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ABSTRACT: There has been much recent interest in forecasting based on factor
analysis models for large numbers of observable variables (p) and large numbers of
observations (T). Some nice asymptotic results have been produced showing that
under certain conditions, as (p,T) → (∞, ∞) principal components analysis can be
used to carry out the forecasting, thereby avoiding the need to fit a full factor analysis
model. However, the question of how large p needs to be in order for the asymptotic
theory to provide an adequate approximation in practice is open. In this paper we
develop probability bounds for the forecast accuracy of principal component forecasts
for stationary processes in terms of an empirically determinable noise to signal ratio.
We develop a hypothesis test for this bound for which asymptotics in T hold even
with p large. We apply this test to US macrodata.
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Introduction

In this paper we consider forecasting with a factor model of the form

(1) t t tx Bf n= +
(2) t t ty f v′= β + t=1,..,T

where xt is a p×1 vector of observable variables which will be used as predictors of yt,
a scalar observable variable. ft is a k×1 vector of zero-mean unobservable factors, nt is
a p×1 vector of zero-mean unobservable ‘noise’ terms and vt is a zero-mean scalar
noise term. B and β are a p×k coefficient matrix and a k×1 coefficient vector
respectively, which are both unobserved. We will assume throughout that

t t kE(f f ) I′ = . A factor model of this type might be considered when the number of
predictor variables is relatively large, making more traditional forecasting models
such as VAR and regression less attractive or infeasible. 

It is well known that when ft and nt in equation (1) are serially uncorrelated and
Gaussian, and t tE(n n )′Ψ =  is diagonal, that B is identified only up to an orthogonal
transformation under some rank conditions. However, this lack of complete
identifiability is not a problem in forecasting applications. Heaton and Solo (2002)
show that when ft and nt are stationary Gaussian processes and nt has a diagonal
spectral density matrix, that B is identified up to sign changes and reordering of the
factors under fairly general conditions. When the covariance matrix of nt, Ψ is not
necessarily diagonal, identification is more problematic. Following Chamberlain
(1983) and Chamberlain and Rothchild (1983) such models are referred to as
approximate factor models1. For any approximate factor model given by equation (1)
if we define *B B=µ  and *

t t tn n (1 )Bf= + −µ , then * *
t t tx B f n= +  is an

observationally equivalent approximate factor representation of xt. Forni, Hallin,
Lippi and Reichlin (2000) have shown that under certain conditions which force only
the first k eigenvalues of Ω to diverge as p →∞ , the common component Bft is
asymptotically identified. However, for finite p, identification of the parameters is
clearly a problem.

There are at least three approaches that one might take to parameter estimation in the
above model. Firstly, one might assume a strict factor structure and use traditional
static factor analysis maximum likelihood estimation, as described by Lawley and
Maxwell (1971) and Jöreskog (1967), to estimate B and Ψ under Gaussian
assumptions. Factor estimates could then be produced and used to estimate β. In
practice, MLE procedures for static factor analysis are often plagued by improper
solutions,2 and a degree of finessing on the part of the user is often required to find a
set of estimates. However, using combinations of algorithms, the estimation of models
with well over one hundred variables is computationally feasible. 

                                                          
1 The more traditional factor models with a diagonal error covariance are referred to as strict factor
models.
2 ‘Improper solutions’ refers to iterations in which the estimate of an element of Ψ converges (slowly)
towards zero. Improper solutions in factor analysis are often referred to as Heywood cases.
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A more satisfactory model for forecasting might be constructed by specifying the
factors ft and the noise nt as finite-order autoregressions, maintaining the assumption
of strict factor structure. An estimation procedure for such a model, based on the
Kalman Filter, was detailed by Watson and Engle (1983) and has been used widely.
Camba-Mendez, Kapetanios and Smith and Weale (2001) used such a procedure to
estimate factors from sets of leading indicators. These were then incorporated in VAR
models to forecast European GDP growth. Unfortunately, the computational cost of
the Watson and Engle algorithm is high and increases in p3 making the estimation of
models with a large number of variables infeasible. However, Heaton and Solo (2002)
have derived an accelerated EM algorithm which is much more efficient and can
handle much larger data sets. Also, Kapetanios (2002) has derived a non-iterative
subspace algorithm which provides consistent estimates of factor model parameters.
Accordingly, the somewhat severe constraints on model size imposed by the Watson
and Engle algorithm are no longer binding. 

The third approach to estimation is to replace the unobservable factors in equation (2)
with the sample principal components of xt and to estimate β by ordinary least
squares. The idea that principal components and factors may be closely related is an
old one but only recently has some substance been put behind this suggestion.
Schneeweiss  and Mathes (1995) and Schneeweiss (1997) give easily interpretable
conditions under which population factors in a static exact factor model are close to
population principal components in some sense. Stock and Watson (1998) prove
under quite general conditions that the forecasts derived from regression on sample
principal components converge in probability to the mean-square efficient forecasts
that could be computed if ft was observable as p →∞  and T →∞  jointly, with a
restriction on the joint growth rates of p and T. In particular, their result holds for
approximate factor models. This may be important since the assumption that the
elements of nt are mutually independent becomes less believable as p gets large. Bai
and Ng (2002) prove consistent estimation of a transformation of the factor scores
under a less restrictive joint growth rate, and derive model selection criteria for
choosing the number of factors. Forni, Hallin, Lippi and Reichlin (2000) provide a
consistency theorem for a dynamic version of the model for which the factors are
estimated by the principal components of the estimated spectral density matrix. Stock
and Watson (1998) also carried out an extensive forecasting simulation using US
macrodata, which suggested that the principal components forecasting technique
performs well relative to small dimension regression and VAR.

The obvious attractions of the principal components technique to applied forecasters
are the relative ease with which the forecasts can be produced, the fact that an
optimality result exists to justify their use, and the fact that this optimality result
applies to the more general approximate factor model. All that is required to compute
forecasts is the computation of eigenvectors and the execution of a least squares
regression. Since such procedures are standard in most econometric and statistical
courses and software packages, specialist software and expertise are not required.
However, one must be concerned whether the asymptotic principal components
theory holds in any particular case. Of concern to us is the interpretation of the
theoretical requirement that p →∞ . Of course, this is a purely abstract concept. In
practice, p is a variable over which the analyst has limited control, and one must
wonder whether p is ‘large enough’ for the asymptotic principal components theories
to provide a satisfactory result in any particular application. Our aim then is to try to
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answer the question of when the ‘infinite-p’ results will provide a satisfactory
approximation in practice. It turns out that what seems to matter is not so much that p
be large but rather that the magnitude of the noise to signal ratio be small, where the

noise to signal ratio is defined as 
2

k

σρ =
λ

 where λk is the kth  eigenvalue of Ω, and 2σ

is the largest eigenvalue of Ψ. Schneeweiss (1997) has shown that the population
principal components of BB′ + Ψ converge to B as a slightly different noise to signal
ratio approaches zero3. We note that Bai and Ng (2002), Forni, Hallin, Lippi and
Reichlin (2000) and Stock and Watson (1998) all make assumptions that bound the
eigenvalues of Ψ but require the eigenvalues of BB′ to diverge, causing ρ to converge
to zero as p →∞ . However, we can demonstrate with simple examples that there is
no finite value of p which guarantees a small noise to signal ratio, and that a finite
increase in a finite value of p does not guarantee a reduction in the noise to signal
ratio. Consider first a factor model in which 2

pIΨ = σ  and denote the jth  eigenvalue

of BB′  as dj. Then 
2

2
kd
σρ =
+σ

. Thus, we can write down the noise to signal ratio

without needing to know p. In other words, it is always possible to write down a
(somewhat contrived) factor model with any finite value of p and a noise to signal
ratio close to unity4. The second example is a numerical one. Consider the following
two models.

Model 1:

0.5975
B 1.2106

0.7027

− 
 = − 
 − 

, 
0.8176 0 0

0 0.74558 0
0 0 0.4622

 
 Ψ =  
 
 

Model 2:

0.5975
1.2106

B
0.7027

0.3564

− 
 − =
 −
  
 

,

0.8176 0 0 0
0 0.74558 0 0
0 0 0.4622 0
0 0 0 0.9514

 
 
 Ψ =
 
  
 

Note that Model 2 is simply Model 1 with an extra variable added. It is easy to
compute the noise to signal ratio for Model 1 to be 0.2708 and for Model 2 to be
0.3011. Thus, in this case, increasing the number of variables in the model has raised
the noise to signal ratio, rather than reducing it as we might have hoped.

The objective of our research project is to derive a theory for factor model forecasting
for finite p and to understand when the asymptotic principal components
approximation is likely to be useful in practice. In what follows we define a

                                                          
3 More precisely the population principal components multiplied by a sign matrix converge to B scaled
by the eigenvalues of BB′.
4 It will become clear in the next section that a noise to signal ratio of 1 is very poor.
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theoretical ‘ideal’ forecast based on unidentified factors, and derive a probability
bound which links the ideal forecast to an identified forecast computed from principal
components. The size of this bound is related to the magnitude of the noise to signal
ratio. We discuss estimation of the noise to signal ratio and testing hypotheses about
its magnitude, and conclude with an empirical example using the Stock and Watson
(1998) data.

A Small Noise Theory of Factor Analysis

For the model given by equations (1) and (2) let t tE(x x ) BB′ ′= Ω = + Ψ and
2 2
t vE(v ) = σ . Let D be the k×k diagonal matrix of ordered eigenvalues of BB′ and U

be the corresponding p×k matrix of eigenvectors; let Λ be the k×k diagonal matrix of
the first k ordered eigenvalues of Ω and Q be the corresponding p×k matrix of
eigenvectors. ⊥Λ  and Q⊥  contain the remaining eigenvalues and eigenvectors. We
therefore have the spectral decompositions

BB UDU′ ′=  and Q Q Q Q⊥ ⊥ ⊥′ ′Ω = Λ + Λ .

We define 2σ  to be the maximum eigenvalue of Ψ. We then define the noise to signal
ratio to be

2

k

σρ =
λ

We define the ideal estimator of the factor to be 

1
2

Qt tf Q x
−

′= Λ ,

the ideal regression estimator to be 

T

Q Qt t
t 1

1 f y
T =

β = ∑

and the ideal forecast to be

Qh Q Qhs f′= β .

Replacing population parameters with sample estimates, we define the empirical
factor estimate, the empirical regression estimator and the empirical forecast to be

1
2

Qt t
ˆ ˆˆf Q x

−
′= Λ ,

T

Q Qt t
t 1

1 ˆˆ f y
T =

β = ∑ , and Qh Q Qh
ˆˆŝ f′= β
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We wish to investigate the properties of the ideal and empirical forecasts for finite p
and a given noise to signal ratio. It is also of interest to investigate the asymptotics of
these quantities as:

(I) T →∞ , ρ fixed;

(II) ( )1 , 0,0
T

 ρ → 
 

.

By the latter of these we mean the following.

Definition: We say p
T,Z 0ρ  →  as ( )1 , 0,0

T
 ρ → 
 

 if 0, 0 1∀ε > < δ ≤ ,

0T T( , )∃ = δ ε ∈ ` , 0 ( , )ρ = ρ δ ε ∈ `  such that 0T T>  and 0ρ < ρ

{ }T,P Z ρ⇒ > ε < δ.

The development of these asymptotics would help to link the small-p theory to the
infinite-p theory that already exists. This complete theory is still under development.

By the Markov inequality, { } T,
T,

E Z
P Z ρ

ρ > ε <
ε

. We will use this inequality to

obtain the desired results. Our approach proceeds in two stages; first we consider the
behaviour of an ideal forecast for which we obtain tight bounds and secondly we
consider the behaviour of an empirical deviation from that ideal. Consider first the
ideal forecast. We define the forecast deviation as

h Qh h Q Qh he s s f f′ ′= − =β −β

It seems natural to measure the quality of the ideal forecast by a non-dimensional ratio

h h

h

var(e ) var(e )
var( f )

=
′ ′β β β

however this proves to be somewhat tedious and is under development. For the
present purposes a simpler more rapid approach, but one which preserves the idea of
measuring the relative magnitude of forecast error variances is to consider instead the

first moment measure hE e
′β β

. We make the following assumptions.

Assumptions: 

1. 
T 1

t t j
j 0

E(y y )
−

−
=

< ∞∑ , 
T 1

t t j p
j 0

E(y x )
−

−
=

< ∞∑ t t p pE(x x ) ×′Ω = < ∞ ;

2. t t kE(f f ) I′ = , 2 2
t vE(v ) = σ , and t tE(n n )′ = Ψ  a positive definite matrix;

3. t tE(f n ) 0′ = , t tE(f v ) 0= , and t tE(n v ) 0= .
4. ft, vt and nt are Gaussian.
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Thus, our results apply to stationary Gaussian processes. Assumptions 2 and 3
are technically convenient but, since the model is not identified, do not restrict
the covariance of xt and yt. The assumption of Gaussianity may be easily
relaxed, but at the cost of some ease of interpretability.

We define 
2

2
2 2

v

r
β

=
β + σ

. Note that r2 is the proportion of the variance of yt that is

explained by the factors. Thus, it may be interpreted as the population analogue of the
R2 statistic from regression analysis. We also denote

T 1 T 1
t t j t i,t j

2 2 2ij 1 j 1t t it

E(y y ) E(y s )
sup

E(y ) E(y )E(s )

− −
− −

= =

γ = +∑ ∑

We then have the following.

Theorem 1: Under the above assumptions

h 2
2 2

E e 2k 2k k 1
r T r T
γ γ   ≤ ρ + + ρ +   ′β β    

Proof: See appendix.

In conjunction with the Markov inequality, Theorem 1 allows us to place a probability
bound on the difference between the principal component forecast and the ideal
forecast. For example,

Qh h 2
2 2

h

s s 2k 2P 1 k k 1
r T r TVAR(s )

 − γ γ     > ≤ ρ + + ρ +     
     

where the left hand side of the inequality is the probability that the principal
component forecast will deviate from the ideal forecast by more than one standard
deviation of the ideal forecast. In order for the ideal forecast to be reasonably close to
the theoretically optimal forecast, we need the noise to signal ratio to be fairly small
and the sample size to be reasonably large. Precisely how large the sample size needs
to be will depend on the magnitude of the autocovariances of the data and the
proportion of the variance of the forecast variable that is determined by the factors.
Furthermore, we can demonstrate that 

p
h Qh he s s 0= −  →  as ( )1 , 0,0

T
 ρ → 
 

.

Of additional interest is the asymptotic behaviour of the empirical forecast. This is far
more complicated and a complete theory is under development. However, the
following result is straightforward. We define the empirical forecast deviation to be 
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h Q Qh Q Qh
ˆˆê f f′ ′= β −β . We then have

Theorem 2: If the elements of Λ are distinct then, for fixed ρ and fixed p, p
hê 0 →

as T →∞ .

Proof: See appendix.

Thus, as T grows, the empirical forecast converges in probability to a forecast which
differs from the mean square efficient forecast by a known probability bound which is
related to the noise to signal ratio.

Measurement of the Noise-to-Signal Ratio

Given the above theory, measurement of the noise to signal ratio is a concern of some
practical importance. Since Ψ is not identified, the eigenvalue 2σ  and accordingly the
noise to signal ratio ρ are not identified. Thus, direct estimation of the noise to signal
ratio is not possible. However, it is possible to consistently estimate a lower bound on
the noise to signal ratio. Let 2

pIΦ = σ −Ψ. Then 2
pBB I′Φ + Ω = + σ . Note that 

2 2
j jeig ( )Φ = σ − σ , where eigj(.) denotes the jth ordered eigenvalue of its matrix

argument, so jeig ( ) 0 j 1,.., pΦ ≥ ∀ = . Thus, Φ is positive semi-definite. It follows
from Magnus and Neudecker (1991, p.208, Theorem 9) that

2
j p jeig (BB I ) eig ( )′ + σ ≥ Ω , i.e. 2

j jd j 1,.., p+ σ ≥ λ ∀ = . Since dk+1 = 0, 2
k 1+λ ≤ σ .

We therefore have that

k 1

k

+λ ≤ ρ
λ

This expression makes it clear that in order for the noise to signal ratio to be small, 
implying that the k-principal component forecast is close to the theoretical ideal
forecast, there must exist a large gap between the kth and (k+1)th eigenvalues of the
covariance matrix of predictor variables. This links asymptotic principal component
techniques to the traditional principal component literature. Obviously, this ratio of
eigenvalues may be consistently estimated by the corresponding ratio of sample
eigenvalues.

A hypothesis test of the magnitude of the lower bound of the noise to signal ratio may
be based on

k 1 k 1

kk

ˆˆf ( ) ˆ
+ +λ λλ = −

λλ



8

where ( )k 1 k+
′λ = λ λ  and ŵ  denotes a sample estimate of a population parameter w.

We assume that λk+1 and λk are distinct. It is well known that ( )ˆz T= λ −λ  is

asymptotically Gaussian. Since 
1
2fˆTf ( ) z O(T )

−∂λ = +
′∂λ

 it follows that ˆTf ( )λ

is asymptotically Gaussian. Furthermore, 
2

1k 1

k

2ˆVAR Tf ( ) O(T )−+ λ λ = +   λ 
 so

k 1 k 1

kk

k 1

k

ˆT
ˆ2ˆf ( ) N(0,1)

+ +

+

 λ λ− λλ λ = ⇒λ
λ

 as T → ∞ with p fixed, where ⇒ denotes

convergence in distribution.

From the previous section, as T → ∞  ( )Qh h

h

s s
P 1 k 1

VAR(s )

 − > ≤ ρ ρ + 
  

If we can choose a desired numerical bound for the above probability, which we
denote as α, then we may solve the equation ( )k 1α = ρ ρ +  to find a

corresponding bound for ρ, which we denote ρα. Since k 1

k

+λ ≤ ρ
λ

, we may test H0:

k 1

k

+
α

λ = ρ
λ

; H1: k 1

k

+
α

λ > ρ
λ

. Note that rejection of the null implies αρ > ρ . Some values

of ρ, k and α which solve the above equation ( )k 1α = ρ ρ +  are given in the table

below.

Table 1: Values of ρα 

kα
1 2 3 4 5 6

0.01 9.8E-05 4.93E-05 3.3E-05 2.48E-05 1.98E-05 1.65E-05
0.05 0.002277 0.001169 0.000788 0.000596 0.000479 0.0004
0.1 0.008392 0.004397 0.002996 0.002277 0.001839 0.001839
0.25 0.042893 0.023495 0.016375 0.012628 0.010302 0.008714
0.5 0.133975 0.076666 0.05473 0.042893 0.035416 0.030237

The table and histogram below show the results of a Monte Carlo simulation of this
test. We initially choose to set the number of observations to 100, the number of
variables to 5 and the number of factors to 2. We then raise the number of variables to
50, then to 200. We choose the first 3 population eigenvalues to be 100, 75 and 5. The
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remaining eigenvalues decay linearly to 0.001. Thus, k 1

k

0.0667+λ =
λ

. We conduct

5000 simulations of the test statistic for each model.

Table 2: Empirical and Theoretical Distributions of the Test Statistic (k=2, T=100,
5000 simulations)

Empirical Percentiles
p = 5 p = 50 p = 200

10% 0.155 0.9934 1
5% 0.095 0.98 1

Theoretical
Percentiles

(α)
1% 0.0334 0.9102 1

The elements in the table are the proportions of the empirical probability mass that lie above the critical value corresponding to
α. Thus, for example, the 5% critical value for a standard Gaussian distribution is 1.645, and the table shows that, for a model
with 5 observable variables, 0.095 of the empirical probability mass lies above 1.645.

p = 5

-4 -2 0 2 4 6
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80

100
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160

180

p = 50

0 2 4 6 8 10 12
0

20
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80

100
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160

180

p = 200

5 10 15 20 25
0
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80

100

120

140

160

180

It is clear in this example that the first order asymptotic approximation does not work
well and has a strong bias that increases in p, the number of observable variables. A
similar phenomenon has been previously noted in the literature. When testing for the
number of factors underlying returns of securities traded on the New York and
American stock exchanges, Dhrymes, Friend and Gultekin (1984) find that the
number of factors chosen by a standard test statistic based on eigenvalues increases
with the number of securities analysed in the model. Bai and Ng (2002, p.195) state
that it can be shown that all non-zero eigenvalues of a sample covariance matrix
increase with p and they claim that a test based on sample eigenvalues is not feasible.
However, neither of these papers offers a satisfactory explanation of this
phenomenon. In order to explain the deterioration in the test as p gets large, we need
to investigate the higher order asymptotics of the test statistic. Fujikoshi (1980) has
derived a general expression for the Edgeworth expansion of a function of the
eigenvalues of a sample covariance matrix which may be applied here. Not
surprisingly, the resulting expression is complex. However, we can present a simpler
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partial explanation of the failure of the test by restricting our attention to the first
moment of the test statistic. Taking a Taylor Series expansion of ˆf ( )λ  about λ yields

3
2k 1 k 1 2

k k 1 k k k 12 3 2
k k k k

21 1ˆTf ( ) z z z z z O(T )
T T

−
+ +

+ +
λ λλ = − − + +
λ λ λ λ

where zI is the ith element of z. Denoting vec(S)ϖ =  and vec( )ζ = Ω , a Taylor series
expansion of the jth sample eigenvalue is

( ) ( ) ( )
3

j j 2
j j j j p j j p j

i j j i

q q1 1ˆ q q h h I q q I q h O(T )
2TT

−

≠

 ′
 ′ ′ ′ ′λ − λ = ⊗ + ⊗ + ⊗ ⊗ +    λ −λ 

∑

where ( )h T= ϖ−ζ . Since pre- and post-multiplying a matrix by an orthogonal
matrix does not change its eigenvalues we can, without loss of generality, restrict

attention to the case where 
0

0 ⊥

Λ 
Ω =  Λ 

. This greatly simplifies the following

expressions. Using the above we have

( ) ijij 1
j j j

i j j i

M1ˆE(z ) TE O(T )
T

−

≠

= λ − λ = +
λ −λ∑

( )
12

2 2
j j j jjjj

ˆE(z ) TE M O(T )
−

= λ − λ = +

( )( )
1
2

j l j j l l jjll
ˆ ˆE(z z ) TE M O(T )

−
= λ − λ λ −λ = +

where 
T T T T

ijrs it jt it jt rt st rt st
t 1 t 1 t 1 t 1

1 1 1 1M E v v E v v v v E v v
T T T T= = = =

        = − −       
        

∑ ∑ ∑ ∑  and vwt

is the tth observation of the wth element of the p×1 vector of observations which has
been transformed to have the diagonal covariance explained above. We therefore have

i(k 1)i(k 1) 1k 1 ikik k 1
kkkk (k 1)(k 1)kk2

i k i k 1k k i k 1 i k kk

MM 21 1ˆTE f ( ) M M O(T )
T

+ + −+ +
+ +

≠ ≠ + +

 λ λ λ = − − + +   λ λ −λ λ −λ λ λλ  
∑ ∑

It is likely that the second term in the brackets in this expression would tend to be
large for large p. Since the smallest p-k eigenvalues are bounded above by λk+1 and
below by zero, if p is quite large then the smallest p-k eigenvalues may be quite close
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to each other. Consequently, the second summed term in the brackets would be the
sum of a large number of fairly large terms. 

There are at least three approaches that might be tried to circumvent this problem: a
Barlett-type adjustment that corrects for the T-1/2 term to give a statistic which is
better approximated by the standard normal density in finite samples; using an
Edgeworth expansion to give a better approximation of the density of the unadjusted
statistic; or judiciously redesigning the test to avoid the problem. We have had by far
the most success with the third of these approaches. It was shown previously that

2
j jdλ = σ +  for j = 1,..,p. Since dj = 0 for j k 1≥ +  it follows that

p
2

j k 1
j k 1

1
p k +

= +

λ ≤ λ ≤ σ
− ∑ . We therefore construct a test of H0: 

p

j
j k 1

k

1
p k = +

α

λ
−

=ρ
λ

∑
; H1:

p

j
j k 1

k

1
p k = +

α

λ
−

>ρ
λ

∑
. Note that rejection of the null implies ρ > ρα. 

Consider the statistic 
p

j k
j k 1

ˆ ˆ ˆT (p k)α
= +

θ = λ −ρ − λ∑ . A Taylor series approximation of

the expected value of θ̂  is

[ ]
3k 1

ijijikik 2

i k j 1 i kk i j i

MM1ˆE( ) 1 (p k) O(T )
T

− −

α
≠ = ≠

  θ = − −ρ − + + λ −λ λ −λ  
∑ ∑∑

Note that the denominators in the summed terms in this expression involve distances
from the first k eigenvalues only. Since under the null the distance between
eigenvalues k and k+1 is large, the summed terms are likely to be small even if p is
quite large. Thus, a test statistic based on θ̂  is less likely to suffer from bias problems
as p gets large. It is straightforward to show that 

p
2 2 2 2 1

k j
j k 1

ˆVAR( ) 2 (p k) O(T )−
α

= +

 
θ = ρ − λ + λ + 

 
∑ .

We therefore propose the test statistic

p

j k
j k 1

p
2 2 2 2

k j
j k 1

ˆ ˆ(p k)
T
2 ˆ ˆ(p k)

α
= +

α
= +

 
λ −ρ − λ 

 φ =
ρ − λ + λ

∑

∑

By an argument similar to that presented above, N(0,1)φ⇒  as T →∞  with p fixed.
We now conduct Monte Carlo simulations for this test that are similar to those
conducted for the previous statistic.
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Table 3: Empirical and Theoretical Distributions of the Alternative Test Statistic
(k=2, T=100, 5000 simulations)

Empirical Percentiles
p = 5 p = 50 p = 200

10% 0.1282 0.1264 0.0566
5% 0.0696 0.0728 0.0286

Theoretical
Percentiles

(α)
1% 0.0178 0.0256 0.0076

The elements in the table are the proportions of the empirical probability mass that lie above the critical value corresponding to
α. Thus, for example, the 5% critical value for a standard Gaussian distribution is 1.645, and the table shows that, for a model
with 5 observable variables, 0.095 of the empirical probability mass lies above 1.645.

p = 5
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While there is some evidence of skewness, the extreme bias in p that exists in the
original test statistic is not present in the alternative test statistic, even when p is very
large.

An Empirical Example

Stock and Watson (1998) have collected a large data set of variables describing the
US macroeconomy which they employ in a forecasting experiment using a factor
model. The interested reader is directed to their paper for a description of the data,
and to Mark Watson’s web site
(http://www.wws.Princeton.EDU/~mwatson/publi.html) for the data set. We follow
Stock and Watson in taking logs and/or differences or double-differences for some
variables. Following appropriate transformations the balanced panel contains 149
variables measured monthly from March 1959 to December 1998. These variables are
rescaled to a zero mean and unit variance.

The plot below shows the first 100 eigenvalues of the Stock and Watson data. 

http://www.wws.princeton.edu/~mwatson/publi.html
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Note that the first few sample eigenvalues drop sharply but the plot levels out after
that. It should also be noted that, when compared to the values in Table 1, the ratios

k 1 k
ˆ ˆ/+λ λ  are not of the appropriate order of magnitude to support an argument that

principal component forecasts are close to the mean-square efficient forecast.
However, it should be remembered that it is possible that these ratios are being
estimated with a substantial bias. In order to determine whether a near-efficiency
argument can be supported for this data set, we conduct the hypothesis test of the
previous section for factor models of orders 1 to 6. We choose values for ρα
corresponding to probability bounds of 5%, 10%, 25% and 50%. The results of the
tests are presented in the following table.

Table 4: Results of Test for Stock and Watson Data

K
ρα 1 2 3 4 5 6

0.05 72.9153 88.1466 92.2046 94.7054 96.3465 98.5772
0.1 38.8245 75.5352 88.07 92.0174 94.5692 96.5609
0.25 -2.7385 19.1625 49.8191 63.2659 74.4605 79.3342
0.5 -11.3836 -4.3701 8.6955 17.1004 27.5315 32.3147

Note that for a 1-factor model we cannot reject a probability bound of 0.25 and for a
2-factor model we cannot reject a probability bound of 0.5, using significance levels
of 5 per cent. For all other factor models and probability bounds we can strongly
reject the hypothesis about the probability bound. Based on these results we cannot
argue convincingly that principal component forecasts using the Stock and Watson
data are likely to be close to the theoretical mean-square efficient forecast.
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Conclusions

It is clearly the case that regressions on principal components of large numbers of
predictor variables has something to offer macroeconomic forecasters. What is less
clear is whether these forecasts are optimal, or whether a full factor analysis needs to
be carried out in order to generate efficient forecasts from large dimensional data sets.
We have produced a probability bound based on a noise to signal ratio which
indicates when principal component forecasts will be close to a mean-square efficient
forecast. We have also produced a test for the magnitude of this noise to signal ratio.
Our empirical results using the Stock and Watson data set apparently indicate that our
probability bound does not suggest that the principal component forecasts are near
optimal in this case. This raises the possibility that a full factor analysis might
produce superior forecasts.

Appendix

We define R U Q′=  and denote the largest eigenvalue of a matrix X by max (X)λ . The
proof of Theorem 1 will make use of the following lemmas.

Lemma 1: If x N(0, )Γ∼  and α and β are vectors of conformable dimension then
2 2 2E( x) ( x) 2( )′ ′ ′ ′ ′α β = α Γαβ Γβ+ α Γβ . The proof is elementary.

Corollary: 2var( x x) ( )′ ′ ′ ′ ′α β = α Γαβ Γβ+ α Γβ . Again, the proof is elementary.

Lemma 2: If t
t

t

w
z

u
 

=  
 

 is Gaussian and 
( j) ( j)

( j) w wu
t t j ( j) ( j)

uw u

E(z z )−

 Γ Γ′ = Γ =  Γ Γ 
, then using

Lemma 1, and the Cauchy-Schwarz inequality,

T T 1 T 1
(0) (0) ( j) ( j) ( j) ( j)

wu t t w u w u wu wu
t 1 j 1 j 1

1 2var(a S b) var a w b u a ab b a ab b a ab b
T T

− −
−

= = =

  ′ ′ ′ ′ ′ ′ ′ ′ ′= ≤ Γ Γ + Γ Γ + Γ Γ  
   
∑ ∑ ∑

where a and b are vectors of conformable dimension.

Corollary: 2 2 2
u v uv u vE( u) ( v) 2( ) 3′ ′ ′ ′ ′ ′ ′α β = α Γ αβ Γ β+ α Γ β ≤ α Γ αβ Γ β

Lemma 3: If Z is a random vector and ei is a k×1 vector of zeros but with a 1 in
position i, and M is a k×k constant, then

k k k
2

i i i i i
i 1 i 1 i 1

E(Z M MZ) E(Z M e e MZ) E(Z M e )(e MZ) E(e MZ)
= = =

′ ′ ′ ′ ′ ′ ′ ′ ′= = =∑ ∑ ∑

Lemma 4: Q (UDU )Q′ ′Λ = + Ψ
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Proof: Q Q (UDU )Q Q′Ω = Λ⇒ + Ψ = Λ . Premultiplying by Q′ gives the result.

Lemma 5: If 
1 1

12 2M D R R D− ′= Λ , then the eigenvalues of I M−  are equal to the

eigenvalues of 
1 1
2 2Q Q

− −
′Λ Ψ Λ .

Proof: The eigenvalues of I M−  are the solutions of
1 1

12 20 I (I M) ( 1)I M ( 1)I D R R D− ′= λ − − = λ − + = λ − + Λ

1 1( 1)I R R D ( 1)I I Q Q− −′ ′= λ − + Λ = λ − + − Ψ Λ  from Lemma 4

1 1
1 2 2I Q Q I Q Q

− −−′ ′= λ + Ψ Λ = λ + Λ Ψ Λ .

Lemma 6: The eigenvalues of 
1 1

22 2D R R D− ′Λ  are equal to the eigenvalues of
1 1R DR− −′Λ Λ .

Proof: The eigenvalues of 
1 1

22 2D R R D− ′Λ  are the solutions for λ of
1 1

2 2 1 12 20 I D R R D I R R D I R DR− − − −′ ′ ′= λ − Λ = λ − Λ = λ − Λ Λ

Proof of Theorem 1: Defining 
T

xy t t
t 1

1S x y
T =

= ∑ , the forecast deviation is 

1 1
12 2

h Q Qh h xy h h xy h h he f f Q S Q x f S Q Q(Bf n ) f
− − −

′ 
′ ′ ′ ′ ′ ′ ′= β −β = Λ Λ −β = Λ + −β 

 

a be e= +  where

( )1
a xy he S Q Q B f−′ ′ ′= Λ −β  and 1

b xy he S Q Q n−′ ′= Λ .

First consider eb. From the Cauchy-Schwarz inequality we have
1

b xy he S Q Q n−′ ′≤ Λ  and ( ) 22 21
b xy hE e E S Q E Q n−′ ′≤ Λ                        (A1)

We have that 2 2
hE Q n tr(Q Q) k′ ′= Ψ ≤ σ .                                                (A2)

Also

( ) ( )
k 221 2 1

xy xy xy i xy
i 1

E S Q E S Q Q S E e Q S− − −

=

′ ′ ′ ′ ′Λ = Λ = Λ∑  from Lemma 3
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( ) ( ) ( ) ( )
k k2 21 1 1 1

i xy i xy i xy i
i 1 i 1

var e Q S E e Q S var e Q S E e Q B− − − −

= =

   ′ ′ ′ ′ ′ ′ ′ ′= Λ + Λ = Λ + Λ β      ∑ ∑
(A3)

Now ( )
1 1k 21 2 22 2

i
i 1

e Q B BQ Q B D U Q Q UD− − −

=

′ ′ ′ ′ ′Λ β = β Λ β = β Λ β∑

( )
1 1

2 1 12 2
maxD R R D R DR− − −′ ′ ′= β Λ β ≤ β βλ Λ Λ  by Lemma 6

( )1 1
max

− −′≤ β βλ Λ ΛΛ  by Lemma 4
1

k
−′≤ β βλ                                                                    (A4)

Also, from Lemma 2

( )
k

1
i xy 1 2 3

i 1
var e Q S−

=

′ ′Λ ≤ ϒ +ϒ +ϒ∑  where

k
1 1 (0)2

1 i i y
i 1

2 e Q Q e
T

− −

=

′ ′ϒ = Λ Ω Λ σ∑

k T 1
1 1 ( j)2

2 i t t j i y
i 1 j 1

2 e Q E(x x )Q e
T

−
− −

−
= =

′ ′ ′ϒ = Λ Λ σ∑∑

k T 1
1 1

3 i t t j t t j i
i 1 j 1

2 e Q E(x y )E(y x )Q e
T

−
− −

− −
= =

′ ′ ′ϒ = Λ Λ∑∑

where ( j)2
y t t jE(y y )−σ = . We have that

( )(0)2 1 1 (0)2 1
1 y y k

2 2tr
T T

− − −ϒ = σ Λ ΛΛ ≤ σ λ

1 1k T 1
( j)22 2

2 i t t j i y
i 1 j 1

2 e E(s s ) e
T

− − −

−
= =

′ ′ϒ = Λ Λ σ∑∑  where 
1
2

t ts Q x
−

′= Λ  is the principal component

vector of xt. So

k T 1 k T 1 T 1
t t j ( j)2 ( j)2 1 ( j)2

2 y t t j y k y
i 1 j 1 i 1 j 1 j 1i i

E(s s )2 2 1 2E(s s )
T T T

− − −
− −

−
= = = = =

′
′ϒ = σ ≤ σ ≤ λ σ

λ λ∑∑ ∑∑ ∑  

 by Cauchy-Schwarz, and
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(0)2k T 1 k T 1 k T 1
y

3 it t j t i,t j it t j t i,t j t i,t j
i 1 j 1 i 1 j 1 i 1 j 1i i i

22 1 2 1 1E(s y )E(y s ) E(s y ) E(y s ) E(y s )
T T T

− − −

− − − − −
= = = = = =

σ
′ ′ ′ϒ = ≤ ≤

λ λ λ∑∑ ∑∑ ∑∑

      
(0)2 T 1
y 1

k t i,t j
i j 1

2
sup E(y s )

T

−
−

−
=

σ
′≤ λ ∑

so ( )
k T 1 T 1

1 ( j)2 (0) (0)2
i xy y y t i,t j y

ii 1 j 0 j 1k k

2 2var e Q S sup E(y s )
T T

− −
−

−
= = =

 
′ ′ ′Λ ≤ σ +σ = σ γ λ λ 

∑ ∑ ∑
(A5)

where 
T 1 T 1

t t j t i,t j
2 2 2ij 1 j 1t t it

E(y y ) E(y s )
sup

E(y ) E(y )E(s )

− −
− −

= =

γ = +∑ ∑

Equations A3, A4, and A5 yield

(0)2
2 y1 1

xy k

2
E S Q

T
− −  σ γ

′ ′Λ ≤ λ + β β  
 

which when combined with A1 and A2 yield

( )2 (0)22
b y
2 2

k

E e k 2 1
T

 σ γσ
 ≤ +
 λβ β 

.

We now consider ea. By the Cauchy-Schwarz inequality we have

( ) 2 22 21 1
a xy h xyE e E S Q QB E f kE S Q QB− −′ ′ ′ ′≤ Λ −β = Λ −β           (A6)

Now ( )
k 221 1

xy i xy
i 1

E S Q QB E e B Q Q S− −

=

 ′ ′ ′ ′ ′Λ −β = Λ −β  ∑  from Lemma 3

( ) ( )
k k 21 1

i xy i xy
i 1 i 1

var e B Q Q S E e B Q Q S− −

= =

   ′ ′ ′ ′ ′ ′= Λ −β + Λ −β   ∑ ∑      (A7)

but from Lemma 2
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( )
k

1
i xy 1 2 3

i 1
var e B Q Q S−

=

 ′ ′ ′= Λ −β ≤ ∆ + ∆ + ∆ ∑   where

k
1 1 (0)2

1 i i y
i 1

2 e B Q Q Q Q Be
T

− −

=

′ ′ ′ ′∆ = Λ Ω Λ σ∑

k T 1
1 1 ( j)2

2 i t t j i y
i 1 j 1

2 e B Q Q E(x x )Q Q Be
T

−
− −

−
= =

′ ′ ′ ′∆ = Λ Λ σ∑∑

k T 1
1 1

3 i t t j i t t j
i 1 j 1

2 e B Q Q E(x y )e B Q Q E(x y )
T

−
− −

− −
= =

′ ′ ′ ′ ′ ′∆ = Λ Λ∑∑

We have that

( ) ( )
(0)2 (0)2 (0)2
y y y1 1

1

2 2 2k
tr B Q Q B tr B B

T T T
− −σ σ σ

′ ′ ′∆ = Λ ≤ Ω ≤

1 1k T 1
( j)22 2

2 i t t j i y
i 1 j 1

2 e B Q E(s s ) Q Be
T

− − −

−
= =

′ ′ ′∆ = Λ Λ σ∑∑

let ( )
1
2

i i iv e B Q 0 ... 0 0 ... 0
−

′ ′= Λ = ν  then

k T 1 k T 1 k T 1
( j)2 2 ( j)2 2 ( j)2

2 i t t j i y i t t j i y i y
i 1 j 1 i 1 j 1 i 1 j 1

k T 1 k T 1 T 1
1 ( j)2 1 ( j)2 ( j)2

i i y y y
i 1 j 1 i 1 j 1 j 1

2 2 2v E(s s )v E(s s )
T T T

2 2 2ke BQ Q Be tr(B B)
T T T

− − −

− −
= = = = = =

− − −
− −

= = = = =

′∆ = σ = ν σ ≤ ν σ

′ ′ ′≤ Λ σ ≤ Ω σ ≤ σ

∑∑ ∑∑ ∑∑

∑ ∑ ∑ ∑ ∑

1 1k T 1 k T 1
12 2

3 i t t j t t j i i i t t j t t j
i 1 j 1 i 1 j 1

T 1
1 (0)

y t t j
i j 1

2 2e B Q E(s y )E(y s ) Q Be e B Q Q Be E(s y )E(y s )
T T

2 tr(B B) sup E(y s )
T

− −− − −
− − − −

= = = =

−
−

−
=

′ ′ ′ ′ ′ ′ ′ ′∆ = Λ Λ = Λ

′ ′≤ Ω σ

∑∑ ∑ ∑

∑

So

( )
k T 1 T 1

1 ( j)2 (0) (0)
i xy y y t t j y

ii 1 j 1 j 1

2k 2kvar e B Q Q S sup E(y s )
T T

− −
−

−
= = =

 ′ ′ ′ ′Λ −β ≤ σ +σ = σ γ ∑ ∑ ∑    (A8)
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Also ( )
k

1
i xy i

i 1
E e B Q Q S e (M I)−

=

 ′ ′ ′ ′Λ −β = − β ∑  where 
1 1

12 2M D R R D− ′= Λ

So ( )
k 21 2

i xy
i 1

E e B Q Q S (M I)−

=

 ′ ′ ′ ′Λ −β = β − β ∑ .

But 2 1 1M B Q Q Q Q B M− −′ ′ ′≤ Λ Ω Λ =  so 2
k(M I) (I M) M I− ≤ − ⇒ ≤

Therefore ( ) [ ]
k 2 21 2

i xy max
i 1

E e B Q Q S (M I) (I M)−

=

 ′ ′ ′ ′ ′Λ −β ≤ β − β ≤ β β λ − ∑
21 1

2 2
max Q Q

− −  
′ ′= β β λ Λ Ψ Λ  
   

 from Lemma 5

22

k

 σ′≤ β β λ 
                                                    (A9)

Combining (A6)-(A9) yields

( )2 2 (0)22
a y
2 2

k

E e 2kk
T

 σ γ σ ≤ +  λβ β  

Noting that 
2

k

σρ =
λ

 and 
2
y

2 2

1
r

σ
=
β

, combining the above results yields the result of

the theorem.

Proof of Theorem 2: Since the elements of diag(Λ) are distinct, it follows from the
implicit function theorem that there exist differentiable functions k 1h : N( ) ×Ω  →\
and p kg : N( ) ×Ω  →\  where N(Ω) is a neighborhood of Ω, such that h( )Λ = Ω  and
Q g( )= Ω . Since h and g are differentiable, they are continuous. Assume that Q is

subject to an appropriate normalization and consider the sequence { }T T p
S ∞

=
 where

T

T t t
t 1

1S x x
T =

′= ∑ . Since xt is Gaussian and g and h are continuous, the Slutsky Theorem

gives p
T

ˆ h(S )Λ =  →Λ  and p
TQ̂ g(S ) Q=  →  as T  →∞ . Thus

( ) p1 1
h Q Qh Q Qh yx h

ˆˆ ˆ ˆˆê f f S Q Q Q Q x 0− −′ ′ ′ ′ ′= β −β = Λ − Λ  →  as T  →∞ .
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