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In this paper we develop analytic asymptotic methods to characterize time se-
ries properties of nonlinear dynamic stochastic models. We focus on a stochastic
growth model which is representative of the models underlying much of modern
macroeconomics. Taking limits as the stochastic shocks become small, we derive a
functional central limit theorem, a large deviation principle, and a moderate devia-
tion principle. These allow us to calculate analytically the asymptotic distribution
of the capital stock, and to obtain bounds on the probability that the log of the
capital stock will differ from its deterministic steady state level by a given amount.
This latter result can be applied to characterize the probability and frequency of
large business cycles. We then illustrate our theoretical results through some simu-
lations. We find that our results do a good job of characterizing the model economy,
both in terms of its average behavior and its occasional large cyclical fluctuations.

1. INTRODUCTION

Modern macroeconomics is built on the foundation of nonlinear dynamic stochastic
general equilibrium (DSGE) models. In particular, the stochastic growth model is one
of the most widely used models in all of economics, and is the standard model for
business cycle analysis. However because the model can only be solved in closed form
under very restrictive assumptions (such as log utility and full depreciation of capital),
analysis of the model must resort to approximations.1 For example, a standard practice
is to linearize the Euler equations which characterize the optimal solution around
the deterministic steady state (or balanced growth path).2 In many cases, there is
little discussion of the quality of such approximations, particularly for the stochastic
properties of the economy.3 In this paper we provide some steps in this direction.
We provide analytic asymptotic results which characterize the average behavior of the
stochastic growth model and its occasional large fluctuations.

*I thank William (Buz) Brock, Han Hong, Ken Judd, Makoto Nirei, and Simon Potter for helpful comments.
Thanks also go to seminar participants at Columbia University, Stanford University, the Federal Reserve Bank
of New York, and the 2002 Society for Economic Dynamics meetings.

1A summary of a variety of numerical methods can be found in Judd (1998).
2Papers which use linearizations are too numerous to list, but some notable applications in contexts similar

to this paper include Magill (1977), Kydland and Prescott (1982), King, Plosser, and Rebelo (1988), and
Cambpell (1994).

3An exception is the literature on perturbation methods, discussed in more detail below. However this
literature has tended to focus on the analytic properties of decision rules instead of the stochastic properties
of the resulting model economy.
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In our analysis we consider the limits as the standard deviation σ of the stochastic
technology shocks converges to zero. We show that the capital accumulation trajec-
tories converge to the corresponding trajectories from a deterministic model. The
limiting deterministic models are typically easier to analyze, particularly in the neigh-
borhood of a steady state. The results provide analytic, theoretically justified ap-
proximations for stochastic models with small noise. There is less, if any, need for
numerical methods and simulation. Further, the analytic expressions we obtain are
useful for comparative statics and comparative dynamics, and can potentially be used
as a means for estimation. Interestingly, we find that many asymptotic properties of
the economy can be described by a linear approximation. However for larger fluctua-
tions, and to describe potential asymmetries in the time series, nonlinear methods are
needed. While we focus on a relatively simple and standard model, the methods we
develop can be applied to more general nonlinear DSGE models which may provide a
closer match to the data.

In our analysis below, we obtain three different characterizations of the rate at which
the stochastic model converges to the deterministic one. We first formulate a functional
central limit theorem which shows that at rate σ, the centered capital trajectories are
asymptotically normal. While this result holds for both for the level of capital and
its logarithm, for our other results we consider solely the log of the capital stock. We
then apply a large deviation principle, which shows that the absolute differences of the
log capital trajectories converge to zero exponentially fast. We also obtain estimates
of the average time it takes the log capital stock to differ from its steady state level
by a given amount. Finally, we present a moderate deviation principle which provides
similar results, but for an intermediate range of asymptotics between the functional
central limit theorem and the large deviation principle.

Both the functional central limit theorem and the moderate deviation principle are
expressed in terms of a linear approximation to the deterministic model. These results
thus suggest that in order to consider the average behavior of the economy and even to
consider some “extreme” events, a linear approximation is sufficient. However the lin-
ear approximation does not fully capture the large deviation properties, and abstracts
from certain asymmetries in the model due to nonlinearities.4 By applying the large
deviation results, we show both analytically and numerically that the model economy
is slightly asymmetric and is slightly more likely to exhibit recessions (appropriately
defined) than booms.

This appears to be the first paper to apply this type of convergence results for the
stochastic growth model. However there are several of related papers in the litera-
ture. In a continuous time setting, Prandini (1994) used the large deviation results of
Azencott (1980) to analyze a stochastic Solow growth model. He showed that the cap-
ital trajectories in the stochastic model converges uniformly on a finite time horizon
to the corresponding trajectories from the standard deterministic model. We obtain
similar results in our section on large deviations. However, unlike Prandini, we explic-

4There are higher order asymptotic results for continuous time diffusions in the literature, such as Fleming
and Souganidis (1986) and Fleming and James (1992), which may capture some of these nonlinearities in an
analytically tractable way. However to our knowledge there are no such results for our discrete time setting.
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itly calculate the rate function and analyze the exit problem, which provides useful
information in applications. Additionally, our analysis is complicated by the fact that
there is explicit optimization in our model which requires us to prove the convergence
of consumption policies. Furthermore, we cast our analysis in discrete time which is
more relevant for many macroeconomic applications, and as we discussed, we obtain
a much wider range of asymptotic results.

As we noted above, there is a closely related and extensive branch of the litera-
ture which focuses on the functional properties of approximate solutions. However
the functional approximation results do not characterize the stochastic properties of
the model economy, which is our focus. In the mathematics literature, key papers
include Fleming (1971) and Fleming and Souganidis (1986) who prove the uniform
convergence of the policy function in continuous time models when the noise goes to
zero. In the economics literature, an early contribution was Magill (1977) who derived
an asymptotic linear-quadratic approximation in a continuous time stochastic growth
model. Judd (1998) contains a comprehensive overview of these perturbation methods
and their applications in economics. Judd and Guu (1993, 1997) present numerical
methods based on Taylor expansions to analyze stochastic and deterministic growth
models respectively. Gaspar and Judd (1997) provide high order expansions for mul-
tivariate models. Most of these papers focus on the local analytic properties of the
solution, with a few providing global numerical results. But again, none of these touch
on the issues we analyze.

2. THE MODEL

In this section we lay out the benchmark model for the analysis. It is a specialized
Brock-Mirman (1972) economy with production, capital accumulation, and stochastic
productivity growth. To simplify the presentation and analysis, we assume that tech-
nology shocks are permanent, which implies that the model has a single state variable.
This assumption can be relaxed. Further, in the development of the paper it should be
evident that our results have applications to more general nonlinear stochastic models.

2.1. The Stochastic Growth Model

We assume that output is produced according to a standard constant returns to
scale Cobb-Douglas production function with parameter α:

F (K,L) = Kα(AL)1−α,

where K is the capital stock, L is the labor supply and A is the labor-augmenting
technology parameter. For simplicity, we fix the total labor supply at L = 1. We
assume that A evolves exogenously as a unit root process in logarithms:

logAt+1 = κ+ logAt + σWt+1 (1)

where W is a standard normal random variable and κ ≥ 0 is the mean rate of technol-
ogy growth. The unit root assumption is made for simplicity, and is roughly consistent
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with US time series data. Let δ be the depreciation rate of capital, and Ct be con-
sumption. Then the evolution equation for capital is given by:

Kt+1 = A1−α
t Kα

t − Ct + (1− δ)Kt. (2)

Although the technological process is nonstationary, the ratios of capital to tech-
nology, kt = Kt/At, and that of consumption to technology, ct = Ct/At, are stationary.
We therefore represent the problem in terms of the stationary variables. Normalizing
by the technology level, (2) becomes:

kt+1 = θZσ
t+1 (k

α
t − ct + (1− δ)kt) (3)

where we define the lognormal random variable Zσ and constant θ as:

Zσ
t+1 = exp(−σWt+1),

θ = exp(−κ).

A representative agent has time-additively separable preferences over consumption,
with CRRA period utility:

U(C) =
C1−γ

1− γ
= A1−γ c1−γ

1− γ
.

The social planner’s problem is to choose a consumption sequence to maximize the
expected discounted utility of the representative agent. Thus we solve:

sup
{Ct}

E
∞∑

t=0

βtU(Ct) (4)

subject to (2) and (1). Further, expressing utility in terms of c makes the effective sub-
jective discount factor β(θZσ

t+1)
γ−1, and thus introduces a form of preference shocks.

Straightforward calculations, detailed in Appendix A, show that this Markov opti-
mization problem has a solution which is a feedback control of the form: ct = cσ(kt).
This implies that we can write the optimal capital evolution as:

kt+1 = θZσ
t+1 (k

α
t − cσ(kt) + (1− δ)kt) (5)

≡ f
σ
(Zσ

t+1, kt).

The consumption policy function satisfies the stochastic Euler equation, derived in
Appendix A:

cσ(k)−γ = β

∫
(θZσ)γcσ

(
f
σ
(Zσ, k)

)−γ [
αf

σ
(Zσ, k)α−1 + 1− δ

]
dGσ(Zσ) (6)

where Gσ is the relevant lognormal distribution function.
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In our analysis to follow, it helps to split the capital evolution into its conditional
expectation and its martingale component. Therefore we define the expectation of the
right side of (5), conditioned on kt = k as:

fσ(k) = θ exp

(
σ2

2

)
(kα − cσ(k) + (1− δ)k) , (7)

and the random component is then:

νσ(k) = θ exp

(
−σWt+1 −

σ2

2

)
(kα − cσ(k) + (1− δ)k) . (8)

Thus we have an alternate expression for the capital evolution:

kt+1 = fσ(kt) + νσ(kt). (9)

While the optimization problem is most naturally stated in terms of the level of the
capital stock, for most of our analysis we will work with the logarithm of the capital
stock. The multiplicative nature of the noise term in (5) makes the logs particularly
easy to work with. Thus if we let lt = log(kt), we can take logs and rewrite:

lt+1 = gσ(lt)− σWt+1, (10)

where we define:

gσ(l) = log [exp(αl)− cσ(exp(l)) + (1− δ) exp(l)]− κ. (11)

The conditional normality of lt greatly simplifies many of the results that follow.

2.2. A Deterministic Growth Model

Corresponding to the stochastic growth model, we can define a deterministic growth
model by setting σ = 0 in the equations above. This yields a discrete time version of a
standard Ramsey-Cass-Koopmans model in which the technology grows at a constant
rate. The implied evolution for capital is therefore:

kt+1 = θ[kα
t − ct + (1− δ)kt]. (12)

The optimal growth problem is then the deterministic analogue of (4), with law of mo-
tion (12). Again, straightforward calculations show that this problem has a feedback
solution of the form ct = c0(kt). This implies that capital and log capital follow the
deterministic difference equations:

kt+1 = f 0(kt), (13)

lt+1 = g0(lt), (14)

where f 0 and g0 are obtained by replacing cσ with c0 in (7) and (11), respectively.
The optimal consumption policy satisfies the Euler equation analogous to (6):

c0(k)−γ = βθγc0(f 0(k))−γ
[
αf 0(k)α−1 + 1− δ

]
. (15)
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2.3. Comparisons of the Models

Let {kσ
t } be a realization of the capital stock trajectory from the stochastic growth

model, {k0
t } be the capital stock trajectory from the deterministic model, and {lσt }

and {l0t } their respective logarithms. As σ → 0 we expect that, starting from the same
initial value, the sample paths of the solution of the stochastic growth model would
approach that of the deterministic model. In the rest of the paper we show that this is
indeed the case, and we obtain explicit characterizations of the asymptotics at different
rates of convergence. These results provide us with approximate characterizations of
the stochastic economy when the noise is small.

Our results consider the normalized differences, for ρ ≥ 0:

Xσ,ρ
t =

1

σ1−ρ
(lσt − l0t ). (16)

In Section 3, we consider the case ρ = 0, and present a functional central limit theorem
(FCLT). We show that at rate σ, the normalized differences converge to a Gaussian
linear autoregressive process. In Section 4, we consider the case ρ = 1, and formulate
a large deviation principle (LDP). Thus we obtain bounds on the probability that (on
a given finite horizon) the stochastic capital trajectory differs from the deterministic
one by a given amount. We also consider the exit problem, which provides estimates
of how long it typically takes for the log capital stock to depart from its steady state
level by a given amount. In Section 5, we consider a range of cases where 0 < ρ < 1,
and apply a so-called moderate deviation principle (MDP). These results are similar
to the large deviation principle, but for σ-dependent neighborhoods. We also analyze
the exit problem in this case. In Section 6, we illustrate our results through some
explicit calculations and simulations in a calibrated model. Our results show that
the theoretical predictions provide a good explanation of the behavior of the model
as observed in simulations. We also illustrate some of the differences between the
large deviation and moderate deviation results, which have implications for linear
solution methods. Finally, Section 7 concludes. Throughout we make smoothness
assumptions on the consumption policies, and we also assume that the stochastic
policies converge to the deterministic one. In Appendix A we formally establish these
results. Appendices B and C collect proofs of some of the results in the text.

3. A FUNCTIONAL CENTRAL LIMIT THEOREM

In this section we begin our analysis of the stochastic growth model. We present a
functional central limit, which follows Klebaner and Nerman (1994), and shows that
the normalized differences Xσ,0

t from (16) converge to a Gaussian linear autoregression.
We also show that a similar result holds for the capital levels. As noted above, in order
to make clear which features of the model are required for each result we make direct
assumptions on the policy functions. These assumptions are verified in our application
in Appendix A. To cover both logs and levels, in the assumptions we use h(x) as a
stand-in for either g(l) or f(k), and we always use a subscript x for a derivative
of a function. Klebaner and Nerman (1994) impose boundedness conditions on the
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derivatives of policy functions which cause some slight complications in our analysis.
Due to the Inada condition on the utility function, the slopes of the policy functions
(in levels) increase to infinity at zero capital. However on any compact set bounded
away from zero, the boundedness conditions are satisfied. Therefore we extend the
results by truncating the state evolution to a compact set, but relaxing the truncation
in the limit. In what follows, we require x ∈ X with X a compact set. This notation
is a stand in for l ∈ L ⊂ R and k ∈ K ⊂ R++ with L and K compact.

Assumption 3.1. On any compact set X , the function hσ is continuous, twice
continuously differentiable, and has bounded derivatives hσ

x and hσ
xx for all σ ≥ 0.

Assumption 3.2. On any compact set X , hσ → h0 uniformly as σ → 0.

Assumption 3.3. On a compact set X , h0 has a unique fixed point x∗ which is
stable, i.e. |h0

x(x
∗)| < 1, and whose domain of attraction includes all of X .

Then we have the following result on the convergence of the log capital stock.

Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold for h = g. Then as
σ → 0, the normalized differences {Xσ,0

t } converge weakly to a process {Xt}. The
limit process follows the linear Gaussian autoregression, dependent on the deterministic
process {l0t }:

Xt+1 = g0
x(l

0
t )Xt +Bt+1, (17)

where {Bt+1} is an i.i.d. sequence of standard normal random variables.

Proof. See Appendix B.

Since there is a unique steady state of the deterministic model, this result imme-
diately implies that the differences from the steady state are asymptotically normal.
As this result has implications for approximate solution methods, we find it useful to
state it in the following.

Corollary 3.1. Suppose that Assumptions 3.1-3.3 hold for h = g. Then as σ → 0
and t→∞ the following holds asymptotically:

lσt+1 − l∗ = g0
x(l

∗)(lσt − l∗) + σBt+1.

Therefore, as σ → 0 and t→∞, {lσt } converges to a stationary Gaussian process with

mean l∗ and variance σ2

1−g0
x(l∗)2

.

This result shows that the log capital stock asymptotically follows a Gaussian linear
autoregression centered on the deterministic steady state. This has some interesting
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implications in practice. One simple and immediate application deals with the cal-
ibration of models. Typically, models are calibrated to match the first moments of
key time series. However Corollary 3.1 allows the use of analytic asymptotic second
moments as well. In particular, it provides a means of calibrating the risk aversion
parameter (γ) by using the (asymptotic) autocorrelation of the capital stock, which
equals the derivative of the policy function at the steady state. Notice that this cali-
bration is completely analytic, and does not require simulation of the model. We use
this result to calibrate the model in Section 6 below.

For the case of the levels, we substitute kt for lt in our definition of Xσ,0
t . We then

have the following preliminary result.

Lemma 3.1. Let Assumptions 3.1 and 3.2 hold for h = f . Then for each fixed k,
we have:

lim
σ→0

1

σ2
Eνσ(k)2 = f 0(k)2.

Proof. This is a simple calculation, using the definitions of the functions and

L’Hopital’s rule.

Then, making the appropriate substitutions, we have the following results for the
capital stock levels.

Corollary 3.2. Suppose that Assumptions 3.1 and 3.2 hold for h = f . Then as
σ → 0, the normalized differences converge weakly to the process:

Xt+1 = f 0
x(k

0
t )Xt + f 0(k0

t )Bt+1.

Suppose in addition that Assumption 3.3 holds for h = f . Then the results of Corollary
3.1 hold with σf 0(k∗) in place of σ and the other obvious substitutions.

4. A LARGE DEVIATION PRINCIPLE

In the previous section we showed that the log capital stock (and the level) from the
stochastic growth model converges to the deterministic capital stock as the technology
shock standard deviation σ goes to zero. Further, the differences converge at rate σ and
are asymptotically normal. In this section we provide further analysis by considering
the asymptotics of the differences, without normalizing by σ. In other words, we study
the process {Xσ,1

t } from (16). We provide a large deviation principle which shows
that, on a given finite horizon, the differences converge to zero exponentially fast and
establishes the exponential convergence rate. We then analyze events in which the log
capital stock differs from its steady state value by a given (positive, finite) amount.
We show that the time period between such events increases exponentially, and we
provide an estimate of the typical length. We also show that the curvature of the policy
function determines whether large increases or decreases are more likely. These results
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have implications for the timing of business cycles. Economic booms and recessions
are usually defined in terms of output and not the capital stock directly. However, we
show below that large increases in the log capital stock typically correspond to troughs
of economic activity while large booms are associated with large falls in the log capital
stock. Therefore our results allow us to characterize the average time between large
business cycles, and to determine whether booms or recessions occur more often.

As noted in the introduction, Prandini (1994) derived similar results in a continuous
time setting without optimization. He applied Azencott’s (1980) extension of the work
of Freidlin and Wentzell (1984). Here our development is in discrete time, and draws
on the results of Klebaner and Zeitouni (1994). We first develop a large deviation
principle for the one-step Markov transitions of the log capital stock, using the well-
known Gärtner-Ellis Theorem (see Dembo and Zeitouni, 1998). Then we essentially
sum up each of the transitions to determine the large deviation principle for the entire
discrete time paths.

We now formally define some terminology. Let a sequence {Z ε} be defined on a
probability space (Ω,F , P ) and taking values in a complete separable metric space X .
A rate function S : X → [0,∞] has the property that for any M < ∞ the level set
{x ∈ X : S(x) ≤M} is compact.

Definition 4.1. A sequence {Zε} satisfies a large deviation principle on X with
rate function S and speed ε if the following two conditions hold.

1. For each closed subset F of X , Zε satisfies the large deviation upper bound:

lim sup
ε→0

ε logP {Zε ∈ F} ≤ − inf
x∈F

S(x).

2. For each open subset G of X , Zε satisfies the large deviation lower bound:

lim inf
ε→0

ε logP {Zε ∈ G} ≥ − inf
x∈G

S(x).

Note that the sets F and G do not depend on ε. If the sequence converges to a limit
not contained in F and G, the probability the sequence enters these sets converges
to zero. Thus the theory deals with “rare events” with limit probability zero. If the
sequence satisfies a large deviation principle, the convergence is exponential with the
leading exponent determined by the rate function. The definitions also show how in
large deviation theory the evaluation of a probabilistic statements is characterized by
an optimization problem. This makes the theory amenable for analysis and leads to
natural solution methods to apply it in practice.

We begin by looking at the one-step transitions of the log capital stock as in (10).
We use the notation lσx for the random variable whose distribution is identical to that
of lt+1 conditioned on lt = x:

lσx ∼ N(gσ(x), σ2).

Then we have our first intermediate result, which is an application of the Gärtner-Ellis
Theorem. This result is in turn an extension of the well-known Cramér Theorem for
non-i.i.d. random variables.
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Theorem 4.1. Suppose that Assumptions 3.1 and 3.2 hold for h = g. Then for
any given finite x, the sequence of random variables {lσx} satisfies a large deviation
principle on L ⊂ R with speed σ2 and rate function:

I(x, y) =
1

2
(y − g0(x))2. (18)

Proof. Follows from the Gärtner-Ellis Theorem (see Dembo and Zeitouni (1998),
Theorem 2.3.6). To apply the theorem, we need to calculate the limiting logarithmic
moment generating function:

H(x, λ) = lim
σ→0

σ2 logE exp

(
λlσx
σ2

)
(19)

= λg0(x) +
λ2

2
,

where the second equality follows from Assumption 3.2. Then the rate function is
given by the Legendre transform of H:

I(x, y) = sup
λ∈R

[λy −H(x, λ)],

which gives the result.

This result gives us a large deviation principle for one-step transitions. We now
apply this result to develop a large deviation principle for finite time paths of the
log capital stock. Following Klebaner and Zeitouni (1994), we let [u]T stand for a
specific path (u0, u1, ...uT ), T < ∞. Then we define the cumulation of the one-step
rate function:

S(T, [u]T ) =
T−1∑

t=0

I(ut, ut+1). (20)

The next result shows that the log capital stock from the stochastic growth model
converges uniformly on finite horizons to the deterministic log capital stock.

Theorem 4.2. Suppose that Assumptions 3.1 and 3.2 hold for h = g. Then on
a given finite horizon [0, T ] the sequence {lσt } satisfies a large deviation principle on
the product space LT ⊂ RT (equipped with Euclidean metric) with rate function S and
speed σ2.

Proof. Follows from Klebaner and Zeitouni (1994), Lemma 2.1. The necessary con-
ditions of their theorem are easily verified given our assumptions and the form of the
rate function I. In particular, their Lemma 2.5 holds under Assumption 3.2 and implies
the uniformity of the large deviation principle. The continuity of I and the other tech-
nical conditions follow as in the proof of their Theorem 3.1 under our Assumptions 3.1

and 3.2.
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In particular, Theorem 4.2 implies that the log capital stock satisfies the large
deviation upper bound:

lim sup
σ→0

σ2 logP

(
sup

1≤t≤T

∣∣lσt − l0t
∣∣ > ε

∣∣∣∣ l
σ
0 = l00 = x

)
≤

− inf
{[u]T : u0=x,|ut−l0t |>ε, 1≤t≤T}

S(T, [u]T )

where x is an arbitrary initial condition and ε > 0. Therefore on [0, T ] as σ → 0,
the solution of the stochastic growth model converges uniformly to the solution of the
deterministic growth model, provided they are initialized at the same point.

Thus Theorem 4.2 shows that the probability the stochastic and deterministic paths
differ by a given amount converges to zero exponentially fast, and determines the rate
of convergence. The rate function for the time paths is the cumulative rate function
for each of the Markov transitions. The theorem also implies that once the capital
stock reaches its deterministic steady state level, it has a small probability of exiting
a neighborhood of the steady state. We now spell out this implication of the large
deviation principle further by considering what is known as the exit or escape problem.
The solution of this problem provides estimates on the typical time it takes for the log
capital stock to depart from its deterministic steady state level by a given amount.

To begin with this analysis, we define:

V (x, y) = inf
{[u]T : u0=x,uT=y, T<∞}

S(T, [u]T ). (21)

Thus we define V as the minimized cost of moving from x to y in some finite horizon,
where the cost of an arbitrary path is evaluated by the rate function S. Since the
S function is continuous (as g0 is continuous) and the space of paths connecting x
and y in finite steps is compact, the minimum exists. A path [u]T which achieves the
minimum is called a dominant escape path (from x to y). In our analysis, we are
particularly interested in escapes from the deterministic steady state. Thus we fix an
interval of length 2ε > 0 centered at the steady state level l∗ and define:

V = inf
{y: |y−l∗|≥ε}

V (l∗, y). (22)

Again, the minimum exists but is not necessarily unique, so let Y ∗ be the set of
minimizers from (22). Next define the exit time from the interval as:

τσ = inf {t > 0 : |lσt − l∗| ≥ ε, |lσ0 − l∗| < ε} .

The following result shows that the exit times increase to infinity exponentially fast
and determines the exponential rate of convergence. Furthermore, we determine the
end of the interval where the exit will most likely take place.
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Theorem 4.3. Suppose that Assumptions 3.1-3.3 hold with h = g. Then for any
η > 0 we have:

lim
σ→0

P

(
exp

(
V − η

σ2

)
≤ τσ ≤ exp

(
V + η

σ2

))
= 1.

For any exit which occurs at lστσ and for any η > 0 there exists a y∗ ∈ Y ∗ such that:

lim
σ→0

P (|lστσ − y∗| < η) = 1.

Proof. Follows from Klebaner and Zeitouni (1994), Theorem 2.1 and the remark
which follows it. The necessary conditions are shown to hold using the same arguments

as in our Theorem 4.2.
The key step in applying these large deviation results is to solve the minimization

problem inherent in (21)-(22). Using (18) we can re-state this problem as:

inf
{T<∞,[u]T }

1

2

T−1∑

t=0

(
ut+1 − g0(ut)

)2
(23)

subject to u0 = l∗, uT = l∗ ± ε. For a given horizon T and terminal value uT , this is
a discrete time minimum energy problem of the form analyzed in Chapter 2 of Lewis
(1986). In general we cannot even solve for the policy function g0 analytically, so we
have little hope of obtaining an explicit solution to this problem. In Section 6 below
we describe how to solve it numerically. Here we provide a local characterization of
the solution, which helps to interpret our later results. In particular, we find that for
small escape sets, the curvature of the policy function determines whether a positive or
negative escape is more likely. The following Theorem adapts a result of Kasa (2001),
who works in continuous time. This allows him to usee the results of Freidlin and
Wentzell (1984) to obtain an explicit expression for the rate function V , making the
local analysis more straightforward. The discrete time nature of our setting leads to
a more involved derivation which is detailed in Appendix C.

Theorem 4.4. Suppose that Assumptions 3.1- 3.3 hold for h = g. In a neighbor-
hood of the stable equilibrium l∗ the rate function in (21) has the expansion:

V (l∗, y) =
(l∗ − y)2

2
(1− g0

x(l
∗)2)− (l∗ − y)3

2
g0
xx(l

∗)g0
x(l

∗)2
1− g0

x(l
∗)2

1− g0
x(l

∗)3
+O(|l∗ − y|4).

Thus if g0 is strictly convex (respectively, strictly concave), an exit from the interval
(l∗−ε, l∗+ε) happens at l∗+ε (respectively, l∗−ε) with probability converging to one as
σ → 0 and ε→ 0. If g0 is linear the exit is equally likely to happen at either endpoint.

Proof. See Appendix C.
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5. A MODERATE DEVIATION PRINCIPLE

The previous sections have presented a functional central limit theorem and a large
deviation principle to analyze the asymptotics of the stochastic growth model. In this
section we derive some intermediate asymptotic results, which in effect combine the
insights of the two previous sections. For the central limit theorem, we considered
the sequence of processes Xσ,0

t , while the large deviation principle considered Xσ,1
t . In

this section we present a moderate deviation principle, which considers the sequence
Xσ,ρ

t for the intermediate case 0 < ρ < 1. A moderate deviation principle is simply
a large deviation principle for the normalized process over a slower range of speeds.
Our results in this section provide simpler, more explicit asymptotic characterizations
of the behavior of the log capital stock.

Following Klebaner and Liptser (1999), we will first provide some of the heuristic
arguments and then proceed more formally. For ρ ∈ (0, 1) we can write:

Xσ,ρ
t = σρXσ,0

t .

Now by Theorem 3.1, we know that Xσ,0
t ⇒ Xt where {Xt} is the Gaussian linear

autoregression in (17). Now suppose that the processes {Xσ,ρ
t } and {X̃σ,ρ

t } = {σρXt}
satisfy the same large deviation principle.5 Recall from (17) that {X̃σ,ρ

t } satisfies:

X̃σ,ρ
t+1 = g0

x(l
0
t )X̃

σ,ρ
t + σρBt+1.

Then by extending the results of Theorem 4.2, we could show that on an infinite

horizon the sequence {X̃σ,ρ
t } satisfies a large deviation principle with speed σ2ρ and

rate function:

J([u]) =
1

2

∞∑

i=1

(ui − g0
x(l

0
i−1)ui−1)

2 (24)

where u0 = 0 and [u] = (u1, u2, . . .). As we note below, finite horizon results analogous
to those for the large deviation principle above can also be established, but the infinite
horizon results are stronger.

The conditional normality of our application simplified the form of the rate function
S from (20) for the large deviation principle. However the proposed rate function J in
(24) is even simpler, as it is a quadratic form. (Whereas S is quadratic in the nonlinear
function g0.) This makes applications particularly easy, and as we see below allows for
some explicit analytic results. Further, the rate function in the moderate deviation
principle is quadratic regardless of the shock distribution (although the conditions of
the theorem below rule out the lognormal case which would make the analysis cover
the capital stock levels kt). Finally, the same asymptotics hold for all settings of
0 < ρ < 1.

The following formal result verifies that the heuristics above do in fact hold.

Theorem 5.1. Let 0 < ρ < 1, and assume that Assumptions 3.1 and 3.2 hold
for h = g. Then the sequence {Xσ,ρ

t } satisfies a moderate deviation principle on the

5As emphasized by Kushner (1984), this will not hold in general, as there is only weak convergence.
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infinite product space L∞ ⊂ R∞ equipped with metric

d([u], [v]) =
∞∑

n=1

2−n |un − vn|
1 + |un − vn|

.

The MDP has speed σ2ρ and rate function J given in (24).

Proof. Follows from Klebaner and Liptser (1999), Theorem 2. Their necessary con-
ditions are easily verified given our assumptions and the form of the H function defined

in (19).

As Klebaner and Liptser (1999) note, this MDP implies a corresponding MDP over
any finite horizon. Analogous to the large deviation principle in Theorem 4.2, the
finite horizon MDP is defined on a finite product space with Euclidean metric, with
the rate function J restricted to finite sequences.

Theorem 5.1 implies a particularly easy characterization of the exit problem. If we
now define the exit time:

τσ,ρ(ε) = inf {t > 0 : |Xσ,ρ
t | ≥ ε} ,

which is the first time the process {lσt } exits from an window of width 2εσ1−ρ centered
on the path {l0t }. Then we have the following result characterizing the mean exit time.
The idea is essentially the same as the linear case of Theorem 4.4, with the difference
that the exit sets shrink with σ.

Theorem 5.2. Let 0 < ρ < 1, and assume that Assumptions 3.1-3.3 hold for
h = g. Let l00 = l∗. Then we have the following:

lim
σ→0

σ2ρ logEτσ,ρ(ε) =
ε2

2
(1− g0

x(l
∗)2).

Proof. Under our assumptions, this follows from Theorem 5.1 and Klebaner and

Liptser (1999), Theorem 4.

6. AN APPLICATION

In this section we illustrate our theoretical results in a calibrated model. We choose
the parameters of the model so that it matches certain features of US time series data.
To calibrate the process for At, we used data on the cumulative Solow residual from
Citibase, following the construction of Stock and Watson (1999). These residuals are
scaled so that they can be interpreted as labor-augmenting technology. These data
are quarterly from 1959:Q1 to 1999:Q2 and are constructed from output (GDP less
farm, housing and government), capital (interpolation of annual values of fixed non-
residential capital stock using quarterly investment), and labor (hours of employees
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on non-agricultural payrolls). As in Stock and Watson (1999), we then construct the
technology shock process using a labor’s share value of α = 0.65. The mean growth
rate κ and standard deviation σ of the At process are chosen to match the implied
Solow technology process at an annual frequency.

TABLE 1.

The baseline model parameters. The values were obtained by fitting technology process
to time series data on the Solow residual, and matching the mean log capital stock

level of 1.396 and its autocorrelation of 0.943.

Parameter Description Annual Value

κ technology growth 0.0176

σ technology shock standard deviation 0.0492

α labor’s share 0.65

δ depreciation 0.0517

β subjective discount factor 0.9847

γ relative risk aversion 4

The remaining parameters are chosen so that our theoretical predictions match
certain features of the log capital stock time series. From the functional central limit
theorem result in Corollary 3.1 we predict that for small σ the mean of the log capital
stock should be l∗ and its autocorrelation g0

x(l
∗). In Appendix A we provide analytic

expressions for these variables in terms of the model parameters. From our data
sample, we find that the log capital stock has mean 1.396 and annual autocorrelation
of 0.943. Given the values of α and θ = exp(−κ) above, for any choice of the relative
risk aversion parameter γ the expressions for (l∗, g0

x(l
∗)) determine pairs (β, δ) which

are consistent with the data. However for arbitrary γ, we are not guaranteed that β
and δ will be between zero and one. By experimenting, we found that setting γ to the
plausible, if slightly high, value of 4 led to reasonable results for the subjective discount
rate and deprecation. Our specific parameter choices are summarized in Table 1.

In accordance with our theory we analyze the model as we vary σ, but we keep the
remainder of the parameters fixed. In order to carry out the analysis, we also need
the optimal policy functions g0 for the deterministic model and gσ for the stochastic
model. To find the policy functions, we solve the Euler equations (6) and (15) on a
grid of 15,001 points centered on the steady state level, using log-linear interpolation.
For the stochastic model, we approximate the conditional expectation using Gauss-
Hermite quadrature with 51 nodes. For the functional central limit theorem results,
we do not need the entire policy function but only its derivative at the steady state.
Following Judd and Guu (1997), we determine this value exactly by differentiating
the Euler equation (15) at the steady state, which leads to a quadratic equation. In
Figure 1 we plot the log capital accumulation function g0(l) from the deterministic
model along with its linear approximation l∗+g0

x(l
∗)(l−l∗). Here we see that the policy

function is nearly linear, but with a slight convexity which is apparent at the edges of
the state space. This figure provides a preview of some of the results to follow: the
linear approximation provides a good characterization of the policy function except
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FIGURE 1. The log capital accumulation function from the numerical solution of the deterministic
growth model and its linear approximation.
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FIGURE 2. A simulation of the logarithm of the capital stock and detrended output. The dashed lines
show the large deviation bands.
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FIGURE 3. Simulations of the logarithm of the capital stock and for different shock variances, and
histograms of the differences from the deterministic steady state (l∗).

far from the steady state. Furthermore by Theorem 4.4, the slight convexity suggests
that positive escapes will be more likely.

As we noted above, our analysis identifies large movements in the log capital stock
lt with business cycles. Figure 2 provides the justification for this identification. The
figure plots some simulated data from the baseline parameterization, showing the
value of the log capital stock minus its deterministic steady state level (lt− l∗), and the
detrended log output values. The figure clearly shows the negative correlation between
the log capital stock and log output. However, more important for our purposes is
the fact that large changes in output correspond to the large changes in the capital
stock. The dotted lines in the figure plot the “escape sets” (bands of ±ε) that we
will consider in our analysis of large and moderate deviations below. The significant
escapes in the figure correspond to significant booms or recessions. For example, near
period 150 there is a large fall in the log capital stock which accompanies a large
increase in output relative to trend. Then around period 200 the log capital stock
experiences a positive escape, which accompanies a decrease in output to back near
trend. Another boom occurs in period 300, followed by a series of recession in periods
325, 375 and 425 as output falls from far above trend to below trend. In summary,
we see the negative escapes correspond to booms (peaks of output relative to trend),
while positive escapes correspond to recessions (falls in output relative to trend).

We now turn to examining the results of our three different asymptotic characteri-
zations of the model. Table 2 summarizes the simulation results for different levels of
the standard deviation of the technology shock process, which we index by dσ where
σ is as in Table 1 and we let d vary. Turning first to the functional central limit
theorem predictions, the first two columns of the table give the autocorrelation and
standard deviation of the log capital stock lt from simulations of 5000 periods. From
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TABLE 2.

Simulation results for different levels of the technology shock standard deviation.

Tech. FCLT LDP MDP

Std. Mean Auto. Std. Mean Positive Mean Positive

Dev. Level Corr. Dev. Time (Percent) Time (Percent)

2 σ 1.32 0.946 0.301 10.1 49.6 18.9 49.8

1.5 σ 1.35 0.946 0.227 16.5 57.3 25.5 56.1

σ 1.37 0.947 0.152 42.3 51.6 42.3 51.6

0.75 σ 1.38 0.947 0.114 108.3 52.8 65.5 53.5

0.625 σ 1.38 0.947 0.095 241.0 54.4 88.7 52.3

0.5 σ 1.38 0.947 0.076 1008.1 58.2 132.0 53.1

Corollary 3.1 above, our theoretical predictions are that the mean should be l∗, the
autocorrelation should be g0

x(l
∗), and the standard deviation dσ/

√
1− g0

x(l
∗)2, which

in our baseline parameterization are 1.396, 0.943, and 0.148d, respectively. These are
values very close to those in the table when d = 1. Further, the standard deviation of
l∗ decreases proportionately to d in the simulations, just as the theory predicts. These
results are further illustrated graphically in Figure 3. The left panels plot a portion
of the simulated lt series for σ and 0.5σ, while the right panels plot a histogram of
lt − l∗ from the full 5000 period simulations. The figure clearly illustrates that for
small shock settings, the log capital stock series becomes concentrated around the
deterministic steady state. Further, as our theoretical results suggest, the differences
from the steady state look to be very Gaussian in character.

We now turn to our results based on the large deviation and moderate deviation
principles, which characterize certain “rare” events in the log capital stock process.
In both cases, the key to determining the probability of an escape and the mean
escape times is given by the rate function. For the moderate deviation principle,
our results in Theorem 5.1 analytically characterize the rate function. However for
the large deviation principle, we must use numerical methods. Our solution strategy
works with the first order conditions from the minimization problem in (21) which
defines the function V and determine a dominant escape path. For any given horizon
T , problem (23) is a two-point boundary value problem for a path [u]T which starts
at l∗ and ends at l∗ ± ε at date T . In principle, we could solve the problem for each
T and then minimize over the horizon length. A simpler method, which we adopt,
converts the boundary value problem to an initial value problem. The first order
conditions from the minimization problem in (23), as given in (C.4) in Appendix C,
can be rewritten so that they imply a recursion for the optimal path. In particular,
we have for 1 ≤ t ≤ T − 1:

ut+1 = g0(ut) +
ut − g0(ut−1)

g0
x(ut)

. (25)

With an arbitrary first step u1, we can then iterate on (25) until we hit a terminal
uT which is at least ε units from l∗. Then we can evaluate the rate function along
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this proposed path, to obtain a value S(T, (l∗, u1, ..., uT )). Then minimizing over the
initial step u1, we obtain the optimized rate function V . This algorithm determines T
endogenously, and proved to be very fast in practice. Note that the entire algorithm
must be carried out numerically, as (25) at each step uses the numerical policy function
(shown in Figure 1) and its derivative.
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The results of our calculations for the large and moderate deviation principles are
shown in Figure 4. The figure plots the rate functions V and J = ε2

2
(1 − g0

x(l
∗)2) in

our baseline parameterization for different values of the escape set ε. In particular,
we index the escape sets by ε = n

√
σ and let n vary. We know from Corollary 5.2

that the MDP rate function is symmetric, while we find that the LDP rate function is
slightly asymmetric. As Theorem 4.4 suggests, the convexity of the policy function g0

implies that the rate function is slightly lower for positive escapes than for negative
escapes. This implies that we expect large recessions to occur more frequently in the
model than large booms. The corresponding dominant escape paths are shown in
Figure 5. Interestingly, we find no overall pattern among the dominant escape paths
for different size escape sets. In order to escape, we could either have a few very large
shocks or a longer accumulation of small shocks in the same direction. The figure
shows that larger escape sets are associated with paths that move larger distances
in shorter amounts of time. However, the overall length of the dominant path may
increase or decrease with the size of the escape set.

For relatively small escape sets, there is essentially no difference between the MDP
and LDP rate functions. However for large escapes, the asymmetry becomes more
pronounced and the rate functions differ more substantially . This implies that even
though the MDP results only hold for events of order σ1−ρ with 0 < ρ < 1, for small
escapes they provide a good approximation of the LDP results which hold for events of
order 1. Essentially this finding is due to the properties of the policy functions shown
in Figure 1 above. The policy function is well-approximated by a linear function over
much of the state space. Therefore even for the analysis of some events of order 1,
the linear approximation may provide acceptable results. (This is also an implication
of Theorem 4.4 for events of order ε3.) Further, the MDP results which are based on
the linear approximation have simple closed-form expressions which make them easy
to apply and greatly simplify the analysis. However, just as the linear approximation
breaks down far enough away from the steady state, for large enough escapes the MDP
results differ substantially from the LDP results.

The preceding discussion was essentially about the magnitude of the rate functions
in the LDP and MDP cases. However, it is also clear that the linear approximation
misses the asymmetry in the policy function, and so the MDP misses the corresponding
business cycle asymmetries. Even though this effect is most pronounced for large
escape sets, it is still present for smaller escape sets. For example, for an escape of
ε = +

√
σ we have V = 0.0025, while for ε = −√σ we have V = 0.0027. While the

differences are small in absolute terms, recall that they are the exponents determining
the exponential increase in the time between escapes. Therefore, for small enough σ
even though both large booms and large recessions become increasingly unlikely, we
expect recessions to occur more frequently than booms.

We now turn to some simulation results which illustrate our theoretical results.
The last four columns of Table 2 provide a summary of 5000 simulated escape paths
for different levels of the technology shock, which we index by dσ for varying d. Our
theoretical results show that as d goes to zero, the log capital stock converges to l∗,



SMALL NOISE ASYMPTOTICS 21

0.5 1 1.5 2 2.5 3 3.5 4
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
Log Mean Large Deviation Escape Times

1/Multiple of σ2

Simulated
Predicted

0.5 1 1.5 2

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
Log Mean Moderate Deviation Escape Times

1/Multiple of σ

Simulated
Predicted
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results from simulations, while the dashed lines plot predicted results. The top panel plots the results for the
large deviation principle, and the bottom panel plots the moderate deviation principle.
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which is the fixed point of g0. However for nonzero d the fixed point of gσ, which we
denote l̄σ, is different from l∗ by an amount of order σ. In our simulation results, we
thus look at escapes from the “unbiased” value of l̄σ instead of from l∗. In practice,
this has essentially no effect on the mean escape times, although it does affect the
results regarding the asymmetry of escapes. As evidenced in the first column of Table
2, we find that l̄σ converges to l∗ from below. Thus by analyzing escapes from l∗ we
would be distorting the results in favor of negative escapes.

For each run of the simulation, we initialize the log capital stock at steady state l̄σ

and run the simulation on until either a positive or negative escape happens. For the
large deviation principle, we let the size of the escape set be fixed at ε =

√
σ = 0.222.

Thus the events we consider correspond to nearly a 16 percent increase or decrease
in the log capital stock, and thus represent sizable business cycles. For the moderate
deviation principle, we let ρ = 0.5 and so analyze the process Xdσ,0.5

t = lt−l∗√
dσ

with the

same size escape set ε. This is equivalent to analyzing the process lt but considering
escape sets of size ε(d) =

√
dσ, which thus shrinks with d. Therefore for d = 1, the

LDP and MDP simulation results are the same, while for d < 1 the MDP escape
set is smaller and thus more likely to be exited. The results clearly show the rapid
increase in the mean escape times in both cases. Further, the asymmetry in the model
is evident, especially in the LDP results. As predicted, for small d we observe more
positive than negative escapes and thus find recessions to be more likely than booms.
At the baseline parameters of d = 1, we find that recessions account for 52 percent
of the escapes, while when d = 0.5 they account for 58 percent of the large deviation
escapes (and over 53 percent of the moderate deviation escapes). Thus for small levels
of the shock variance, the asymmetry of the large business cycle fluctuations becomes
more apparent, especially in the large deviation results.

Our theoretical results above also provide accurate predictions of the rate at which
the escape times increase. For the LDP, Theorem 4.3 shows that for small d the escape
times are approximately

Eτ dσ ≈ CL exp

(
V

(dσ)2

)
, or

logEτ dσ ≈ logCL +
V

(dσ)2

for some constant CL. Similarly, the MDP with ρ = 0.5, Theorem 5.2 shows that for
small d the mean escape times are approximately:

Eτ dσ,0.5 ≈ CM exp

(
J

dσ

)
, or

logEτ dσ,0.5 ≈ logCM +
J

dσ
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for some constant CM , where again J = ε2

2
(1−g0

x(l
∗)2). Thus the escape times increase

exponentially with the inverse of d for the MDP and with the inverse of d2 for the
LDP, with the rate of increase determined by the rate function.

These results are shown graphically in Figure 6, where we plot the log of the mean
escape times from Table 2 along with our predictions based on the rate function. Our
analysis provides the rate functions, but does not determine the constants CL and CM .
In the figure we choose the constants in order to get a good fit, and thus our results
should only be evaluated on the slopes of the relevant lines. The top panel of the figure
shows the results from the LDP, and so the x-axis is 1/d2, while the bottom panel
plots the results from the MDP and so the x-axis is 1/d. Although the simulations we
have only six data points, the figure suggests that our theoretical predictions provide a
good characterization of the rate of increase in the mean escape times. Both the LDP
and MDP predictions are much closer for small d, as our theory predicts. Especially
striking is how good the results are for all of the values of d ≤ 1.

7. CONCLUSION

In this paper we have presented and applied a variety of asymptotic methods which
characterize the properties of the stochastic growth model. We have shown that as the
standard deviation of the technology shock process gets small, the log capital stock
process converges to a Gaussian linear autoregression. Further, we have character-
ized the probability and frequency of large fluctuations in the log capital stock. Our
results have shown that for small noise, the capital stock process converges to the
deterministic steady state, and that the autocorrelation and variance of the log capi-
tal stock process can be characterized analytically. Additionally we have shown both
theoretically and through simulations that for small noise large booms and recessions
become increasingly unlikely, although recessions are more likely than booms. Finally,
we showed that the average time between business cycles increased exponentially, and
provided accurate predictions of the rate of increase.

For several reasons, in this paper we have focused on the stochastic growth model.
It is one of the most widely used models, and is a standard test case for new methods.
Further, the fact that there was a single state variable provided substantial technical
simplifications. However it should be clear that our results apply much more broadly,
and could be extended to multidimensional cases. Of particular interest may be our
results on linearization methods. We show that for small noise, a linear approxima-
tion provides a characterization of the average behavior of the model and also certain
occasional large fluctuations (although not events of order one). As linearization re-
mains one of the most common solution methods, these results have many potential
applications.
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APPENDIX A

Properties of the Policy Functions
As described previously it is convenient to scale consumption and capital by the technology level. This

allows us to derive Bellman equations that do not depend on A, but only on k, thus simplifying our analysis.
As is well-known, the Bellman equation for the original problem is:

v(K,A) = max
C

{
C1−γ

1− γ
+ β

∫
v(K′, A′)dG(Z)

}
s.t. (1), (2)

where G is the log-normal distribution function. We can then use the normalizations k = K/A and c = C/A,
then guess and verify that the Bellman equations take the form v(K,A) = A1−γv(k). This leads to the
reduced Bellman equation:

v(k) = max
c

{
c1−γ

1− γ
+ β

∫
(θZ)γ−1v(k′)dG(Z)

}
s.t. (3). (A.1)

Note that the utility function satisfies the Inada conditions, so that we know solutions must be interior. The
first order condition and an application of the envelope theorem then yield the Euler equation (6) in the text.
Analogous results in the deterministic case lead to the Euler equation (15).

Standard results, as in Stokey, Lucas, and Precott (1989) show that in both the deterministic and stochas-
tic cases the policy functions k′ = f0(k) and k′ = fσ(k) are continuous and bounded for finite k. Simple
arguments also show that the policy functions are strictly increasing, and further that the consumption poli-
cies are also strictly increasing. Results from Araujo (1991) and Santos (1991) show that the policy functions
are continuously differentiable in the deterministic case, and Santos (1991) provides a bound on the deriva-
tive. By adapting results from Amir (1997), we also have that the policy functions are twice continuously
differentiable in the stochastic case (see also Blume et al, 1982), and are bounded on the interior of the state
space. Finally, the results in Santos (1993) suggest that in our model the policy function in the deterministic
case is also twice continuously differentiable. As an optimal path is always interior and, as we show below,
there is a unique interior stable steady state, we can apply the imply the implicit function theorem to establish
the higher order smoothness of the policy function.

We next turn to deriving analytic expressions for the deterministic steady state l∗ and the derivative of
the policy function at the steady state g0

x(l
∗). These expressions form the basis of our calibrations. From the

Euler equation (15), the unique interior deterministic steady state is easily seen to be:

k∗ =

(
1− βθγ + δβθγ

αβθγ

) 1
α−1

.

Taking logs gives l∗.1 Then from (3), we find the steady state consumption c∗ = (k∗)α + θ−1−δθ
θ

k∗. This

in turn allows us to evaluate the derivatives of the utility function at the steady state: u′ = (c∗)−γ , and
u′′ = −γ(c∗)−γ−1. Following Judd and Guu (1997), we can apply the implicit function theorem to the Euler
equation (15) to find a quadratic expression for the derivative of the consumption function at the steady state
c′ = c0x(k

∗):

(c′)2
[
βθγ+1u′′

(
α(k∗)α−1 + 1− δ

)]
+ c′

[
u′′ − βθγ+1u′′

(
α(k∗)α−1 + 1− δ

)2]− βθγu′α(α− 1)(k∗)α−2 = 0

Using the expression for k∗, this can be reduced to:

(c′)2 +D1c
′ +D2 = 0

where:

D1 =
1

θ
− 1

βθγ
, D2 = −βθγ+1 c

∗

γ
α(1− α)(k∗)α−2.

Since D2 < 0, this insures that c′ is real, and since we know c′ is positive, we have that:

c′ = −D1 +
√
D2

1 − 4D2 > −D1.

With this expression, we can then evaluate g0
x(l

∗):

g0
x(l

∗) =
α(k∗)α − k∗c′ + (1− δ)k∗

(k∗)α − c∗ + (1− δ)k∗
.

1As always, there is also a trivial boundary steady state at zero. As long as the initial capital stock is
positive, the zero steady state will not be reached.
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As f0 is strictly increasing, g0
x = kf0

x/f
0 is strictly positive. Further, using the expressions for c′, c∗, and k∗

we have that:

c′ > −D1 =
1

θ
− 1

βθγ

= α(k∗)α−1 + 1− δ − 1

θ

=
c∗

k∗
− (1− α)(k∗)α−1

and therefore g0
x(l

∗) < 1, so that the unique interior steady state is stable.
All that remains to be shown is that the stochastic policy function converges to the deterministic one.

As in the assumptions, we confine our attention to a compact set K ⊂ (0,∞). The proof adapts results in
Santos and Vigo (1998). First note that the sequence {Zσ} converges weakly to the constant value of 1 as
σ → 0. Next consider the deterministic value function v0(k), and note that (Zσ)γ−1v0(Zσx) is continuous
and uniformly integrable (since v0 is bounded above). Therefore

lim
σ→0

∫
(Zσ)γ−1v0(Zσx)dGσ(Zσ) = v0(x). (A.2)

Furthermore, since v(K,A) is a concave function for all σ ≥ 0 , (Zσ)γ−1v0(Zσx) ≤ v0(x), and therefore the
convergence in (A.2) is monotone, and therefore by Dini’s Theorem (see Dudley, 1989) uniform on compact
sets. Next, we define the Bellman operator on the right side of (A.1) as T σ, with the corresponding operator
T 0 in the deterministic case. By our uniform convergence result, we then have that T σv0(k) → T 0v0(k).
Additionally, since T σv0(k) ≤ T 0v0(k) = v0(k), this convergence is again uniform on compact sets. Finally,
letting ‖ · ‖ be the sup norm on the compact set K, we have:

‖v0 − vσ‖ = ‖T 0v0 − Tσvσ‖
≤ ‖T 0v0 − Tσv0‖+ ‖T σv0 − Tσvσ‖
≤ ‖T 0v0 − Tσv0‖+ βθγ−1‖v0 − vσ‖

by the triangle inequality and the contraction property of T σ. Thus:

‖v0 − vσ‖ ≤ 1

1− βθγ−1
‖T 0v0 − Tσv0‖

and so vσ converges uniformly to v0, which implies that cσ converges pointwise to c0. This in turn implies
the pointwise convergence of gσ to g0.

To show that the convergence of the policy functions is uniform, for a given k define the function:

G(c) =
c1−γ

1− γ
+ βθγ−1v0(θ(kα − c+ (1− δ)k)).

Further, let c0 = c0(k) and cσ = cσ(k). Then it is clear that G(c0) = v0(k) and G(cσ) ≥ T σv0(k) so that
G(c0) − G(cσ) ≤ T 0v0 − Tσv0. Then note that G′(c0) = 0 and G(c) is concave with a bounded second
derivative on K (since the utility and value functions have finite second derivatives for k > 0). Call the bound
η. Then we have:

η

2
(c0 − cσ)2 ≤ G(c0)−G(cσ)

and therefore:

|c0 − cσ| ≤
√
η

2
|T 0v0 − Tσv0|.

Since this expression holds for all k, we can take the sup over k, and the uniform convergence follows by our
results above.



26 NOAH WILLIAMS

Moreover the convergence of the value functions on K is exponential at rate σ2, implying that the con-
vergence of the policy functions is exponential at rate σ. This is evident from the following:

∥∥Tσv0 − T 0v0
∥∥ =

∥∥∥∥maxc

{
c1−γ

1− γ
+ β

∫
(θZ)γ−1v0(k′)dG(Z)

}
−max

c

{
c1−γ

1− γ
+ βθγ−1v0(k′)

}∥∥∥∥

≤
∥∥∥∥βθ

γ−1 max
k′

{∫
(θZ)γ−1v0(k′)dG(Z)− v0(k′)

}∥∥∥∥

≤
∥∥∥∥βθ

γ−1 max
x

{∫
Zγ−1v0(Zx)dG(Z)− v0(x)

}∥∥∥∥

≤
∥∥∥βθγ−1 max

x
v0
x(x)xE [exp((γ − 1)σW )− exp(γσW )]

∥∥∥

=

∣∣∣∣βθ
γ−1 max

x
v0
x(x)x

[
exp

(
1

2
(1− γ)2σ2

)
− exp

(
1

2
γ2σ2

)]∣∣∣∣ .

Here the third line uses the definition of k′ in the stochastic model, the fourth uses the concavity of v0,
the boundedness of the derivatives of v0 on K, and the definition of Z, and the fifth uses the properties of
lognormal random variables. On the compact set K the capital stock and the derivative of the value function
are both bounded, yielding the result.

APPENDIX B

Functional Central Limit Theorem
In this appendix, we prove Theorem 3.1 by extending the results of Klebaner and Nerman (1994). The

basis of our result is their Theorem 3, which requires that Assumption 3.1 hold globally, not just on restrictions
to compact sets. We use a truncation argument following Kushner and Yin (1997) in order to extend the
result and show that the truncation is not needed in the limit. As in most of the paper, we focus on the
results in logarithms, i.e. for l = log k. The results for the levels are similar.

In this section, since we focus on the case ρ = 0 we suppress the second superscript and write Xσ
t = Xσ,0

t .
First we truncate the process. That is, for every integer M let qM be a continuous function on the line
satisfying: −M ≤ qM (x) ≤ M , qM (x) = x for |x| ≤ M , qM (x) = M for x ≥ M + 1, and qM (x) = −M for

x ≤ −(M + 1). Note that qMx (x) = 1 for |x| ≤ M and 0 for |x| ≥ M + 1. Then let lσ,M0 = lσ0 and for t ≥ 0
define the truncated process:

lσ,Mt+1 = gσ(qM (lσ,Mt ))− σWt+1. (B.1)

Then we define the normalized differences: Xσ,M
t =

l
σ,M
t −l0t

σ
. Note that we do not need to truncate l0t as long

as |l00| < M , which we assume. Under our assumptions, the truncated process (B.1) satisfies the conditions of
Klebaner and Nerman (1994), Theorem 3. Since the truncation is not applied to the deterministic process,

we have that truncated normalized differences {Xσ,M
t } converge to weakly to the autoregression {Xt} in (17).

We now show that the truncation is unnecessary in the limit by establishing the tightness of the untrun-
cated normalized process. The results of Klebaner and Nerman (1994) establish weak convergence in the
product space, so it is enough to verify tightness at each date. Thus we need to show that for any t we have:

lim
K→∞

sup
σ

P (|Xσ
t | ≥ K) = 0.

By Prohorov’s Theorem (see Kushner and Yin (1997), Theorem 7.3.1), tightness implies the existence of a
weakly converging subsequence. As the truncation is not applied in the limit, the weak limit of the untruncated
process must be the same as the truncated process.

Notice that from any initial condition x ∈ L, we have:

Xσ
1 =

lσ1 − l01
σ

=
gσ(x)− g0(x)

σ
+W1.

The tightness of this sequence thus follows by the tightness of the normal random variable W1. Then we
proceed by induction. Thus for any t we have:

Xσ,0
t+1 =

lσt+1 − l0t+1

σ
=

gσ(lσt )− σWt+1 − g0(l0t )

σ

=
1

σ

[
gσ(lσt )− g0(lσt ) + g0(lσt )− g0(l0t )

]
−Wt+1.
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Therefore we have:

P (|Xσ
t | ≥ K) ≤ P

(∣∣gσ(lσt )− g0(lσt )
∣∣ ≥ Kσ

)
+ P

(∣∣g0(lσt )− g0(l0t )
∣∣ ≥ Kσ

)
+ P (|Wt+1| ≥ Kσ). (B.2)

By the tightness of the normal distribution, the third term goes to zero with K. Then notice that we have
the following: ∣∣g0(lσt )− g0(l0t )

∣∣ = |g0
x(l

0
t )||lσt − l0t |+O(|lσt − l0t |2).

Since x = l00 ≤ l0t ≤ l∗ the derivative is bounded and by the induction hypothesis |lσt − l0t | converges to zero
with σ, and the second term is of order σ2. This implies that the second term in (B.2) converges to zero at
rate σ, which in turn implies that it goes to zero with K. Finally, we split the first term in (B.2) depending
on whether lσt is in L. Notice that:

P
(∣∣gσ(lσt )− g0(lσt )

∣∣ ≥ K
)
= P

( ∣∣gσ(lσt )− g0(lσt )
∣∣ ≥ K

∥∥ lσt ∈ L
)
P (lσt ∈ L) (B.3)

+ P
( ∣∣gσ(lσt )− g0(lσt )

∣∣ ≥ K
∥∥ lσt ∈ Lc

)
P (lσt ∈ Lc).

Notice that by the LDP results in Section 4, the probability of being in L at any date t is of order 1 as σ → 0
and the probability of being in Lc goes to zero (exponentially fast) with σ2. Further, we have previously
established that on L the policy functions converge uniformly at rate σ. Thus the fist term on the right
of (B.3) converges to zero at rate σ. To bound the term on Lc notice that limk→0 f

σ(k)/f0(k) = 1 and
limk→∞ fσ(k) = Hk for some H > 0 for all σ ≥ 0. Thus |gσ(k) − g0(k)| is bounded on Lc. Putting this
together implies that both terms on the right of (B.3) converge to zero at rate σ, and thus the first term in
(B.2) converges to zero with K. This completes the proof of tightness, and so the result follows.

APPENDIX C

Local Expansion of the LDP Rate Function
In this appendix we derive the local expansion in Theorem 4.4. We expand the function V (y) ≡ V (l∗, y)

around y = l∗. At this point the optimal path is ut = l∗ for all t. For a given y reached at date T , each step
ut of the optimal path will be an implicit function of y. However an application of the envelope theorem to
problem (23) gives:

dV

dy
= y − g0(uT−1), (C.1)

d2V

dy2
= 1− g0

x(uT−1)
duT−1

dy
, (C.2)

d3V

dy3
= −g0

x(uT−1)
d2uT−1

dy2
− g0

xx(uT−1)

(
duT−1

dy

)2

. (C.3)

Note that the first derivative (C.1) equals zero when evaluated at y = uT−1 = l∗.
To evaluate the higher order derivatives, we use the first order conditions from problem (23):

ut − g0(ut−1)− (ut+1 − g0(ut))g
0
x(ut) = 0, (C.4)

for t = 1, . . . , T − 1. We obtain implicit expressions for dut
dy

by differentiating (C.4). When evaluated at l∗

this gives:

(1 + g0
x(l

∗)2)
dut
dy

− g0
x(l

∗)
dut−1

dy
− g0

x(l
∗)
dut+1

dy
= 0, (C.5)

with boundary conditions du0

dy
= 0 and duT

dy
= 1. For use below, note that (C.5) is a homogenous second

order difference equation, whose characteristic equation has roots g0
x(l

∗) and 1/g0
x(l

∗). Therefore the general
solution can be written:

dut
dy

= c1g
0
x(l

∗)T−t + c2g
0
x(l

∗)t−T

for some c1, c2. In order to satisfy the boundary conditions (for T →∞) we must have c1 = 1 and c2 = 0, so
that

dut
dy

= g0
x(l

∗)T−t. (C.6)

Substituting this expression into (C.2) gives:

d2V

dy2

∣∣∣∣
l∗

= 1− g0
x(l

∗)2. (C.7)
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Note that this agrees with the expressions in Lewis (1986), who on pp. 32-35 explicitly solves this problem
with a linear state evolution. This follows since a problem with linear evolution whose slope is g0

x(l
∗) yields

the identical difference equation (C.5).
Using similar logic, we evaluate the second derivative with respect to the end point y by implicitly

differentiating (C.4) again. After simplifying and evaluating at l∗ we obtain:

(1 + g0
x(l

∗)2)
d2ut
dy2

− g0
x(l

∗)
d2ut−1

dy2
− g0

x(l
∗)
d2ut+1

dy2

+ 3g0
x(l

∗)g0
xx(l

∗)

(
dut
dy

)2

− g0
xx(l

∗)

(
2
dut
dy

dut+1

dy
+

(
dut−1

dy

)2
)
= 0.

Using (C.6), this simplifies to:

(1+ g0
x(l

∗)2)
d2ut
dy2

− g0
x(l

∗)
d2ut−1

dy2
− g0

x(l
∗)
d2ut+1

dy2
+ g0

xx(l
∗)g0

x(l
∗)2(T−t)−1 (3g0

x(l
∗)2 − 2− g0

x(l
∗)3
)
= 0, (C.8)

with boundary conditions d2u0

dy2
= d2uT

dy2
= 0. Thus (C.8) is an inhomogeneous second order linear difference

equation of the same form as (C.5). We transform it to a homogeneous equation by defining the variable

zt =
d2ut
dy2

− µt, where

µt =
g0
xx(l

∗)
(
3g0

x(l
∗)2 − 2− g0

x(l
∗)3
)

g0
x(l∗)4 − g0

x(l∗)3 − g0
x(l∗) + 1

g0
x(l

∗)2(T−t). (C.9)

Then zt follows the same difference equation as (C.5), but now with boundary conditions z0 = −µ0 = 0,
zT = −µT . This means that we have the solution:

zt = −µT g0
x(l

∗)T−t

and therefore:

d2ut
dy2

= zt + µt

= µT
(
g0
x(l

∗)2(T−t) − g0
x(l

∗)T−t
)
. (C.10)

Evaluating (C.10) at T − 1 and using (C.9) gives:

d2uT−1

dy2
=

g0
xx(l

∗)g0
x(l

∗)
(
3g0

x(l
∗)2 − 2− g0

x(l
∗)3
)

g0
x(l∗)4 − g0

x(l∗)3 − g0
x(l∗) + 1

(g0
x(l

∗)− 1) (C.11)

Then substituting (C.6) and (C.11) into (C.3) and simplifying gives:

d3V

dy3

∣∣∣∣
l∗

= −3g0
xx(l

∗)g0
x(l

∗)2
1− g0

x(l
∗)2

1− g0
x(l∗)3

. (C.12)

Collecting (C.7) and (C.12) along with Taylor’s theorem gives the expansion stated in Theorem 4.4. The
conclusions follow from Theorem 4.3, where we note that by Assumption 3.3 the sign of the third derivative
term is determined by g0

xx.
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