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Abstract 

 

This paper develops a common-factor model to investigate the cross-sectional relation 

of security returns, return volatility and trading volume. The model generalizes and 

outperforms the standard MDH model by capturing possible interaction effects among 

securities. Our model implies: (1) common factor structures stem from information flows; (2) 

cross-firm variations rely on a latent information variable and common factor structures; (3) 

common factor structures have no explanatory power in the positive relationship between 

volatility and volume. We fit the model for intraday data of Dow Jones 30 stocks using EM 

algorithm. The results support our specifications and show a 3-factor structure. 
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Commonality, Information and Cross-Sectional Return / Volume Interactions  

 

1. Introduction 

On a multi-security market where dynamic co-movements across assets are of 

interest, it is important to investigate cross-sectional return/trading volume interactions. 

However, to our knowledge, previous research has not established a unified framework in 

this area. On the one hand, common factor structures in returns and trading volume are 

examined isolatedly. While the study of common factors in stock returns based upon 

portfolio theory has been a classic theme in financial economics, the implication of portfolio 

theory for the cross-sectional behavior of equity trading volume is a new issue examined by 

recent study (e.g., Lo and Wang, 2000). On the other hand, theoretical work is separated 

from empirical work. For example, Caballe and Krishnan (1994) develop a theoretical model 

of insider trading to show that prices and order flows are governed by a common factor 

structure. However, there is no empirical evidence to support their model. On the contrary, 

when Hasbrouck and Seppi (2001) explore the relationship between the common factor 

structures in returns and trading volume for returns and order flows, they assume an 

empirical statistical model without any theoretical foundation.  

This paper is the first to unify these lines of research. We develop an empirically 

testable common-factor model from a unified framework of portfolio and market 

microstructure theories. The purpose of this study is to capture and interpret the commonality 

in returns and trading volume. Specifically, we examine the cross-sectional relationship of 

returns, return volatility and trading volume on a multi-security market.  Three key 

implications can be reached from our model: (1) the common factor structures in returns and 
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trading volume stem from information flows; (2) The cross-firm variations for returns and 

volume rely on both the underlying latent information variable and common factor structures; 

(3) The positive relation between return volatility and volume, on the other hand, results from 

the underlying latent information variable only. The common factor structures have no 

explanatory power in this positive relationship.  

Our model is a generalization of the standard Mixture Distribution Hypothesis 

(MDH) model developed by Tauchen and Pitts (1983). Motivated by the well-documented 

empirical finding that price volatility is positively related to trading volume, Tauchen and 

Pitts (1983; hereafter TP) derive a joint distribution of price changes and trading volume of a 

single stock from economic theory. Their derivation is based upon a variance-component 

assumption about the within-day revision of traders� reservation prices. The resulting joint 

distribution is very attractive in that it contains all relevant information underlying both price 

volatility and trading volume. However, the limitation of the standard MDH model lies in the 

fact that TP treat securities as isolated from each other. Obviously, this is not realistic for a 

multi-security market. To incorporate possible interaction effects among securities, we 

generalize the standard MDH model by introducing K common factor variance components 

into their model. These K common-factor variance components represent different 

characteristics of information�s effect (such as firm effect, market effect, etc.) on trading.  

Moreover, although our model is the same as Haubrouck and Seppi�s (2001) 

empirical model in terms of the form, there are two main differences. First, our model 

implies that common factor structures in returns and trading volume emerge from underlying 

latent information. In contrast, since Hasbrouck and Seppi�s model (2001) is only an 

empirical statistical model, it is theoretically incapable to uncover sources of common factor 



  3 
 

structures in returns and trading volume. Second, the common factors do not play a role in 

the price volatility-volume relationship in our model, whereas Hasbrouck and Seppi (2001) 

assume that the positive relationship between price volatility and trading volume extends to 

their respective common factor structures.  

The generalized dynamic model is estimated and tested for half-hour intraday data of 

Dow Jones 30 stocks. The empirical results confirm the specifications of our model. First, we 

find that common factors exist in our sample, using two different analytical techniques. The 

canonical analysis result shows that there are 3-factor structures in returns and trading 

volume. The estimated results, using EM algorithm, also show that: (i) 9 out of 30 stocks are 

affected by 3 factors; (ii) 9 out of 30 stocks are affected by 2 factors; (iii) 12 out of 30 stocks 

are affected by one factors. In other words, the largest number of common factors present in 

our sample is three. This is consistent with the canonical analysis result. All 30 stocks in our 

sample are influenced by at least one common factor. This demonstrates that our model is 

superior to the standard MDH model because the standard MDH model is a special case of 

our model without the presence of common factors. Second, we test the implication that the 

cross-sectional return-volume relationship is caused by the latent information variable. As 

predicted by our model, the test result illustrates that the return-volume relation disappears 

after the effect of the latent information is evened out. Finally, the result from further test 

(Lamoureux and Lastrapes 1994) on the source of the persistence in return variance is 

supportive of general specifications of MDH models. 

The paper is organized as follows. In section 2, we describe the model in more detail. 

Section 3 presents data analysis. Section 4 provides a brief summary. 
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2. The Common-Factor MDH Model 

2.1 The Market 

We deal with a market consisting of M securities. The market mechanism is the same 

as TP�s1. There are J traders who choose to trade a specific stock. Each time, traders will take 

a long or short position in one share of a stock. We make three assumptions: (1) J is large and 

fixed �within a fixed time interval D� (hereafter, we use �within-D� or �D-ly� to stand for it). 

(2) Traders can trade more than one stock and they are indifferent over stocks. (3) Traders 

have tendency to hold unchanged portfolios. This last assumption makes assumption (1) 

possible. Although it seems somewhat contradictory to the �indifference� assumption, the 

contradiction disappears if we think in the way that traders prefer a certain kind of portfolio 

just because they are more familiar with it. In other words, traders are indifferent over stocks 

in terms of the price of stocks, but they have preferences for which stock they choose to 

trade. 

The so-called �unchanged portfolio� is a portfolio with fixed components of 

securities. That is, people adjust their portfolio holdings by only changing the quantity of 

each stock in the portfolio. For example, if a trader chooses to trade both stock A and B when 

she enters the market, she will never trade any other stocks until she exits the market. Lo and 

Wang (2000) make a similar assumption about portfolio holdings when they derive the factor 

structure of trading volume. They assume that the proportion of each stock in the portfolio is 

constant. Comparing to their assumption, we will immediately find that our assumption is 

weaker because their assumption implies our assumption. That is, the violation of our 

assumption will lead to the violation of their assumption, but the converse is not necessarily 
 
 
1 Whereas Tauchen and Pitt (1983) pay their attention only on individual stock in isolation, we focus on the 
cross-sectional interactions among stocks. 
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true. For example, if people change the components of their portfolios, let�s say, if they 

exclude a stock from the portfolio or add one to the portfolio, the proportion of this stock will 

change from a positive value to zero or from zero to a positive value. 

We should mention that portfolio rebalance in our model does not arise for variance 

reduction or budget constraints in traditional CAPM or APT models. It is well known that 

information plays an important role in modern market microstructure theory. Trading and in 

turn price changes are induced by information releases. Hence, on a market of imperfect 

competitions (e.g., asymmetry information, different opinions about information, etc.), we 

assume that portfolio rebalance arises for strategic purposes. In this way, we can model price 

and volume dynamics under a unified framework of market microstructure and portfolio 

theories. 

 

2.2 The Model  

This section develops the model for a specific stock in the multi-security market. 

Suppose that there are I equilibrium phases within-D. The movement from one temporary 

equilibrium phase to the next is caused by the arrival of new information to the market. We 

adopt TP�s method to formulate prices and trading volume. Suppose that at the time of the (i-

1)st equilibrium, trader j�s reservation price and the market price are *
j,iP 1−  and 1−iP , 

respectively. Then the desired position j,iQ 1− of trader j and the resulting trading volume 1−iV  

are given by the following: 
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where c>0 is a constant. From (1), we know that if the stock is undervalued, i.e., the trader�s 

reservation price is higher than the market price, the trader will take a long position and 

j,iQ 1− will be positive. On the contrary, if the stock is overvalued, i.e., the trader�s reservation 

price is lower than the market price, the trader will take a short position and this will result in 

a negative j,iQ 1− . 

According to the equilibrium condition, 0
1

1 =∑
=

−
J

j
j,iQ , we can derive the following 

equality from (1): 
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which implies that the market price for the stock at the time of the (i-1)st equilibrium equals 

the average of the reservation prices of all traders. 

Now suppose that new information arrives at the market. Traders will change their 

reservation prices accordingly. After the information is completely assimilated into the 

market, the ith equilibrium reaches. Consequently, the market price change at the time of the 

ith  equilibrium and the associated trading volume can be respectively written as: 

 



  7 
 

∑=∆
=

J

j

*
i,ji P

J
P

1
∆1

 

∑ −=
=

J

j
i

*
iji PPcV

1
∆∆

2
 

(3) 

(4) 

 

where *
j,i

*
ij

*
ij PPP 1−−=∆  is the increment to trader j�s reservation price. 

TP assume a two-variance-component model for *
ijP∆ . One component is common to 

all traders trading the stock and the other is specific to an individual trader trading the stock. 

Since we are dealing with a multi-security market, we extend TP�s variance-component 

model by adding a third component ∑
=

K

k
ijkξ

1
. Furthermore, we add proportions to these 

components, i.e., each component results from only part of the information�s effect. Thus, we 

get 
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where, the component iφ  is common to all traders who choose to trade that stock, while the 

component ijψ  is specific to trader j trading that stock. Both components are normally 

distributed with mean zero, variances 2
φσ  and 2

ψσ , respectively. Both are mutually 

independent and independent across securities and through time. The third component, 

∑
=

K

k
ijkξ

1
, is common to at least more than one security in the market, but specific to a certain 

group of traders. We also assume that the distribution of each component ijkξ  is normal with 
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mean zero and variance 2
kξσ . All ijkξ �s are mutually independent and independent of other 

two components, iφ  and ijψ . In the equation, iα �s represent respective proportions for each 

component, and 1
0

=∑α
=

K

i
i . 

Before going further to the derivation of our model, it is necessary to interpret these 

three components in terms of information�s effect. From previous description, we know that 

the traders� reservation price changes are caused by the arrival of new information. 

Therefore, the first two components in equation (5) can be interpreted as the idiosyncratic 

effect of information on trading of a specific security, and the third component, ∑
=

K

k
ijkξ

1
, can 

be interpreted as the common effect of information on the trading of securities. Based upon 

the characteristics of the common effect of information (e.g., firm effect, market effect, etc.), 

the common variance component can be further classified into K categories. These are called 

K common factors and can be treated as the reason why traders change the quantity of their 

portfolios. 

Substitute (5) into (3) and (4), we get 
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Proposition 2.2.1: (i) The price change iP∆  is normally distributed with mean zero 

and variance σ∆P
2. (ii) For large J, the volume iV  is asymptotically normally distributed with 
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mean µ and variance σV
2. (iii) The price change iP∆  and trading volume iV  are stochastically 

independent. 

Item (i) and (ii) are evident (see TP�s proof). Item (iii) follows because: first, the 

component ( iφ ) common to all traders who choose to trade a certain stock has been 

eliminated in the generation of trading volume; second, the common factor components 

∑
=
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k
iki ξ ψ

1
 and   are independent of their respective deviations from means 
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==

K

k
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K

k
ijkiij ξ- ξψψ

11
  and  .  

Aggregating price changes and trading volume within the time interval D yields the 

following within-D price changes and volume: 
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Simplifying notations, we have the following equations: 
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where ( )K,...,i'sz'sz ii 0    and  21 =  are all standard normal. All z�s are all mutually 

independent, and independent of the number of information arrivals within the time interval 

D (denoted as I). We refer model (8) as a Common-factor MDH model. It can be 
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recognized that when K=0, i.e., there is no common factor present, model (8) is exactly the 

same as TP�s standard MDH model. 

2.3 Properties of the Model 

Using matrix notation, we generalize model (8) to M securities: 
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Both vectors of price changes and of trading volume are governed by three kinds of mutually 

independent variables: idiosyncratic variables (η and ε), common factor variables (G and F) 
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and mixing variables (Im,, m=1,2,...,M). Apparently, conditional on mixing variabls (the 

number of information arrivals), our model, with E(G)= E(F)=0 and Cov(G)= Cov(F)=I (I 

here is identity matrix), is exactly the same as Hasbrouck and Seppi�s (2001) empirical 

model. In addition, notice that we allow the mixing variable for each stock to be different 

from each other. Consequently, we do not require concurrent trading as Hasbrouck and Seppi 

(2001) do.  

Our model has properties described in the following propositions: 

 

Proposition 2.3.1: The rank of covariance matrix of ∆P and V is equal to the number 

of common factors K. 

Proof:  For )(P ηG +ϕ=∆ , we have η∆PG −=ϕ . Treat η∆PG −=ϕ as linear 

systems in G. If there exist K common factors, i.e., G has a unique solution, then 

G has full column rank K. Similarly, rank(θ)=K. According to Matrix Algebra 

Theorems, since .IGFFG)F)(GF(G =′′=′′ , then ( ) K rank =′FG . Thus, 

rank( FG ′ϕ )=K, and consequently, rank( θFG ′′ϕ )=K .                                                    

                                                                                                                              Q.E.D. 

 

This is a very useful property. Based upon this property, even though we don�t know the joint 

distribution of (∆P,V), we can still determine the number of common factors through 

canonical analysis. 
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Proposition 2.3.2: The cross-sectional interactions among price changes and those 

among trading volume depend upon both underlying latent information and common factor 

structures. 

Proof:  
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where subscripts i, j index stocks. 

Q.E.D. 
 
 
 

Proposition 2.3.3: Price volatility is positively related to trading volume as long as 

mixing variables show variation or positive covariation. 

 
 Proof:  
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where subscripts i, j index stocks.                                                                        Q.E.D. 

 

Clearly, in our model, the relationship between price volatility and trading volume depends 

only on the underlying latent information. The common factors do not play a role in this 

relationship. This is different from Hasbrouck and Seppi�s (2001) empirical model, where 

they assume that the positive relationship between price volatility and trading volume 

extends to their respective common factor structures. 

 

2.4 Estimation of the Model 

In general, for each stock, the resulting model (8) is a mixture model. Since price 

changes and trading volume conditional on I are independent, their joint distribution 

conditional on I is a bivariate Gaussian mixture that can be written in the following form: 
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To estimate the parameters of model (9), we use EM algorithm (Dempster, Laird, and Rubin 

(1977)). Suppose there are n observations. To apply EM algorithm, the key thing is to 

introduce a (K+1)-dimensional vector of indictor variable Z=(z1, z2, ... , zn). The 

unobservable random variable zt  can be defined by 
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where z1,..., zn are independently and identically distributed according to a multinomial 

distribution consisting of one draw on (K+1) categories with probabilities 0α ,..., Kα , 

respectively. Then we have the distribution of Zt as 
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Since both Z and I are unidentifiable variables, we treat Z as missing data and I as a 

parameter, and then we begin the E-step by estimating Z. 

E step: Suppose ( )jjjjj ,,, µλβα=δ  and jI  denote the current guess of parameter δ  and 

I, where ( )00000 µλβα=δ ,,,  and 0I  are initial values of δ and I. Then E-step requires the 

calculation of  
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equivalent to estimating ( )jj I,,V,PZ δ∆E . With known parameters jδ  and jI , and the observed 
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M step: There are two steps in the M-step. First, the Q function is maximized with 

respect to δ , i.e., 
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Then we get the estimated parameter 1+δ j , 
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Second, to extract an estimated I process conditional on the estimated 1+δ j , we adopt 

Lamoureux and Lastrapes�s (1994) method to minimize the sum of the standardized squared 

deviations of squared returns and volume from their means for each fixed time interval. 

Lamoureux and Lastrapes (1994) conduct a simulation to show that their extraction 

procedure is effective. It would be more efficient to use the maximum likelihood estimation 

method (MLE) by incorporating all observations if we assume the distribution of the 

unobserved information flow. However, there are two reasons that prevent us from doing 

this. First, �the theory in its pure form puts no restrictions on the intertemporal behavior of 

the information flow variable� (Andersen 1996, pp. 187-188); second, although empirical 
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work shows the autocorrelation in the information flow variable and hence suggest some 

time series models (e.g., ARMA, EARMA, SARV or ESARV, etc.) for the dynamic 

specifications of the information flow variable, �the computational burdens are 

insurmountable� (TP, pp. 500-501). Nevertheless, �the autocorrelation is probably a very 

weak threat to the statistical validity of the results� (TP, pp. 501) as long as the sample size is 

large. 

Lamoureux and Lastrapes�s (1994) method relies on the fact that the level of squared 

returns and volume are related by the mixing variable I. Let 
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Separately, for t=1,...,n, 1+j

tI  can be obtained by minimizing the following conditional 

moment criterion: 
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The E-step and M-step are iterated until ( ) ( )    11 jjjjjjjj I,I,QI,I,Q δδ−δδ ++  is sufficiently 

small. 

Having arrived at the estimated parameter δ� , one can potentially evaluate 

 
( )

δ
δ∂

∆δ∂
−

�

V,PI,plog
2

2

 

 

However, this is difficult to evaluate in practice. Meilijson (1989) suggests a numerical 

differentiation method: perturb δ�  by adding a small amount ε > 0 to one coordinate and 

evaluate the score function of the complete data set at the perturbed parameter δ~ . The ith 

row of the Hessian is approximately equal to: 

 

( ) ( )[ ]δ∆−δ∆
ε

�I,V,PS~I,V~,P~S   1  

 
 
where ( )I,V,PS ∆ is the score function of the complete data set. 

Thus far, we only estimate the parameter δ and I. There still remains one parameter 

unestimated: the number of components K+1. This is not easy to estimate by the EM 

algorithm, because it does not appear in the linear form in Q.  To choose the number of 

groups (K+1), we use the Bayes information criterion (BIC) : 

 

BIC=−2log(maximized likelihood)+4(K+1)log(n) 
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where n is the number of observations, and there are 4(K+1) independent parameters 

estimated. The criterion favors models with small BIC values. 

 

3. Data Analysis 

3.1 Data 

The sample includes 30 stocks in Dow Jones Industrial Averages from April 1 to 

June 30, 1998. Hasbrouck and Seppi (2001) restrict their attention to the 30 Dow Jones 

stocks for two reasons: (1) to increase the possibility to detect common factors because of 

indexation; (2) to mitigate the non-concurrent problem because the Dow Jones 30 stocks 

are actively traded stocks. As we mentioned in previous section, non-concurrent trading 

will not be the problem in our model. Thus, we select the Dow Jones 30 stocks only for the 

first reason of Hasbrouck and Seppi (2001). The source of transaction data is NYSE Trade 

and Quote (TAQ). Each trading day from 9:30 a.m. to 4:00 p.m. Eastern Standard Time is 

evenly divided into 13 half-hour intervals. We use midquote at the beginning and the end 

of each interval to compute the log return for each stock at that interval. Volume is 

represented by dollar volume. To avoid the potential problem of stale quotes at the market 

open, transaction data for the first 3 minutes of trading are excluded. We also delete the 

observations with zero price changes, and observations with overnight price changes and 

trading volume. This leaves a final sample of 688 half-hour observations for each 

individual stock.  

Table 1 provides means and standard deviations of returns and volume for each of the 

30 Dow Jones stocks over the entire sample period. The means of returns range from 

−0.056% to 0.0183%. McDonald (MCD) has the largest mean return, which is 0.0183%, 
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whereas Philip Morris Cos. (MO) has the smallest mean return, -0.056%. The means of the 

dollar volume range from $36,901.6 to $502,051.3. They belong respectively to Philip 

Morris Cos. (MO) and Goodyear (GT).  

 

<Table 1 inserted here> 

 

3.2 Canonical Analysis 

In this section, we use canonical analysis to determine the number of common factors 

and examine the relationship between price volatility and trading volume. Canonical 

correlation analysis seeks to identify and quantify the associations between two sets of 

variables. The main purpose of the technique is to concentrate a high-dimentional 

relationship between two sets of variables into a few pairs of canonical variables. 

Recall that proposition 2.3.1 states that the number of common factors equals the 

rank of covariance matrix V∆P,Σ . In canonical analysis, if the rank( V∆P,Σ )=p, then there will 

be p nonzero canonical correlations. Table 2 reports the canonical correlation analysis results 

for returns and trading volume. From Table 2, since there are three nonzero canonical 

correlations (at a 0.05 significance level), we have three common factors in our sample.  

 

<Table 2 inserted here> 

 

As we mentioned earlier, our model is different from that of Hasbrouck and Seppi 

(2001) in the way that the common factors do not play a role in the relationship between 

return volatility and trading volume in our model. Also,  the proposition 2.3.3 predicts that 
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return volatility is positively related to trading volume as long as mixing variables show 

variation or positive covariation.  Table 3 presents the canonical correlation test results for 

return volatility and volume. As shown in Table 3, there are approximate 26 pairs of 

significant canonical variables, hence, common factors do not appear to have an impact on 

the relationship between price volatility and trading volume. From Table 3, we can see that 

all correlation coefficients are positive. This result is consistent with the prediction of 

proposition 2.3.3. 

<Table 3 inserted here> 

 

3.3 Estimation Results 
 

Table 4 provides the EM estimation results of model (9) for each of the 30 Dow Jones 

stocks.  The magnitudes of all point estimates appear reasonable. For Eastman Kodak, 

Hewlett-Packard, International Paper, Coca cola, 3M, Phillip Morris, Sears, United Tech and 

Exxon, according to the BIC, the best models are those with 3 common factors. The results 

are shown in Panel A. For American Express, DuPont, General Motors, Goodyear, Johnson 

& Johnson, JP Morgan, MacDonald, Proctor Gamble and WalMart, the best models are those 

with 2 common factors. The results are provided in Panel B. The returns and trading volume 

of the rest stocks are only affected by one common factor (Panel C). As indicated earlier, the 

standard MDH model is a special case of our model when there is no common factor present. 

The estimated results, on the other hand, show that all stocks are affected by at least one 

common factor. Thus, our model outperforms the standard MDH model. In the previous 

section, we show, through the canonical analysis technique, that the common factor 
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structures in returns and trading volume are 3-factor structures. Therefore, the estimation 

result is consistent with the canonical analysis result.  

 

<Table 4 inserted here> 

 
 
3.4 Model Evaluation 

In this section, we conduct some tests to examine two properties of our model. 

According to model (8), stock return series is related to corresponding trading volume by the 

underlying information variable I. Given the extracted tI  series, tI� , we can construct the 

adjusted return series as follows: 

 

I
PPadj

∆=∆  

 

Thus, the relationship between this new adjusted return series and trading volume will 

disappear. To check this property, we regress return series on trading volume separately for 

each of the 30 stocks, before the adjustment of information and after the adjustment of 

information. We expect that the coefficient estimates between adjusted return series and 

trading volume will not be significantly different from zero. Table 5 reports the means of the 

coefficient estimates of trading volume across all stocks in the sample and the standard errors 

of the mean coefficient estimates. The standard errors are corrected for any cross-sectional 

correlation in the individual-stock estimators (see the Appendix in Jones et al. (1994)). From 

Table 5, we can see that the raw return series is positively related to trading volume. The 

average coefficient estimate is 6.08×10-10 and statistically significant (t-value=2.17). In 
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contrast, the average coefficient estimate for the regression of the adjusted return series is not 

statistically different from zero (t-value=-0.26). This result confirms our expectation that the 

relationship between returns and trading volume will disappear after we control for 

information in return series. 

  

<Table 5 inserted here> 

 

In this section, following Lamoureux and Lastrapes (1994), we also test the validity 

of our model in explaining the serial dependence in returns by estimating a GARCH (1,1) 

model for raw and adjusted return series of each of the 30 stocks, respectively: 

 

( )tt

ttat

h,N~
yaay

0      
10

ε
ε++= −  

and 

12
2

110 −− γ+εγ+γ= ttt hh  

where ty  is stock returns at time t. Table 6 presents the estimation results (only those cases 

in which GARCH persistence is evident in the return series are reported). The third column 

reports the estimates of raw return series. From this column, we can see 24 out of the 30 

stocks display the persistence in variance. As our model suggests, the persistence is due 

mainly to the underlying information variable. Hence, we repeat the estimation of the 

GARCH (1,1) model for the adjusted return series. The results are provided in the fourth 

column of Table 6. After we control for information in raw return series, the persistence in 

variance disappears in most of those stocks that exhibit the persistence before the adjustment. 
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This result confirms the viability of our model in explaining the source of the persistence in 

variance.  

 

<Table 6 inserted here> 

 

4. Summary 

In this paper, we specify a factor model of returns and volume, based upon market 

microstructure theory and portfolio theory. We fit our model for the half-hour intraday data 

of Dow Jones 30 stocks. The empirical results support the specifications of our model. Our 

model appears to provide a useful framework for capturing the important properties of the 

data. Especially, our model indicates that common factor structures are due to impacts of 

information on trading.  

It is also important to understand how information flows influence the common factor 

structures in returns and trading volume. Usually, in factor analysis, we can further identify 

the source of common factors by observing the pattern of eigenvectors of factors. After 

looking at the eigenvectors of factors in our sample, we do not see any pattern of those 

eigenvectors. Therefore, the identification of common factors will leave for future research.  
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Table 1 

Returns and volume 

The sample is the 30 Dow Jones stocks from April 1 to June 30, 1998. The means and 

standard deviations are calculated across the entire sample period. 

  Returns (%) Volume   
Ticker Name Mean Std. Dev.   Mean Std.Dev.
AA Alcoa -0.03361 0.33217  66232.56 71056.96
ALD Allied Signal -0.00982 0.50798  90438.08 66779.48
AXP American Express -0.00573 0.45492  99180.96 74175.61
BA Boeing -0.00665 0.39603  197745.4 129947.5
C Citigroup -0.02708 0.50269  294690.6 368115.8
CAT Caterpillar -0.02672 0.47116  74050.44 59534.83
CHV Chevron -0.00781 0.35952  80350 58059.65
DD DuPont 0.012513 0.51166  183316.7 153423.5
DIS Disney -0.0132 0.3727  114635.9 97870.68
EK Eastman Kodak -0.00862 0.41029  80530.52 85130.27
GE General Electric -0.01449 0.35931  231183.9 110125.6
GM General Motors -0.02618 0.39003  164503.2 110380.3
GT Goodyear -0.03168 0.40141  36901.6 46855.73
HWP Hewlett-Packard  -0.00908 0.56935  253428.1 237430.2
IBM IBM -0.00573 0.41158  252827.2 188142.5
IP International Paper -0.05164 0.46609  68185.32 66177.55
JNJ Johnson & Johnson -0.0171 0.38645  125324.7 73923.52
JPM JP Morgan -0.02957 0.40285  53357.12 38624.04
KO Coca Cola 0.011703 0.34704  173883 92411.77
MCD McDonalds 0.018305 0.36818  150667.2 125984.6
MMM 3M -0.01373 0.33819  54731.4 49581.39
MO Phillip Morris -0.05604 0.48032  502051.3 453638.3
MRK Merck -0.02061 0.37346  162276.5 99498.18
PG Proctor Gamble 0.011857 0.42987  129214.7 89777.67
S Sears 0.011988 0.4664  77875.87 57938.14
T AT&T -0.02231 0.38216  274291 160592.4
UK Union Carbide -0.0305 0.53421  42420.06 44979.81
UTX United Tech -0.01027 0.39242  48563.37 42608.85
WMT WalMart 0.00776 0.42697  166220.9 98751.79
XON Exxon 0.001859 0.35154   193425.7 101390.8
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Table 2 

Canonical correlation analysis results for returns and volume 

The sample is the 30 Dow Jones stocks from April 1 to June 30, 1998.  The second column 

provides canonical correlations. The third column provides canonical correlation test results. 

The numbers in the parentheses are p-values (We only provide significant results). 

Canonical Correlations Test Results 

0.465 1.31 (<.0001) 
0.441 1.21 (<.0001) 
0.389 1.10 (0.0258) 
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Table 3 

Canonical correlation analysis results for return volatility and volume 

The sample is the 30 Dow Jones stocks from April 1 to June 30, 1998.  The second column 

provides canonical correlations. The third column provides canonical correlation test results. 

The numbers in the parentheses are p-values. 

  Canonical Correlations Test Results 
1 0.649 4.36 (<.0001) 
2 0.622 4.16 (<.0001) 
3 0.588 3.99 (<.0001) 
4 0.570 3.85 (<.0001) 
5 0.554 3.71 (<.0001) 
6 0.535 3.58 (<.0001) 
7 0.528 3.46 (<.0001) 
8 0.506 3.32 (<.0001) 
9 0.473 3.19 (<.0001) 
10 0.464 3.09 (<.0001) 
11 0.443 2.98 (<.0001) 
12 0.424 2.88 (<.0001) 
13 0.416 2.78 (<.0001) 
14 0.378 2.66 (<.0001) 
15 0.367 2.59 (<.0001) 
16 0.351 2.50 (<.0001) 
17 0.320 2.42 (<.0001) 
18 0.314 2.37 (<.0001) 
19 0.299 2.29 (<.0001) 
20 0.278 2.20 (<.0001) 
21 0.271 2.13 (<.0001) 
22 0.248 2.00 (<.0001) 
23 0.213 1.87 (<.0001) 
24 0.204 1.81 (0.0005) 
25 0.175 1.68 (0.0069) 
26 0.155 1.60 (0.0304) 
27 0.151 1.50 (0.0924) 
28 0.108 0.96 (0.4706) 
29 0.038 0.24 (0.9143) 
30 0.004 0.01 (0.9099) 
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Table 5 

Estimates of Regressions of Returns on Trading Volume 

The sample is the 30 Dow Jones stocks from April 1 to June 30, 1998.  The dependent 

variable is original return series or adjusted return series of information. The independent 

variable is trading volume. The regressions are separately run for each of the 30 stocks using 

Ordinary Least Square (OLS) estimation. The standard errors are calculated by the way of 

Jones et al. (1994). The second column provides results for the original return series. The 

third column provides results for the adjusted return series.  

 
 

Estimate 
Before  

Adjustment of Information (×10-10)
After 

Adjustment of Information (×10-10)
Mean Coefficient 6.08 -0.56 

Standard Error 2.80 2.17 
t-value 2.17 -0.26 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  36 
 

Table 6 

Estimates of GARCH (1,1) for Returns  

The sample is the 30 Dow Jones stocks from April 1 to June 30, 1998.  The GARCH (1,1) 

model is: 

( )tt

ttat

h,N~
yaay

0      
10

ε
ε++= −  

and 

12
2

110 −− γ+εγ+γ= ttt hh  

Only those cases in which GARCH persistence is evident in the return series are reported. 

The third column provides results for the original return series. The fourth column provides 

results for the adjusted return series.  

 
 

Ticker 
 

Estimate 
Before  

Adjustment of Information  
After 

Adjustment of Information 
ALD 1γ  0.0489 0.0867 
AXP 1γ  0.5935 − 
BA 1γ  0.4069 − 
C 1γ  0.6339 0.2293 

CAT 
  

1γ  

2γ  
0.8667 
0.0294 

− 
− 

CHV 1γ  0.4401 − 
DIS 1γ  0.5130 − 
EK 1γ  1.5884 − 
GE 1γ  0.3182 − 
GM 1γ  0.0599 − 
GT  1γ  9.9782×10-7 − 
HWP 1γ  − 0.3671 
IP 1γ   0.1181 − 
IBM 1γ   0.2107 0.1688 
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Table 6 (Continued) 
 

 
Ticker 

 
Estimate 

Before  
Adjustment of Information  

After 
Adjustment of Information 

JPM 1γ   0.0633 − 
JNJ 2γ   9.6513×10-7 − 
MCD 1γ   0.3636 − 
MMM 1γ   0.2100 − 
MO 1γ   1.4881 − 
MRK 1γ   0.1440 − 
PG 1γ   0.0781 − 
S 1γ   0.0667 − 
T 1γ   0.4454 − 
UTX 1γ   0.2706 − 
WMT 1γ   0.0767 − 
 
 
 


