume that

the first k − 1 simulated default times have simulated identities Ii = i for

13



1 ≤ i ≤ k − 1 and that i = k ∈ Rk−1 (the calculations for arbitrary identities

are analogous). Then we can write

qk(k, t)dt = P [τk ∈ (t, t + dt), τk+1 > t, . . . , τn > t | σ(Zk−1)].

Assuming furthermore that the partial derivative Gz1···zk
of G with respect to

its first k arguments is well-defined and that each V i is continuous, by applying

Bayes’ rule for t > δk−1 we get

qk(k, t) =

∫
Rn
−

Gz1···zk
(x)h(δ1, . . . , δk−1, t, . . . , t; x)dx

∫
Rk−1
−

Gk−1
z1···zk−1

(x)hk−1(δ1, . . . , δk−1; x)dx
,

where, as in the previous section, Gm and hm denote the m-dimensional marginal

of G and h, respectively, with respect to their first m arguments.

Successive Event Algorithm:

(1) Initialize R0 = {1, . . . , n} and k = 1.

(2) Simulate an independent standard uniform random variable Uk.

(3) Set δk = inf{t ≥ 0 : Ak(t) ≥ − ln Uk}.

(4) Simulate the identity of the kth defaulter, i.e. simulate a random variable

Ik valued in Rk−1, with the conditional probability given the previous

defaulters and their identities (δi, Ii)i≤k−1 as well as δk that τi = Tk

equal to

P [Ik = i |σ(δk, Zk−1)] =
qk(i, δk)∑

i∈Rk−1
qk(i, δk)

.

(5) Set Rk = Rk−1 − Ik.

(6) If k = m then stop, else set k = k + 1 and go back to Step (2).

As described in the context of first-to-default simulation, the efficiency

of the successive-event algorithm might be further improved if one is able to

generate random samples of G easily (we shall comment on that in Section 6

below).
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5 Imposing Default Correlation

In the last section we have established the pricing trends of successive corre-

lated defaults in a multi-firm structural model with incomplete information.

This structural model allows for two natural and intuitive ways of incorpo-

rating correlation between individual firms. These “correlation mechanisms”

can be imposed simultaneously or alternatively, depending on what correlation

pattern is to be modeled, which data as a basis for estimation is available, or

simply on computational tractability.

Asset value correlation corresponds to cyclical default correlation effects

induced by the dependence of firms on common (macro-) economic factors. If,

as in Zhou (2001), one assumes that assets V follow an n-dimensional Brown-

ian motion, then this would formally be represented by the correlation matrix

(ρij)n×n, where ρij denotes the linear correlation between V i and V j. There are

well-known methods for estimating (ρij) from equity market data, see Keal-

hofer (1998) and Crouhy, Galai & Mark (2000) for more explicit comments.

Default threshold dependence corresponds to default cascading effects in-

duced by direct inter-firm linkages such as parent-subsidiary relationships or

mutual substantial capital holdings. The idea is as follows (Giesecke (2001a)).

It is reasonable to suppose that the default threshold Di of an individual firm

i is chosen by the firm’s management or shareholders so as to maximize the

value of their stake in the firm. This liquidation strategy is therefore not dis-

closed to firm outsiders such as investors in the firm’s debt; equity investors

will use that information in their own interest and transfer value from the bond

investors’ stake in the firm to their own. If firms are closely linked through a

parent-subsidiary or other contractual relation, then a firm’s equity investors

cannot choose their liquidation strategy independently from the strategy of

the equity investors of linked firms. Put another way, the liquidation strategies

of closely linked firms are based on common factors, for example profit sharing

agreements in the case of a parent-subsidiary relation. Public debt investors

anticipate these common factors in their corresponding prior distribution G

which they form on the default thresholds D1, . . . , Dn of the firms.

Investors use the default status information of the firms in the market to

constantly update their prior distribution G. The updating mechanism leads to

jumps in bond prices and credit spreads whenever unpredictable defaults arrive

(these are observed by investors only in the moment they occur). This can

be interpreted as information based cascading : upon a default of a particular

firm in the market, default probabilities and spreads of closely linked firms

jump immediately up or down, reflecting the arrival of new and important
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information which bears on the credit quality of the connected firms. The size

of the jump depends on the extent of the relationship, whereas the sign depends

on whether the firms are positively or negatively related. An analysis of these

cascading effects can be found in Giesecke (2001a).

6 Default Threshold Dependence

The effects of asset correlation on joint default probabilities in a Brownian

motion based first-passage framework with complete information have already

been examined in Zhou (2001). In this section we study the modeling and

estimation of default threshold dependence, which implies the cascading effects

in our setup of incomplete information.

6.1 Threshold Copula

Taking investors’ threshold prior in form of the joint distribution function G as

given, we can separate the threshold dependence structure from the marginal

behavior of the individual thresholds Di by means of the copula of G. In fact,

for any G we can find a copula function C : [0, 1]n → [0, 1] such that

G(x1, . . . , xn) = C(G1(x1), . . . , Gn(xn)), xi ≤ 0, (15)

where Gi is the distribution function of the default threshold Di of firm i (since

the Gi are continuous, the copula is unique). The copula is thus nothing more

than a joint distribution function with all marginals being standard uniform

(for more details we refer to Nelsen (1999)).

The motivation for introducing copulas is three-fold. First, the copula

describes the complete non-linear dependence between the random variables

D1, . . . , Dn, irrespective of their joint distribution type. Linear correlation, in

contrast, is only the natural measure of dependence for joint elliptical random

vectors, see Embrechts, McNeil & Straumann (2001) in that respect. Second,

copulas will allow us to examine the effects of dependence between thresholds

on joint default probabilities separately from effects induced by the distribution

Gi of the individual thresholds. Third, the problem of estimating G is divided

into two sub-problems: estimation of the marginals Gi, which correspond to

idiosyncratic factors, and estimation of the copula C, which represents common

threshold determinants which are due to the direct links between firms. We

will discuss the calibration of the threshold copula in Section 6.3 below.

A further advantage of introducing copulas is related to the proposed sim-

ulation algorithms. We have mentioned in Section 3.2 that the efficiency of sim-
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ulating successive default arrival times might be improved by first simulating

random variates from the threshold distribution G. In the copula framework,

this is easily achieved: given a realization (W1, . . . , Wn) from C, the vector

(G−1
1 (W1), . . . , G

−1
n (Wn))

has joint distribution G. For the generation of realizations from a copula sev-

eral efficient algorithms are available, see Embrechts et al. (2001) and Devroye

(1986). Lindskog (2000) provides specialized algorithms for families Cθ belong-

ing to the class of Archimedean copulas (the families discussed below belong

to this class, for example).

6.2 Parametric Copulas for First-to-Default Baskets

Having separated the default threshold dependence structure from their marginal

behavior, let us now examine the effects of threshold dependence for several

parametric copula families.

One of the most popular multi-name credit derivative structures is a first-

to-default swap, which pays upon the first default in a given basket of firms.

In response to this popularity, we shall focus our attention here on a first-to-

default basket with n = 5 names. As for the asset dynamics, we suppose that

issuers’ assets follow a standard Brownian motion. The density of Mt is then

given by h(t, ·) = h1(t, ·) · · ·h5(t, ·), where

hi(t, x) =
1

σi

√
t
φ

(
µit− x

σi

√
t

)
+ e

2µix

σ2
i

[
2µi

σ2
i

Φ

(
x + µit

σi

√
t

)
+

1

σi

√
t
φ

(
x + µit

σi

√
t

)]

is the density of M i
t , which is straightforwardly derived from (4). φ is the

standard normal density function.

We start by modeling the threshold dependence structure by the Clayton

copula family. As is not uncommon for first-to-default baskets, we suppose that

the correlation structure in the basket is symmetric. We can therefore choose

the one-parameter version of the Clayton family, which is given by

CC
θ (u1, . . . , u5) = (u−θ

1 + · · ·+ u−θ
5 − 4)−

1
θ , ui ∈ [0, 1], θ > 0. (16)

The parameter θ controls the degree of threshold dependence: θ →∞ reflects

perfect positive dependence, and θ → 0 corresponds to independence. The de-

gree of monotonic threshold dependence can be expressed in terms of Kendall’s

pairwise rank correlation ρK ∈ [−1, 1]. We have ρK = −1 iff the thresholds

are perfectly negatively related, ρK = 1 iff they are perfectly positively re-

lated, and ρK = 0 in case of independence. For the Clayton family we have
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Figure 1: Term structure of first-to-default survival probabili-

ties, varying rank threshold correlation.

ρK = θ/(θ + 2) (with θ > 0 ρK is positive as well and (16) expresses positive

dependence). Assuming that the default threshold of firm i has distribution

function Gi(x) = ex, from (15) the joint threshold distribution is

GC
θ (x1, . . . , x5) = (e−θx1 + · · ·+ e−θx5 − 4)−

1
θ , xi ≤ 0. (17)

In Figure 1, we plot the term structure of risk-neutral first-to-default

survival probabilities

L1(t) = P [T1 > t] =

∫

R5
−

GC
θ (x) h(t, x) dx

for varying degrees of rank threshold correlation ρK . We set µi = 6% (the

riskless rate) and σi = 20%, the average volatility of a conservative low-risk

S&P 500 firm. In terms of asset volatility, the firms in the basket are of high

quality, so that individual default probabilities are low. Positive threshold de-

pendence (ρK > 0) corresponds to positive dependence between firm defaults;

for an formal statement of the relationship between threshold copula C and the

copula of (τ1, . . . , τ5) as a measure of default dependence we refer to Giesecke

(2001a). For a given horizon T , L1(T ) is increasing in the degree of default

dependence. This effect is made more explicit in Figure 2, which shows L1(T )

for T = 12 months as a function of rank threshold correlation ρK for varying

asset volatilities σ = σi.

This observation can be explained as follows. Loosely, positive monotonic

threshold dependence as measured by ρK > 0 means that the default thresh-

olds of different firms are likely to cluster around a common level dictated by
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Figure 2: First-to-default survival probability as a function of

rank threshold correlation, varying asset volatility.

the marginals Gi (which are equal for all firms). In the extreme case ρK = 1,

we have Di = Dj almost surely (see Embrechts et al. (2001)). Even with un-

correlated assets, it follows that the likelihood of several firms’ assets hitting a

similar threshold level before a given horizon is higher than with independent

thresholds, where such a clustering is not present. Positive asset correlation

would increase that likelihood further. Thus, holding individual default proba-

bilities fixed, the higher the positive threshold dependence, the higher are joint

default probabilities, and the higher are survival probabilities of the first-to-

default. This can be most easily seen in case n = 2, where

L1(t) = 1− P [τ1 ≤ t]− P [τ2 ≤ t] + P [τ1 ≤ t, τ2 ≤ t]. (18)

The relation between survival probabilities and default correlation ob-

served here is consistent with the pricing of a first-to-default contract, which

pays off upon the first default in the basket. As with increasing default depen-

dence the survival probability of T1 increases, the payoff probability decreases,

and the contract price decreases. This relationship corresponds to the idea that

the stronger the positive dependence between the firms in the basket, the less

value the first-to-default contract’s hedging capability has for the holder of the

basket. Indeed, fixing firms’ individual default probabilities, positive default

dependence increases the likelihood of several firms defaulting before a given

horizon, but the contract covers the first default only. The price of the first-

to-default contract therefore reaches its maximum if the firms are perfectly

negatively dependent, i.e. in the case ρK = −1 for the thresholds, and its min-
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Figure 3: First-to-default survival probability as a function of

rank threshold correlation for different copula families (solid

line: Clayton, dashed line: Gumbel).

imum if firms are perfectly positively correlated, corresponding to ρK = 1 for

the thresholds.

So far we have examined the sensitivity of the survival probability with

respect to threshold dependence and asset volatility for the Clayton family.

The survival probability is however also sensitive to the choice of the family

itself. To study this, let us introduce the Gumbel family with parameter θ ≥ 1:

CG
θ (u1, . . . , u5) = exp

(− [(− ln u1)
θ + . . . + (− ln u5)

θ]
1
θ

)
, ui ∈ [0, 1]. (19)

The value θ = 1 corresponds to independence, while θ → ∞ reflects perfect

positive dependence. For the Gumbel family the pairwise rank correlation is

ρK = 1− 1/θ. With Gi(x) = ex, we have for the joint threshold distribution

GG
θ (x1, . . . , x5) = exp

(− [(−x1)
θ + . . . + (−x5)

θ]
1
θ

)
, xi ≤ 0. (20)

The choice of the copula family has indeed significant effects on the resulting

arrival probabilities. Figure 3 displays the (risk-neutral) 12 month first-to-

default survival probability L1(12) as a function of rank threshold correlation

ρK for both Clayton and Gumbel threshold copulas. The asset volatility σi is

set to 20% for all names. The differences in the survival probability for the

two families are due to their tail dependence properties. The Gumbel copula

exhibits upper tail dependence, which refers to the pronounced tendency of a

copula to generate high threshold values in all marginals simultaneously (for a

formal definition we refer to Nelsen (1999)). All else being equal, this implies
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in turn an increased likelihood of joint defaults, which leads to higher survival

probabilities L1(12) of T1, cf. (18). The Clayton copula exhibits lower tail

dependence, which leads to opposite effects. Consequently, for a given horizon

the first-to-default survival probability with the Gumbel threshold copula is

at least as high as with the Clayton copula.

If we have evidence for such particular default correlation pattern in our

basket, we can model them by choosing tail-dependent threshold copula fam-

ilies. In view of the uncertainty surrounding the choice of a copula family, if

such evidence is not available it seems reasonable to confine to families which

display asymptotic independence in both tails. A simple closed-form family

that satisfies this property is the Frank family, which is in the one-parameter

version for θ > 0 defined by

CF
θ (u1, . . . , u5) = −1

θ
ln

(
1 +

(e−θu1 − 1) · · · (e−θu5 − 1)

(e−θ − 1)4

)
, ui ∈ [0, 1].

For more families suitable for modeling the threshold copula, and methods to

construct copula families, we refer to Nelsen (1999).

6.3 Calibrating the Threshold Copula

In this section we discuss the parametric estimation of the threshold depen-

dence structure C. This is much more challenging than the estimation of asset

correlation, which is discussed in Kealhofer (1998) and Crouhy et al. (2000) in

some detail. Throughout, we fix some copula family Cθ with parameter vector

θ ∈ Rm, which we wish to estimate. We refer to Nelsen (1999) and Lindskog

(2000) for a wealth of families with different properties, and methods to con-

struct them. Durrleman, Nikeghbali & Roncalli (2001) discuss a strategy to

choose an appropriate copula family.

A first estimation strategy is based on the Diversity Score provided by the

rating agency Moody’s, cf. Jouanin, Rapuch, Riboulet & Roncalli (2001). The

Diversity Score is an attempt to rate the quality (the degree of diversification)

of the collateral asset pool of a Collateralized Debt Obligation. The basic

idea underlying the diversity score is to replace the original collateral portfolio

of n dependent issuers with a portfolio of d < n independent issuers with

identical default probability p(t) and identical notional of (n/d) times the

original notional. The size of the comparison portfolio d is chosen such that

the first two moments of the distribution of the number of survivors in these
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two portfolios,

n∑
i=1

1{τi>t} and
n

d

d∑
i=1

1{σi>t}, (21)

are equal for some fixed horizon t, say one year. The survival indicators 1{σi>t}
of the comparison portfolio are i.i.d. Bernoulli with success probability p(t).

The size of the comparison portfolio d is called the diversity score.

The mean matching procedure yields the equality

n∑
i=1

qi(t) = np(t) (22)

where qi(t) = P [τi > t] = 1− ∫ 0

−∞ Hi(t, x)gi(x)dx is the survival probability of

firm i, Hi(t, ·) is the distribution function of the running minimum asset value

M i
t , and gi is the density of the default threshold Di, which we assume to exist.

This survival probability corresponds to the structural model of Section 2.1.

Variance matching yields

n∑
i,j=1

(qij(t, t)− qi(t)qj(t)) =
n2

d2
(p(t)(1− p(t))), (23)

where qij(t, s) = P [τi > t, τj > s] is the joint survival probability of firms i and

j for j 6= i:

qij(t, s) =

∫ 0

−∞

∫ 0

−∞
Cij

θ (Gi(x), Gj(y))hij(t, s; x, y)dxdy, (24)

and qij = qi for i = j. Here, Cij
θ (ui, uj) = Cθ(1, . . . , 1, ui, 1, . . . , 1, uj, 1, . . . , 1)

is the bivariate copula of the default threshold vector (Di, Dj), Gk is the dis-

tribution function of the threshold Dk, and hij(t, s; ·, ·) is the density of the

running minimum asset vector (M i
t , M

j
s ), which we assume to exist. This bi-

variate survival probability corresponds to the structural model of Section 3.1.

Suppose we have estimated a model for individual assets dynamics, have

fixed distributions Gi for individual default thresholds, and are given the di-

versity score d for an underlying portfolio of n instruments from Moody’s.

Together with an appropriate assumption or estimate of asset correlation,

equations (22) and (23) allow to calibrate Cθ under the assumption that the

threshold dependence structure is bivariate and symmetric.

Another calibration procedure is based on the capacity of our model to

forecast default cascading or contagion effects: upon a default of some firm,
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credit spreads of closely associated firms jump up or down. This is a reflection

of the fact that suddenly appearing information is used by bond investors to

immediately re-assess the credit quality of associated firms. These cascading

effects are modeled through the dependence between the thresholds at which

individual firms default, cf. Giesecke (2001a).

In view of this, a reasonable strategy seems to be using the market-

observed price jumps in traded instruments to calibrate the threshold copula

Cθ. This analysis may also include quotes of suitable peer issuers. Instead of

using market prices, one can also use anticipated spread/price jumps. This al-

lows to calibrate the implied cascading effects to subjective beliefs of traders

in the underlying or associated credit derivatives on the underlying, allowing

to leverage traders’ unique and valuable experience. In fact, it is often more

intuitive to estimate the jump in spreads given certain default scenarios in the

market than to come up with an asset correlation estimate. This is in partic-

ular the case for names where the methods described in Kealhofer (1998) are

not applicable due to lack of appropriate equity data.

The procedure based on observed or anticipated default-induced price

jumps involves more effort than that based on Moody’s Diversity Score; it

hence seems more appropriate for smaller pools of issuers, such as those under-

lying basket credit derivative transactions. In order to outline this procedure,

suppose we are given the jump

∆j
i (t, T ), t ≤ T, j 6= i

in the time-t-conditional probability of survival of firm i by time T , if firm

j were to default at time t. Given appropriate assumptions on recovery rates

and riskless interest rates, ∆j
i (t, T ) can be backed out from quotes of traded

bonds maturing at T or credit swap spreads of firm i around the default of

issuers comparable to j. Another way is to calculate the jump in the survival

probability ∆j
i (t, T ) from the anticipated jump in bond prices or swap spreads

in the appropriate default scenario.

Let us consider the instructive case with n = 2 issuers. Using Bayes’ rule

we have for conditional default probabilities q1(t, T ) = P [τ1 > T | Gt]

q1(t, T ) =
q12(T, t)

q12(t, t)
on {T1 > t},

where T1 = τ1 ∧ τ2 and q12(t, T ) is the time-t conditional joint survival proba-

bility defined in (24), and, assuming sufficient regularity of h12,

q1(t, T ) =
∂
∂s

q12(T, s)|s=t

∂
∂s

q12(t, s)|s=t

on {T1 = τ2 = t}.
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For the jump in conditional default probabilities we therefore obtain

∆2
1(t, T ) =

∂
∂s

q12(T, s)|s=t

∂
∂s

q12(t, s)|s=t

− q12(T, t)

q12(t, t)
. (25)

Suppose we have estimated a model for individual assets dynamics, have fixed

distributions Gi for individual default thresholds, and are given the jump

∆2
1(t, T ). Together with an appropriate assumption or estimate of asset cor-

relation, equation (25) allows to calibrate Cθ under the assumption that the

threshold dependence structure is symmetric.

7 Conclusion

This paper generalizes the structural incomplete observation models of Duffie

& Lando (2001) and Giesecke (2001b) to the multi-firm case with correlated

defaults. Our approach accommodates the well-documented cyclical correlation

effects as well as default cascading effects. The latter are implied in our setup

by the incomplete information of investors.

We explicitly construct the pricing trend and the arrival intensity for the

first, second, etc. default in terms of fundamental firm variables, and we provide

sufficient conditions for the existence of that intensity. Based on the pricing

trend, we formulate a computationally efficient algorithm for the simulation of

successive, correlated, and unpredictable defaults.

The proposed model and the associated algorithm have direct applications

in design, analysis, and valuation of single and multi-name credit derivatives,

credit derivatives signed with defaultable counterparties, and structured credit

products.

A Proofs

Proof of Proposition 2.1. Let L(t) = P [τ > t] denote the survival func-

tion of τ . Noting the independence of D and V and that {τ > t} = {Mt > D},
we have

L(t) = P [Mt > D] = 1−
∫ 0

−∞
H(t, x)g(x)dx, (26)

It is a classic result, due to Dellacherie (1970), that the compensator of N is

given through Aτ = A(· ∧ τ) with

A(t) = −
∫ t

0

dL(s)

L(s−)
. (27)
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If H(t, x) is continuous in t for x ≤ 0, then the survival function L is continuous,

and we obtain from (27) and (26) that

A(t) = − ln L(t) = − ln

(
1−

∫ 0

−∞
H(t, x)g(x)dx

)
, (28)

which proves the first statement.

With our assumptions on H, Aven’s (1985) conditions are satisfied so that

there exists a λ given by (3) such that

A(t) =

∫ t

0

λ(s)ds,

and this yields the second statement. Since λ is a deterministic function of

time, it is predictable. This implies uniqueness, cf. Brémaud (1980).

Proof of Proposition 3.1. Let L1(t) = P [T1 > t] denote the survival

function of T1. Using the fact that {τi > t} = {M i
t > Di} and that D is

independent of V , we get

L1(t) = P [min
i

(τ1, . . . , τn) > t]

= P [M1
t > D1, . . . , M

n
t > Dn]

=

∫

Rn
−

G(x) h(t, x) dx. (29)

It follows from the results in Chou & Meyer (1975), that if L1 is continuous,

then the process AT1 = A1(· ∧ T1) given through

A1(t) = − ln L1(t) (30)

is the compensator of T1. This proves the first statement.

With our assumptions on h, Aven’s (1985) conditions are satisfied so that

there exists a λ1 such that

A1(t) =

∫ t

0

λ1(s)ds,

which yields the second statement. The uniqueness of the intensity follows from

the fact that λ1 is a deterministic function of time.

Proof of Proposition 4.1. For the kth arrival time Tk, we define the

GTk−1
-measurable survival function Lk by

Lk(t) = P [Tk > t |σ(Zk−1)], k ≥ 2, (31)
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where Zk = (Ti, Ii)i≤k and Ik ∈ {1, . . . , n} is the identity of the kth defaulter.

That is, Lk(t) denotes the conditional probability that the kth default is after

time t, given the arrival times and identities of the first k − 1 defaults. Note

that Lk(t) = 1 for all t ≤ Tk−1. If the first k − 1 default times have identities

Ii = i for 1 ≤ i ≤ k − 1, then with the definition of a default event in (9) we

get

Lk(t) = P [τk > t, . . . , τn > t |σ(τ1, . . . , τk−1)]

= P [Dk < Mk
t , . . . , Dn < Mn

t |D1 = M1
τ1

, . . . , D1 = Mk−1
τk−1

].

With an application of Bayes’ rule we obtain

Lk(t) =

∫
Rn
−

Gz1···zk−1
(x)h(τ1, . . . , τk−1, t, . . . , t; x)dx

∫
Rk−1
−

Gk−1
z1···zk−1

(x)hk−1(τ1, . . . , τk−1; x)dx

for t > τk−1.

Now we put Nt =
∑

i 1{t≥Ti} and consider the compensator of the point

process N . From the results in Chou & Meyer (1975), if Lk is continuous, then

the process AN given by

AN
t =

{ − ln L1(T1)− . . .− ln Lk(t) : Tk−1 ≤ t < Tk

− ln L1(T1)− . . .− ln Ln(Tn) : Tn ≤ t
(32)

is the compensator of the process N . This implies that the compensator of the

kth default indicator process Nk is given by ATk = Ak(· ∧ Tk) with

Ak(t) = − ln Lk(t), on {t > Tk−1}, (33)

which proves the first statement.

With our assumptions on h, Aven’s (1985) conditions are satisfied so that

for t > Tk−1 we get

Ak(t) =

∫ t

Tk−1

λk(s)ds

with

λk(t) = A′
k(t) = −L′k(t)

Lk(t)
= −

∫
Rn
−

Gz1···zk−1
(x)ḣ(τ1, . . . , τk−1, t, . . . , t; x)dx

∫
Rn
−

Gz1···zk−1
(x)h(τ1, . . . , τk−1, t, . . . , t; x)dx

,

which yields the second statement. Uniqueness of λk follows from the pre-

dictability of the mapping t → λk(t).
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