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1 Introduction.

The analysis of monetary policy has been typically confined to the use of

small macroeconomic models, in which the central bank is implicitly allowed

to exploit a very limited amount of information. Widely used frameworks for

the empirical analysis of monetary policy are Rudebusch and Svensson (1999,

2002) and Clarida, Gali’ and Gertler (2000). Models of this sort typically

include just three variables: inflation, a measure of the output gap and the

short-term interest rate (policy instrument).

Another large strand of literature has, instead, used VARmodels to study

monetary policy issues. VARs can be seen as a general unrestricted form to

model the economy. We can then apply theoretical restrictions to arrive at

small structural macroeconomic models. However, also within this approach,

researchers have usually employed small VARs, consisting of few variables:

inflation, output gap, federal funds rate and, sometimes, money or commod-

ity prices. They were still characterized by the implicit assumption that the

policy maker was able to exploit only a limited amount of information.

This assumption is clearly unrealistic. Central banks monitor a large

number of economic data and leading indicators. They need to do it since

policy affects target variables with long and uncertain lags. Therefore, they

are in the situation of predicting forward looking variables without perfectly

knowing the current stance of the economy. The use of several indicators,

linked with future developments of the target variables, becomes helpful. A

discussion of the reasons behind policy makers’ use of many indicators is

Kozicki (2001).

Modeling an enlarged information set is probably worthwhile, if we want

to provide a more accurate characterization of the central banks’ decision

environment in the real world.
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The pioneering work in this attempt to consider monetary policy in a

data-rich environment is Bernanke and Boivin (2001), followed by Bernanke,

Boivin and Eliasz (2002). They consider a very large data set and add

common factors to a standard monetary VAR to account for the larger degree

of information available in real-time to the central bank.

Our paper, although with different techniques, tries to contribute to this

young literature. Focusing on the US case, it delivers an attempt to provide

a more realistic approximation of how the Fed behaves and to verify how the

expansion of the available information set affects optimal monetary policy,

comparing the outcomes with limited information counterparts.

In particular, the focus of this paper is on an important unresolved issue

in the monetary policy literature: the reconciliation of observed interest-rate

smoothing and policy conservatism, with optimizing behavior in the context

of theoretical models.

Usually, in fact, dynamic optimization techniques, applied to small macro-

economic models, dictate the optimality of a very aggressive monetary policy

rule, leading to an extremely high volatility of the policy instrument. In the

reality, instead, a completely different behavior is observed: real-world mone-

tary policy is characterized by strong gradualism and interest-rate smoothing.

This puzzle has generated a fertile stream of research on the topic.

In the literature, different explanations, leading to the optimality of policy

gradualism, has been identified (an interesting survey is Sack and Wieland

(2001)) and consist of:

1. Forward-Looking Expectations. In the presence of forward-looking mar-

ket participants, policy rules characterized by partial adjustment will,

in fact, be more effective in stabilizing output and inflation, since a

small initial policy move in one direction will be expected to be followed
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by additional subsequent moves in the same direction. This induces a

change in future expectations, without requiring a large initial move.

An illustration of this reasoning can be found in Woodford (1999).

2. Data Uncertainty (real-time data). If macroeconomic variables are mea-

sured with error, the central bank moderates its response to initial

data releases, in order to avoid unnecessary fluctuations in the target

variables. An interesting example of monetary policy using data in

real-time is Orphanides (2001).

3. Parameter Uncertainty. If there is uncertainty about the parameters of

the model of the economy, an attenuated response to shocks is optimal,

as shown in the original paper by Brainard (1967). Several recent

papers have reinvestigated this prediction, see, for an example in VAR

models, Sack (2000).

Rudebusch (2002), instead, takes an alternative view, treating monetary

policy inertia as an illusion, due to highly serially correlated unforecastable

shocks or measurement error that central banks have to face (e.g., a lasting

misperception of the actual level of potential output).

In this paper, we propose and evaluate a different explanation of the

observed policy inertia:

4. Larger Information Set. We deem that introducing some elements of

realism in the analysis, such as the possibility to exploit a larger in-

formation set for the central bank (taking into account also the asso-

ciated model uncertainty, deriving from this data-rich environment),

leads to partially solve the interest-rate smoothing puzzle. In practice,

extremely aggressive rules are due to a misspecification of the standard
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models, which omit many relevant information, indeed used in policy

formulation.

In our framework, we allow the central bank to take into account a variety

of data. As we focus on the US case, these additional variables are the leading

indicators, explicitly rendered public and used by the Federal Reserve in

policy formulation.

As the information is quite diverse, the policy maker has to face a consid-

erable degree of model uncertainty and needs to recognize which indicators

are more accurate predictors of future inflation and real activity.

To take the pervasive model uncertainty, associated with such a large

information environment, into account, we employ BayesianModel Averaging

(BMA) with Markov Chain Monte Carlo Model Composition (MC3). This

technique has recently begun to be used in economics studies (for example,

to find robust growth determinants, as in Fernandez, Ley and Steel (2001));

to my knowledge, it has not received application in optimal monetary policy

so far.

The procedure will be described in detail in the next section. We can

already anticipate that it implies the estimation of all the models coming

from every possible combinations of the regressors; the derived coefficients

are, then, obtained as averages from their values over the whole set of models,

weighted according to the posterior model probabilities.

We believe this technique could be of considerable help in this field, where

the consideration of model uncertainty is crucial and has recently generated

a growing attention. To date, model uncertainty has been introduced in the

policy maker’s decision problem, through the use of different techniques. A

first attempt has been to add multiplicative (parameter) uncertainty, which

assumes that the only uncertainty about the model comes from unknown
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values of the parameters. Another stream of research, among which the well-

known work by Onatski and Stock (2002), has applied robust control tech-

niques (minimax approach), assuming that the policy maker plays a game

against a malevolent Nature and tries to minimize the maximum possible

loss, whereas Nature seeks to maximize this loss. A pitfall of this approach

is that it takes into account only an extreme level of uncertainty, ignoring

uncertainties about other important aspects of the models. This practice

corresponds to the choice of the “least favorable prior” in Bayesian deci-

sion theory, but this is just one of the possible assessment of prior model

probabilities and, probably, not the most realistic; an attractive discussion

of the drawbacks of the robust control literature in monetary policy is Sims

(2001). A recent alternative approach to model monetary policy under un-

certainty comes from the proposal of “thick” modeling, as in Favero and

Milani (2001). They recursively estimate several possible models, generated

by different combinations of the included regressors, and they calculate the

associated optimal monetary policies. Under recursive “thin” modeling, the

best model, according to some statistical criterion, is chosen in every period

and policy is derived. Then, they propose recursive “thick” modeling, as

a mean to take into account the information coming from the whole set of

models, that would be ignored with the previous strategy. Optimal policies,

for each specification, are calculated, and the average (or weighted average,

based on some measure of model accuracy) is taken as benchmark monetary

policy.

A recent interesting effort to provide a general treatment of the problem

of modeling model uncertainty is Onatski and Williams (2003).

We try to mimic the decision problem of the Fed in real time. In each

period, we estimate the economy equations by BMA, taking thus model un-

6



certainty into account, and we obtain the optimal policy rule. In the next

period, we repeat the same exercise re-estimating the system and obtaining

a new policy rule. We consider adaptive learning between periods, as de-

scribed for example in Evans and Honkapohja (2001). An alternative could

have been the use of Bayesian learning, through Kalman Filter. A more chal-

lenging possibility would be to jointly consider estimation and control, and

allowing active experimentation by the central bank. Active experimentation

is not examined in the present work.

Learning is quite interesting in this setting, since not only it permits

to update the coefficients over time, but also, through the use of BMA, it

permits to learn the correct model of the economy. This represents a form

of learning in misspecified models, which can be expressed in a particularly

easy form.

This paper aims at contributing to the literature in the following aspects:

first, it proposes original estimation techniques and a novel method to incor-

porate model uncertainty in the empirical analysis of monetary policy. Then,

it tries to add more realism in the modeling of central banking, by allowing

the exploitation of a wider information set, with the objective of examining if

in such an environment a smoother policy instrument path could be optimal.

In its novel framework, this work aims at explaining, at least partially,

the optimality of monetary policy conservatism and interest-rate smoothing,

proposing an original solution, that can be added to those suggested in the

literature. Our results also stress the importance of taking additional infor-

mation and model uncertainty into consideration in the modeling of optimal

monetary policy-making.

The rest of the paper is organized as follows. Section 2 introduces the

methodology we use, describing adaptive learning and Bayesian Model Aver-
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aging estimation. In Section 3, we present some evidence on our estimation

results. Section 4 analyzes monetary policy in a large information environ-

ment, focusing on policy gradualism (comparing results with limited informa-

tion settings) and on the excess response of policy to additional information.

Section 5 concludes and discusses possible extensions of research.

2 Methodology.

In this section, we describe the techniques we will use in the rest of the paper.

In each period, we mimic the decision problem of a central bank, which needs

to obtain estimates of the state of the economy and compute optimal policy.

We assume that the policy maker monitors several variables and leading

indicators. Therefore, she faces a high degree of model uncertainty, since

she has to decide what weight to assign to each variable. At every point in

time, the central bank re-estimates the equations governing the economy: the

parameters are time-varying and also the most likely models of the economy

are allowed to vary over time. The policy maker learns both the model

coefficients and the model itself by adaptive learning.

2.1 Adaptive Learning.

We seek to mimic the policy maker problem in real-time. In every period,

the central bank tries to obtain an estimate of its target variables, inflation

and output gap; to do this, a large number of potentially relevant leading

indicators are employed.

As we recursively estimate the economy, we need to allow some learning

mechanism between periods. We choose adaptive learning, which has already

been the focus of a large number of works in the learning literature.
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Let’s briefly describe it in the simplest case, following Evans and Honkapo-

hja (2001). Suppose that inflation behaves as:

�� = �+ ��
�
� + ���−1 + ��� (1)

where ��−1 is an exogenous variable. Suppose that agents in this econ-

omy act as econometricians and form expectations based on estimates of a

statistical model. Their forecasts are given by:

��� = ��−1 + 	�−1��−1� (2)

where the coefficients are updated every period, as new information be-

comes available. Under Recursive Least Square (RLS) learning, agents run

a least squares regression of �� on 
�−1, where 
� = (1� ��). Then, the

parameters’ vectors �� = (��� 	�)
0 is recursively calculated as:

�� = ��−1 + �
−1
−1� 
�−1(�� − �0�−1
�−1)� (3)


� = 
�−1 + �−1(
�−1
0�−1 −
�−1)� (4)

where 
� is the moment matrix. The perceived law of motion (PLM) is

given by:

�� = (�+ ���−1) + (� + �	�−1)��−1 + ��� (5)

and it is different from (1), the actual law of motion (ALM). Evans and

Honkapohja (2001) discusses E-stability and prove that �� −→ �, as � −→∞.

An alternative to adaptive learning would have been the use of Bayesian

learning, through the use of Kalman Filter. We believe that our results would

not be considerably different. A more radical alternative, would be to allow

active experimentation for the central bank. In this case, optimal control and

estimation cannot be considered disjointly. The dynamic optimization prob-

lem would be given by the minimization of a standard quadratic loss function,
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subject to the linear equations, describing the evolution of the economy, and

the nonlinear updating equations, representing the dynamics of beliefs. In

this context, the decision maker can experiment, by changing the policy in-

strument, to learn the structure of the economy. This experiment is costly,

so there will be an optimal level of experimentation. An evaluation of the im-

pact of experimentation on policy can be found in Beck and Wieland (2002),

among others. In the current paper, we rule out active experimentation, as

our aim is to focus on the potential for a large information set to explain

observed policy smoothness. This is not really a paper on learning and we

just bound ourselves to use the relative techniques.

A potentially interesting characteristics of our approach, though, is that

it can represent learning in misspecified models, in a very easy way. We will

explain this in more detail after having discussed how we account for model

uncertainty.

2.2 Model Uncertainty: Bayesian Model Averaging.

Monetary policy-making under uncertainty has been at the center of several

studies in recent years. Model uncertainty represents, in fact, an unavoidable

characteristics in modeling monetary policy decisions. In particular, in a

large information environment like ours, model uncertainty is likely to be

very pervasive.

Therefore, due to the large number of included explanatory variables, we

do not consider a unique model with all of them, but, instead, we focus on

all the possible combinations obtained with the different regressors. Thus, if

the specification contains � potential regressors, we end up with the use of

2� × 2 (as we have two equations) different models: in our case, we have 15

variables per equation, and we consider the lagged value of each of them and
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three additional lags for the dependent variable. Hence, we end up dealing

with a set of 218 × 2 = 524� 288 possible models ��.

We may, therefore, describe the inflation and output equations the policy

maker implicitly uses, in the following way:

[AS] �� = �
�
0���� + �

�
���X��� + �

�
� (6)

[AD] �� = �
�
0���� + �

�
���X

0
��� + �

�
� (7)

where �� is a t-dimensional vector of ones, ��0�� and �
�
0�� are constants, �

�
���

and ����� are time-varying vectors of the relevant coefficients for every model

�, and the regressors’ matrices are represented by X��� = [��−1� ��−2� ��−3�

��−4� ��−1� Z�−1], X0
��� = [��−1� ��−2� ��−3� ��−4� (��−1 − ��−1)� Z�−1], with Z�−1

including lagged values of the leading indicators used by the Fed and listed

in the appendix. Additional variables Z� = {
�+�}∞�=−∞ are identified as the

unavoidable central bank’s judgment in Svensson (2003).

We use quarterly data, from 1969 to 2001. In the estimation, we employ

demeaned variables, so we can get rid of the constants.

To deal with the considerable model and parameter uncertainty, arising in

this wide information environment, we use Bayesian Model Averaging (BMA)

estimation with Gibbs sampling, which allows inference averaged over all

models. To solve the computational burden, we employ a technique known

as Markov Chain Monte Carlo Model Composition (MC3), which derives

from the work of Madigan and York (1995). The use of BMA is necessary, as

we have included a too large number of regressors to be estimated within one

single model; this technique also enables us to account for model uncertainty,

identifying the most robust predictors, across all the possible specifications.

Our estimation procedure enables us to deal also with heteroskedastic-

ity and the presence of outliers; by applying the Markov Chain Monte Carlo
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method, instead, we are able to derive the posterior distribution of a quantity

of interest through the generation of a process which moves through model

space. Our choice of prior distribution reflects what is done in Raftery, Madi-

gan and Hoeting (1997), i.e. the use of data-dependent “weakly informative”

priors. In particular, following them, we use the standard normal-gamma

conjugate class of priors:

� ∼ �
¡
�� �2�

¢
�

��

�2
∼ �2	�

where �, �, the matrix � and the vector � are hyperparameters to be

chosen. The distribution of � is centered on 0, we use � = (0� 0� ���� 0), as

our variables are demeaned and, thus, we can avoid the constant term. The

covariance matrix � equals �2 times a diagonal matrix with entries given by³
���(� )� 
2

��
(�1)
� 
2

��
(�2)
� ���� 
2

��
(��)

´
, where here � stands for the dependent

variable,  �, � = 1� ���� �, for the �-th regressor, and � is a hyperparameter

to be chosen. In our estimation, we select � = 4, � = 0�25, � = 3 (we have

experimented different values, but the results are substantially unchanged).

By means of Bayesian estimation, the parameters are averaged over all

possible models using the corresponding posterior model probabilities as

weights; in accordance with the literature, exclusion of a regressor means

that the corresponding coefficient is zero.

This procedure is clearly better than just considering a single best model

�∗, and acting as if it was the ‘true’ model, since this procedure would ignore

the, potentially considerable, degree of model uncertainty and would lead to

underestimation of uncertainty about the quantities of interest.

The Bayesian solution to this problem is the following: define M =

{�1� ������}, the set of all possible models, and assume ∆ is a quantity

of interest. Then, the posterior distribution of ∆ given the observed data !
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is:

"� (∆|!) =
�X
�=1

"� (∆|��� !) "� (��|!) � (8)

which is an average of the posterior distributions under each model,

weighted by the respective posterior model probabilities. This is exactly

what is known as Bayesian Model Averaging (BMA). From (8), "� (��|!)
is given by:

"� (��|!) = "� (!|��) "� (��)P�

�=1 "� (!|��) "� (��)
� (9)

where

"� (!|��) =

Z
"� (!|�����) "� (��|��) #�� (10)

represents the marginal likelihood of model ��, obtained as the product

of the likelihood "� (!|�����) and the prior density of �� under model ��,

"� (��|��); �� is the vector of parameters of model ��, and "� (��) is the

prior probability of�� being the ‘true’ model (note that all the probabilities

are implicitly conditional on the set of all possible models M).

Before implementing any method of estimation, we need to specify a prior

distribution over the competing models �� (i.e., we need to assign a value

to "� (��) in expression (9)). The obvious neutral choice, when there is no

a priori belief, would be to consider all models as equally likely. Otherwise,

when we have prior information about the importance of a regressor, we can

use a prior probability for model ��:

"� (��) =

�Y
�=1

�
���
� (1− ��)1−��� � (11)

with �� ∈ [0� 1] representing the prior probability of �� 6= 0 and ��� is

a variable assuming value 1 if the variable � is included in model ��, and

value 0 if it is not. Here, we consider �� = 0�5, which corresponds to a

Uniform distribution across model space. In this case, the prior probability
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of including each regressor is 1$2, independently of which other predictors

are already included in the model.

Obviously, different choices would be possible, for example, an interesting

case would be considering �� % 0�5 ∀�, which corresponds to imposing a

penalty on larger models.

With an enormous number of models, the posterior distributions could

be very hard to derive (the number of terms in (8) could be extremely large,

and also the integral in (10) could be really hard to compute).

For this reason, we need to approximate the posterior distribution in (8)

using a Markov Chain Monte Carlo approach, which generates a stochastic

process which moves through model space. An alternative approach, not im-

plemented here, would have been the use of Occam’s Window, which implies

averaging over a subset of models supported by the data.

Our method works as follows: we construct aMarkov Chain {��� � = 1� 2� 3� ���}
with state space � and equilibrium distribution "� (��|!), then we simu-

late this Markov Chain for � = 1� ���� � , with � the number of draws. Under

certain regularity conditions, it is possible to prove that, for any function

&(��) defined on � , the average

' =
1

�

�X
�=1

&(�(�)) ��(�−→ )(&(�))� as � →∞� (12)

i.e. it converges almost surely to the population moment (for a proof, see

Smith and Roberts, 1993). Setting &(�) = "� (∆|��!), we can calculate

the quantity in (8).

In the implementation, given that the chain is currently at model ��,

a new model, say ���which belongs to the space of all models with either

one regressor more or one regressor less than ��, is considered randomly

through a Uniform distribution. The chain moves to the newly proposed
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model�� with probability " = min
n
1� �
(��|�)

�
(��|�)

o
, and stays in state�� with

probability 1− ".
The goal of the procedure is to identify the models with highest posterior

probabilities: only a limited subset of the models is thus effectively used in

the estimation, but, in any case, a subset representing an important mass of

probability.

In the estimation, all the regressors are employed and the coefficients’

values result from the averaging over all possible models, using, as weights,

the posterior model probabilities, which, in turn, are based on the number of

visits of the chain. As previously mentioned, when a regressor is not included

in a specification its coefficient is zero. If a regressor is not a significant

predictor for the dependent variable, it is assigned a coefficient close to zero

with a high p-value. In addition, both the estimates of the coefficients and

the models themselves are time-varying. As explained in the previous section,

coefficients evolve according to:

�Y� = �Y�−1 + �
−1
−1� XY

� (Y� −XY0
� �

Y
�−1)� Y = �� �� (13)

where 
� again is the moment matrix. We anticipated in the previous

paragraph that learning in our framework can be interpreted as an easy-

to-implement example of learning under misspecified models. There is no

correct model of the economy, we try to estimate a large number of possi-

ble models and assign them a posterior probability to be the ‘true’ model.

Not only the best model is selected, but information coming from the whole

set of models is retained and incorporated into the analysis. Our coefficient

estimates summarizes the information about which are the most successful

predictors of our target variables; they are, therefore, sufficient in account-

ing for the existing model uncertainty. Re-estimating our equations in every

period, we are able, in this way, to take into account also model variation
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(in the form of variation of the regressors composing single models, or just

variation in the probability assigned to the models), besides parameter vari-

ation. There is, therefore, learning on all this huge amount of information.

The problem remains, however, extremely tractable, thanks to our Bayesian

Model Averaging approach. Learning will move towards the true model,

through (12).

3 Estimation.

We can proceed to recursively estimate the two equations (6), (7) by Bayesian

Model Averaging.

One thing to note is that the leading indicators we use are likely to include

some variables, which can be highly collinear: the Markov Chain Monte

Carlo procedure, working in the way described above, will help in avoiding

models with collinear regressors, assigning, on the contrary, high posterior

probabilities to combinations of regressors not characterized by this problem.

In fact, when the Chain is at model �� and a new model with a further

regressor, suppose collinear with one of those already included, is proposed

through the Uniform Distribution, it is likely that the Chain will not move

to the new model, as the additional variable does not convey more useful

information1.

Our Markov Chain Monte Carlo simulation (Gibbs sampling) is based

on 51,000 draws, with the first 1,000 draws omitted for initial burn-in (to

attenuate the effect of initial conditions on final estimates). We are increasing

the number of draws for future versions of the paper. Coefficients’ estimates

however seem to have reached convergence and do not significantly change

1Bernanke and Boivin (2001), in their analysis of monetary policy in a data-rich envi-
ronment, have dealt with this problem using dynamic common factors.
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with longer simulations.

The first estimation is carried out using data from the beginning of the

sample until 1987:03. Then, each period, we redo the exercise, until 2000:04.

We focus on this interval because we want to be in a single policy regime,

when we compare our optimal policy rule with the empirical one. The se-

lected sample corresponds to the Greenspan period as Chairman of the Fed.

As an example of our estimation results, we report our findings for the

last period of the sample in Table 1 and 2, for the inflation and output

specifications, respectively.

Insert Table 1-2 about here.

In Table 1, we see that the chain has visited 8,430 models; among these, we

report the models, which were characterized by a higher posterior probability

greater than 2%. In the table, 1 stands for inclusion of a regressor, 0 for its

exclusion.

We notice that among all the models, the most supported by the data

is characterized by less than 5% probability to be the “true” model. This

indicates that there is enormous uncertainty about the correct model of the

economy. From our estimation results, we can, thus, understand the supe-

riority of a method capable of taking model uncertainty into account versus

choosing a single ‘best’ model, since the posterior probability is spread among

several models.

We also report the posterior estimates of the coefficients, which are ob-

tained by averaging over the whole set of models, with weights equal to

the respective posterior model probabilities, together with the associated t-

statistics and p-values. As already explained, a regressor which is not usually

included in the selected models is assigned a near zero coefficient with a high

p-value.
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Important predictors for inflation, besides its lagged value and CPI infla-

tion, seem to be housing start and new and unfilled orders. Probably, this

leading indicator provide a more accurate indication of the current state of

real activity than the commonly used output gap, and give important infor-

mation about future price pressures. CPI inflation accounts for the additional

effect on inflation of prices of imported final goods2.

Table 2 reports the corresponding results for the demand equation: here

the most favored model accounts for more than 15% of the total probabilty

mass. Significant determinants of the output gap are its lagged value, the real

interest rate, the indicator of consumer confidence and housing starts (the

latter seem able to capture effects of the construction sector, not taken into

account by our output gap measure). Also money supply enters significantly.

To evaluate the importance of time variation in the coefficients and, in-

directly, in the models, we plot the dynamics of the relative estimates over

time.

Insert Figure 1-2 about here.

There seems to be a not irrelevant variation in the effects of the leading

indicators over time. For example, from figure 2, we can see an increase in

the effect of financial wealth on output. Particularly evident is the increase

in monetary policy strength, moving across the sample, as indicated by the

real interest rate coefficient on output gap.

The models visited by the chain have been, individually, estimated by

OLS; in a situation, where the regressors are not the same across the two

equations, and the residuals can be correlated, OLS is not the most efficient

estimator. The efficient estimator would be to simultaneously estimate the

2In fact, being � the share of imported goods in the CPI, �� domestic inflation, ��
�

foreign inflation, CPI inflation �
�
� can be expressed as: ��

� = (1− �)�� + ��
�
� .
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two specifications by the Seemingly Unrelated Regression method (SUR).

We find that estimates under this joint estimation are totally similar to the

equation-by-equation results, so we remain confident on our OLS.

In order to evaluate the convergence of the sampler, we have performed

the simulation, starting from different initial conditions: the results are un-

changed. We have, also, experimented different lag structures, to verify that

our findings are robust across different specifications. Again, the significant

variables in the estimation, and the monetary policy outcome, which will be

described in the next section, are, absolutely, similar.

4 Monetary Policy in a Large Information
Environment.

After having estimated the equations, we want to derive the optimal mone-

tary policy the central bank would have followed under this framework. It is

our intention, in particular, to examine how the amplification of the policy

maker’s information set (together with the existing model uncertainty) af-

fects the optimal reaction function and how this compares with that obtained

under more traditional small macroeconomic models.

In particular, we consider the unresolved issue of the strong divergence

between optimal monetary policy as derived from theory, which indicates

the optimality of much more variable and aggressive interest rate paths,

and central banks’ behavior observed in practice, instead, characterized by

pronounced policy “conservatism” (attenuation of the feedback coefficients

regarding inflation and output) and “interest rate smoothing” (partial ad-

justment to the evolution of the economy, reflected in small deviations from

previous period interest rate value).

We verify whether the allowance of a wider information set determines
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significant changes over optimal monetary policy decisions.

To do this, we have to solve the stochastic dynamic optimization problem

of a central bank, which wants to minimize an intertemporal loss function,

quadratic in the deviation of inflation and output gap from their respective

targets and with a further term denoting a penalty over interest rate excessive

variability. The period loss function is, therefore, given by:

*� = ���
2 + ���

2 + �∆�(�� − ��−1)2� (14)

The optimization is performed under the constraints given by the dynam-

ics of the economy.

The optimal rule is usually given by the following specification:

�∗� = + �� (15)

i.e., the policy instrument is fixed in every period in response to the

evolution of the state variables3. The rule generally resembles a traditional

Taylor rule, where the federal funds rate responds to deviations of inflation

and output gap, or, also, a Taylor rule with partial adjustment.

However, a Taylor rule expressed as a linear function of inflation and the

output gap will not be optimal, unless these are sufficient statistics of the

state of the economy and they are perfectly observed. We do not think this

to be the case.

Our approach consists on letting the central bank directly respond to all

the available series and leading indicators. When taking a decision, the mon-

etary policy maker evaluates which variables are more successful in predicting

inflation and real activity state (we approximate this by means of Bayesian

3The derivation is, by now, standard and we omit it. The interested reader can find a
thorough derivation in the appendix in Rudebusch and Svensson (2002), among others.
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Model Averaging) and then calculates the optimal feedback coefficients to

those variables.

The optimal monetary policy rule we consider is:

�∗� = + [��� ��−1� ��−2� ��−3� ��� ��−1� ��−2� ��−3�Z�] � (16)

where, in addition to current and lagged inflation and output gap (the

usual Taylor rule terms), the optimal interest rate is adjusted, each period, in

relation to the situation of several economic indicators, through the feedback

coefficients found in the 1× 21 vector + . This seems to better represent the

real world case, where the Fed responds to a variety of different information.

To evaluate the effects of the widening of the information set, we compare

the optimal reaction functions and the implied optimal federal funds target

rate paths (calculated by applying the optimal feedback coefficients to the

actual state of the economy, in every period), obtained under a traditional

representation of the economy, as the one used by Rudebusch and Svensson

(2002), which takes into consideration only three variables (inflation, output

and short term interest rate), and in the context of our higher dimension

framework.

Both are then compared to the actual federal funds rate path, histori-

cally implemented by the Federal Reserve. We focus on the period 1987:03-

2000:04, to track the evolution of monetary policy decisions from the start

of the Greenspan era to the end of our sample.

We recall that Rudebusch and Svensson’s specification is given by two

simple equations of the following form:

��+1 = �1�� + �2��−1 + �3��−2 + �4��−3 + �5�� + ��+1� (17)

��+1 = ,1�� + ,2��−1 + ,3(�� − ��) + ��+1� (18)
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4.1 Monetary Policy Inertia.

In the context of a traditional information environment, in order to obtain

funds rate series compatible with the observed one, it is necessary to assign

a considerable weight to an interest-rate smoothing objective in the central

bank’s preference function.

On the other hand, if we allow the central bank to deal with an increased

and more realistic amount of information, and taking into account the exist-

ing model uncertainty, we can obtain optimal federal funds rate paths very

similar to the actual one, just by considering a negligible 0�0005 penalty

on interest rate variability in the loss function (against a relative weight of

0�9995 given to inflation).

Insert Table 3 here.

We see from the table that just with a very small penalty on policy instru-

ment volatility (assuming “strict” inflation targeting and �∆� = 0�0005), we

are able to obtain optimal federal funds series quite close to the historically

realized one; over the sample, it is characterized by mean and standard de-

viation not too far from the actual funds rate (mean and standard deviation

equal to 5�48 and 1�18, compared with the actual 5�78 and 1�72, respectively).

It is also evident the improvement over the consideration of optimal monetary

policy under a limited information context, where we end up with extremely

unrealistic interest rate series (far too aggressive and volatile, std.= 27�9).

In this latter case, even allowing for a sensibly stronger preference for

smoothing in the objective function (say �∆� = 0�2), the optimal rules we

obtain do not lead to funds rate’s paths characterized by a standard deviation

compatible with the actual one. In fact, the interest rate series derived

from the Rudebusch-Svensson framework, remain excessively volatile; the
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series obtained under wider information sets do not feature enough variability,

compared to the actual one, as the care for smoothing is too high.

4.2 Excess Policy Response.

Let’s start from the Rudebusch-Svensson specification. We want to evaluate

if considering additional information can help to better explain inflation and

output gap. We consider the following equations, where inflation and output

gap are regressed on the set of leading indicators:·
��
��

¸
=

·
,�

,�

¸
Z�−1 +

·
���
���

¸
� (19)

where Z�−1 consists of all the leading indicators. We summarize the infor-

mation about our target variables, coming from this additional information

in b�� and b��, the fitted values obtained by using just the leading indicators.

A first experiment consists in evaluating if this additional amount of in-

formation is indeed useful in better characterizing the behavior of output and

inflation. To see this, let’s consider the two Rudebusch-Svensson equations

(17) and (18) and let’s augment them with an additional term, given by b��
and b��, respectively. If they enter with a significant coefficient, this would

mean that more information should be taken into account in modeling the

economy. This would signal the existence of relevant omitted variables. We

estimate the following:

��+1 = �1�� + �2��−1 + �3��−2 + �4��−3 + �5�� + -
�b�� + ��+1� (20)

��+1 = ,1�� + ,2��−1 + ,3(�� − ��) + -�b�� + ��+1� (21)

We obtain estimates for the -� and -� coefficients equal to 0�33 (standard

error 0�057) and 0�46 (s.e 0�06), respectively. Additional information enters,

therefore, with a highly significant coefficient. The relevance of a larger

information set seems, thus, unquestionable.
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Let’s turn now to the policy rule. The central bank’s reaction function is

usually expressed in the form of a Taylor rule:

�� = +���−1 + +���−1 + .�� (22)

We aim at evaluating whether the central bank actually exploits a larger

information set when setting policy. To this scope, we derive:

�� = fZ�−1 + .�� (23)

where the policy instrument is changed according to the state of the

economy, expressed by the set of leading indicators Z�−1, through the vector

of feedback coefficients f . From (23), we can derive b�� and evaluate if there

exists an excess policy response, by inserting this fitted value in the standard

Taylor rule (22):

�� = +���−1 + +���−1 + -b�� + .�� (24)

We obtain - = 1�05 (with standard error 0�12), a large and highly sig-

nificant excess policy reaction. This signals that a reaction to additional

information is indeed present. This indicates that the Fed makes use of

more information in taking policy decisions, than what is usually assumed in

macroeconomic modeling.

5 Conclusions.

In the paper, we provided an attempt to incorporate a larger information

set in the standard central bank’s decision problem. Since the policy maker

does not have perfect knowledge about the stance of the economy, she needs

to monitor several variables, the ‘leading indicators’, to better forecast the

evolution of the target variables.
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In this framework, model uncertainty becomes an extremely relevant is-

sue. We take into account by proposing estimation through Bayesian Model

Averaging. This procedure, in fact, allows us to estimate the whole set of

believed possible models of the economy. The final estimates give us an

indication of the existing uncertainty.

In this uncertain environment, we have allowed the central bank to learn

over time the value of the model coefficients. Those coefficients are Bayesian

estimates obtained as weighted average of the values over all the models,

weighted by the respective posterior probabilities. Therefore, the form of

adaptive learning we have used can be seen as a way to also learn the best

models through time.

Our effort was to insert some elements of bigger realism in the modeling

of monetary policy-making. In our framework, our aim was to evaluate if

the allowance of larger information set could be able to partially solve the

interest-rate smoothing puzzle in optimal monetary policy. This consists of

a much more gradual and conservative real world monetary policy, compared

to the optimal policy suggested by dynamic optimization results in macro-

economic models. We have shown that in a large information environment,

a more gradual monetary policy can be justified. At least to some extent,

large information sets can be useful to attenuate this puzzle, and probably

warrant further investigation.

We should examine if these results are robust to different modeling choices.

For example, much bigger data sets than ours could be incorporated into the

policy maker’s decision problem and information could be summarized by

dynamic common factors. The optimality of smoothing in a model with

factors is currently the subject of a separate work. A possible result, that

could change with the use of a richer information set, regards the common
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‘price puzzle’ in VAR models, which can probably be eliminated in our new

framework. Other extensions could include more sophisticated methods to

introduce learning. In particular, allowing for active experimentation could

change the results in both directions (i.e., leading to either a more aggressive

or more cautious policy rule).

Finally, we hope that the use of Bayesian Model Averaging, in order to

account for the information coming from different plausible models of the

economy and to explicitly consider model uncertainty (which is, without any

doubt, an extremely relevant and realistic characteristic in monetary policy-

making), could begin to be used in the monetary policy literature.
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Bayesian Model Averaging Estimates
Dependent Variable = Infl
R-squared = 0.9882
sigma^2 = 0.0791
Nobs, Nvars = 123, 18
ndraws =51000
nu,lam,phi = 4.000, 0.250, 3
# of models = 8430
time(seconds) = 9904.759

***************************************************************
Model averaging information
Model infl1 infl2 infl3 infl4 consconf1 cpiinfl1 empl1 housing1 invsales1 m21
model 1 1 0 0 1 0 1 1 1 0 0
model 2 1 0 1 0 0 1 1 1 0 0
model 3 1 0 0 0 0 1 1 1 0 0
model 4 1 1 0 0 0 1 1 1 0 0

Model napm1 neword1 outgap1 retail1 shipm1 stock1 unford1 vehicles1 Prob Visit
model 1 0 1 0 0 0 1 1 0 2.06 43
model 2 0 1 0 0 0 1 1 0 2.883 59
model 3 0 1 0 0 0 1 1 0 3.288 85
model 4 0 1 0 0 0 1 1 0 4.694 67

***************************************************************
BMA Posterior Estimates

Variable Coefficient t-statistic t-probability
infl1 0.989508 13.5742 0
infl2 -0.107356 -1.16659 0.245631
infl3 -0.047529 -0.88069 0.380201
infl4 -0.020755 -0.55718 0.578416
consconf1 -0.044897 -0.28719 0.774452
cpiinfl1 0.124894 3.60133 0.000458
empl1 -0.035393 -1.23553 0.21899
housing1 0.487761 2.74109 0.007037
invsales1 0.025956 0.03329 0.973501
m21 0.001433 0.11204 0.910977
napm1 0.008723 0.03807 0.969693
neword1 0.015809 2.98109 0.003463
outgap1 0.001163 0.05984 0.952381
retail1 -0.000906 -0.0536 0.957345
shipments1 -0.002388 -0.16711 0.867561
stock1 -0.004032 -1.76043 0.08082
unford1 0.011516 2.32201 0.021877
vehicles1 -0.00115 -0.35431 0.723715

Table 1 - BMA Estimates (infl. eq.).
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Bayesian Model Averaging Estimates
Dependent Variable = Output Gap
R-squared = 0.9321
sigma^2 = 0.4039
Nobs, Nvars = 123, 18
ndraws = 51000
nu,lam,phi = 4.000, 0.250, 3
# of models = 4158
time(seconds) = 5498.246

***************************************************************
Model averaging information
Model outgap1 outgap2 outgap3 outgap4 consconf1 cpiinfl1 empl1 housing1 invsales1 m21
model 1 1 0 1 0 1 0 0 1 0 1
model 2 1 0 0 0 1 0 0 1 0 0
model 3 1 1 0 0 1 0 0 1 0 1
model 4 1 0 0 0 1 0 0 1 0 1
model 5 1 0 0 0 1 0 0 1 0 1

Model napm1 neword1 retail1 shipm1 stock1 unford1ehicles reals1 Prob Visit
model 1 0 0 0 0 1 0 0 1 2.099 261
model 2 0 0 0 0 1 0 0 1 2.428 667
model 3 0 0 0 0 1 0 0 1 4.542 262
model 4 0 0 0 0 0 0 0 1 11.785 721
model 5 0 0 0 0 1 0 0 1 15.292 497

***************************************************************
BMA Posterior Estimates

Variable Coefficient t-statistic t-probability
outgap1 0.646787 13.13242 0
outgap2 0.015864 0.189623 0.849917
outgap3 0.004876 0.079459 0.936797
outgap4 0.002226 0.045822 0.963526
consconf1 1.762535 4.434032 0.00002
cpiinfl1 -0.004006 -0.16523 0.869034
empl1 -0.005027 -0.092235 0.926661
housing1 2.41061 5.751456 0
invsales1 -0.620398 -0.386445 0.699835
m21 -0.052378 -2.258083 0.025703
napm1 0.141811 0.194781 0.845886
neword1 -0.000445 -0.0414 0.967044
retail1 -0.000972 -0.034964 0.972165
shipments1-0.001024 -0.075037 0.940307
stock1 0.005927 1.284831 0.201266
unford1 -0.000458 -0.056068 0.955379
vehicles1 -0.000067 -0.010979 0.991258
reals1 -0.077983 -3.03921 0.002898

Table 2 - BMA Estimates (output eq.).
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FEDERAL FUNDS RATE PATHS
��= 0�9995� ��= 0� �∆�= 0�0005 Optimal FF (large information) Optimal FF (R-S) Actual FF

MEAN 5.48 -44.95 5.78
STD. 1.18 27.95 1.72

PERSISTENCE 0.808 0.912 0.969
��= 0�8� ��= 0� �∆�= 0�2 Optimal FF (large information) Optimal FF (R-S) Actual FF

MEAN 7.38 3.11 5.78
STD. 0.002 3.11 1.72

PERSISTENCE 0.807 0.927 0.969

Table 3 - Optimal and actual federal funds rate paths.
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Figure 1 - BMA time-varying coefficients (inflation eq.).
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Figure 2 - BMA time-varying coefficients (output eq.).
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A Data Appendix.

The leading indicators we have incorporated in the central bank’s information

set (in addition to inflation, output gap and federal funds rate) are:

- Consumer Price Index

- Employment

- Housing Starts

- Inventory/Sales ratio

- Money Supply (M2)

- Consumer Confidence

- NAPM (National Association of Purchasing Managers) survey

- New Orders of Durable Goods

- Retail Sales

- Shipments of Durable Goods

- Stock Market

- Unfilled Orders of Durable Goods

- Vehicles’ Sales
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All the data are quarterly, from 1969:02 to 2001:01, and taken from

FRED, the database of the Federal Reserve Bank of Saint Louis, or DATAS-

TREAM..

Variables Code Description Source
INFL. GDPDEF GDP: IMPLICIT PRICE DEFLATOR 1996=100 , SA FRED

OUTGAP GDPC1 REAL GDP BILLIONS OF CHAINED 1996 DOLLARS, SA FRED

GDPPOT REAL POTENTIAL GDP BILLIONS OF CHAINED 1996 DOLLARS FRED

CONS.CONF. USCNFCONQ US CONSUMER CONFIDENCE: THE CONFERENCE BOARD ’S INDEX FOR US SADJ DATASTREAM

CPI INFL. USCP....F US CPI, ALL URBAN SAMPLE: ALL ITEMS NADJ DATASTREAM

EMPL. USEMPNAGE US EMPLOYED - NONFARM INDUSTRIES TOTAL (PAYROLL SURVEY) VOLA DATASTREAM

HOUSING USPVHOUSE US NEW PRIVATE HOUSING UNITS STARTED (ANNUAL RATE) VOLA DATASTREAM

INV/SALES USBSINVLB US TOTAL BUSINESS INVENTORIES (END PERIOD LEVEL) CURA DATASTREAM

USBSSALEB US TOTAL BUSINESS SALES CURA DATASTREAM

M2 USM2....B US MONEY SUPPLY M2 CURA DATASTREAM

NAPM USCNFBUSQ US NATIONAL ASSN OF PURCHASING MANAGEMENT INDEX(MFG SURVEY) SADJ DATASTREAM

NEW ORD. USNODURBB US NEW ORDERS FOR DURABLE GOODS INDUSTRIES(D ISC .) CURA DATASTREAM

RETAIL SAL. USRETTOTB US TOTAL VALUE OF RETAIL SALES CURA DATASTREAM

SHIPMENTS USSHDURGB US SHIPMENTS OF DURABLE GOODS(D ISC .) CURA DATASTREAM

STOCK IND. US500STK US STANDARD & POOR’S INDEX OF 500 COMMON STOCKS(MONTHLY AVE) DATASTREAM

UNF. ORD . USUODURBB US UNFILLED ORDERS FOR DURABLE GOODS(DISC .) CURA DATASTREAM

VEHICLES USPCARRSF US NEW PASSENGER CARS-RETAIL SALES: TOTAL VEHICLES NADJ DATASTREAM

FED . FUNDS USFEDFUN US FEDERAL FUNDS RATE DATASTREAM

Inflation has been calculated as (log("�)− log("�−4)) ∗ 100, output gap as

(log(��)− log(�∗))∗100. For all the non-stationary series, we have considered
their annual growth rates.
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