Goodness-of-fit of the Heston model
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Abstract — An analytical formula for the probability distribution of stock-market returns, derived from the Heston model
assuming a mean-reverting stochastic volatility, was recently proposed &gulzrscu and Yakovenko in Quantitative
Finance 2002. While replicating their results, we found two significant weaknesses in their method to pre-process the
data, which cast a shadow over the effective goodness-of-fit of the model. We propose a new method, more truly capturing
the market, and perform a Kolmogorov-Smirnov test ang’ dest on the resulting probability distribution. The results

raise some significant questions for large time laggd6-+to 250 days — where the smoothness of the data does not require
such a complex model; nevertheless, we also provide some statistical evidence in favour of the Heston model for small
time lags —1 and5 days — compared with the traditional Gaussian model assuming constant volatility.
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1 Assessed model

Standard models of stock-market fluctuations predict a normal (Gaussian) distribution for stock price log-tgturns [
However, the empirical distribution exhibits significant kurtosis with a greater probability mass in its tails and centre of the
distribution P]. In Quantitative Finance 20023]), Dragulescu and Yakovenko (DY) proposed an analytical formula for
the probability density functiorp@f) of stock price log-returns, based on the Heston motleH a geometric Brownian
motion for the log-returns time series coupled with a stochastic mean-reverting volatility. The repdftisglaimed to
outperform the Gaussian on a large scale of time lags 1, 5, 20, 40 and250 days).

1.1 Heston model and DY formula
This model starts with the usual assumption that the Fjclllows a geometric Brownian motion described by the
following stochastic differential equation
S, = pSydt + oS, dW Y (1)
where p is the trend of the market,

o, is the volatility,

Wt(l) is a standard Wiener process.
Log-returns; = Logg—; and centred log-returng = r; — ut are then introduced:

dre = (u— D)t + /oW sincea, = /i @
and )
dzy — —édt + Vo dw (3)

Then, instead of having a constant volatility= o as in the Bachelier-Osborne mods) §], the Heston model assumes
the variancey, = o7 obeys the following mean-reverting stochastic differential equation

dvy = —y(vy — 0)dt + kn/vpd W, (4)



where 6 is the long time mean af;,
~ is the relaxation rate of this mean,
k is a constant parameter called the variance noise,
th(Q) is another standard Wiener process, not necessarily correlatedetH.
DY solve the forward Kolmogorov equation that governs the time evolution of the joint probaBility v|v;) of having
the log-returnz and the variance for the time lagt, given the initial valuey; of the variance
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They introduce a Fourier transform to solve analytically this equation, and obtain the following expression for the proba-
bility distribution of centred log-returns, given a time lag:
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Py(x) = */ dpgeP=tps) (6)
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where TI' =~ +ipkp,,
p is the correlation coefficient between the two Wieriéft%l) anth@),
Q= /T2 +k2(p2 — ips),
v, 6, k andp are the parameters of the Heston model.
Eqgn. @), hereafter designated as the “DY formula”, is the central result of DY’s p&ett[gives the expected proba-
bility distribution of centred log-returns, given a time lag. An asymptotic analystsof P;(z) shows that it predicts a
Gaussian distribution for small values|ef, and exponential, time dependent tails for large valués|of

To confront their formula with observed log-returns, DY take the Dow-Jones Industrial Average from January 04, 1982
to December 31, 2001, and train the four parameters of the Heston modek andy, to fit the empirical distribution
by minimising the following square-mean deviation error

E = |logP; (z) — logPi(z)|
x,t

for all available values of log-returns and time lags = 1, 5, 20,40 and250 days, whereP; (z) is the empirical prob-
ability mass andP;(x) the one predicted by the DY formula. In their results, they set the correlation coeffictent
zero, since (i) their trained paramejgf®”°¢ is almost null pt*"c¢ ~ (), and (ii) they do not observe any significant
difference, when fitting empirical data, between takif§"°? ~ 0 or p = 0. Hence, they reduce the complexity of their
formula. Minimising the deviation of the log instead of the absolute differéR¢ér) — P,(z)| forces the parameters to
fit the fat tails instead of the middle of the distribution, where the probability mass is very high.

A replication of their results, using the same dataset and the same method, is shown il Fidhnepdfsfor different
time lags from 1 to 250 are shown each shifted upwards by a factor of 10 for clarity. Theoretically, this result is brilliant,
since the authors obtain an analytic expression foiptifeP; (x). Furthermore, their model (plain line) seems to fit the
empirical data (dots) far better than the Gaussian (dash line), especially if we look at the fat tails.

But we argue that the method they use to evaluate the goodness-of-fit of their model suffers from two major drawbacks
when pre-processing the data.

1See B Part VI
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Figure 1: Replication of the main result of DY, where outliers are trimmed and data are reused.

1.2 Pre-processing the data

Firstly, DY trimmed the log-returns time series, rejecting any value out of the boundaries presented ihT&lyle
doing so, they remove most of the leptokurtosis of the original dataset (the positive peakinespdifiththe centre),
which is precisely one of the discrepancies from the Gaussian that they should try to fit.

timelag trimming boundaries

1 [—0.04 0.04]

5 [—0.08 0.08]
20 [~0.130.15]
40 [~0.17 0.20]
80 [—0.18 0.25]
100 [—0.20 0.28]
200 [~0.22 0.38]
250 [—0.220.44]

Table 1: Boundaries used by DY to trim the empirical log-returns time series.

We visualise in Figure the effect of trimming the data: all of the log-returns outside the boundaries, represented
here by the two horizontal lines, were trimmed. We believe this way of trimming the data is unfair, because it removes
information from the dataset. Given that the model is supposed to outperform the Bachelier-Osborne model, and specially
to fit the kurtosis and the fat tails, removing extreme values (that belong to the fat tails, and produce kurtosis) is counter-
productive. Even the normal distribution could fit the data quite well in these conditn$d prove this, we compare

2This step is not mentioned in DY’s paper. Before applying this trimming method, strange points used to appear in our results. Then we contacted
the authors who informed us they had trimmed the log-returns time series using the boundaries specified.in Table
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Figure 2: Boundaries used by DY to trim the log-returns, for daily returns.

the kurtosis of trimmed and untrimmed empirical data in Table

time |ag kuntrimmed ktrimmed

1 69.27 1.40

5 19.68 0.72
20 7.80 0.43
40 6.02 0.56
250 -0.33 -0.53

Table 2: Comparison of the kurtosis of timmed and untrimmed empirical data.

Obviously, the kurtosis disappears when data are trimmed, which makes the dataset considerably smoother. Back in
1965, Famag] had already made similar criticism of Kendall's experime®isih which the latter considered outliers so
extreme that he just dropped them.

A second major concern is that DY use a single log-return time series of overlapping returns. For a givératralex
given period, let us say the Dow Jones Industrial Average from January 04, 1982, to December 31, 2001, and a given time
lag 7, let us sayr = 5 days, the raw close price datas&isePriceis composed of close prices, here = 5050. When
DY compute the log-returns datasegReturnsstarting fromclosePrice they obtain the following time series:

logReturns = {r{t € [1, n — 7]}

wherer, = logZ5=, Wt € [1, n — 7],

In our example, we would have

logReturns = {r1,72,...; n_r}
Py, Poyr Pn
- {] l .
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Thus, they obtain a single datasetrof- 7 log-returns. We believe this way of computing the log-returns time series is
biased, because it “re-uses” the data. Indeed, let us assume that a crash occurs afitime they will take into account
this specific event times exactly in their dataset in log-returfy§« _, 74« —r 41, ..., 7t —1 . Working on this time series
will definitely fatten the tails, since every shock in the original price time series will appear exatithes in the log-
returns. Hence, the resulting log-returns time series is not an accurate representation of the market moves anymore; this
gives a decisive advantage to their model compared with the Gaussian, since they train their parameters to fit specifically
the fat tails.

Finally, DY do not statistically test the goodness-of-fit of their formula, but rather rely exclusively on plots that truly
look good.

2 Goodness-of-fit tests

For these reasons, we decided to keep the outliers in our dataset and to use multiple non-overlapping log-return time
series. We perform our tests on the Dow-Jones Industrial Average, from January 04, 1982 to December 31, 2001. From
the raw price time series, we derivelog-return time seriedog Returns; (j € [1,7]) of cardinalitym = [Z], called
“paths”, instead of a single log-return time seriegReturn of cardinalityn — 7. This method sounds more reasonable
for very different reasons: firstly, when economists or traders talk about weekly retun$§ (lays, holidays excluded),
they mean returns from Mondays to Mondays (for instance), and not from Monday to Monday, Tuesday to Tuesday, etc.
Secondly, this method gives a better view of the real market, since tails are not artificially fattened. And finally, this
method will enable us to assess the statistical accuracy of the estimators we will compute.

We can now perform our goodness-of-fit tests on our different models: the GaussiarPOF), the curve resulting from
the DY formula @raguPDP), and a Neural Networkintentionally overfitting the data, that will be used as a benchmark
(nnPDF).

2.1 Kolmogorov-Smirnov Statistic

DY claim that their model fits the empirical data of the concerned dataset better than the Gaussian for any time lag. To
check this, we use the Kolmogorov-Smirnov Statistic, based on the maximal discrepancy between the expected and the
observed cumulative distributions, for any log-returnThis statistic is suitable for testing only a simple hypothesis, for
instance a Gaussian with known parameteendo, but not a composite hypothesis (a class of Gaussians, or a Gaussian
with ¢ ando derivated from the sample dataset being tested). Unfortunately, whatever the model, we always derive the
parameters;( and o for normPDF, ~, 0, k and p for draguPDF, the weights and biases fanPDF) from the initial
dataset. By performing this test with parameters derived from the dataset being tested, we expect the statistic to be large
enough to reject the simple hypothesis, arfdrtiori the composite hypothesisl(]]). But if the value of the statisti& is
small enough to accept the simple hypothesis, it does not mean that we can accept the composite hypothesis.

Methodology - For each time lag, we compute the log-returns dataset, and we divide it into paths. For each path
and each model, we build the empirical cumulative density funaimpCDFand the expected CDiRrodelCDF(norm-
CDF, draguCDF or nnCDF), and we compute the KS-statistit (see Figure3 for an example). We present in Tables
3, 4 and5 the rqeanZ and standard deviatiom; of Z over the different paths, and the associated p-Vainerval
p(Z+oz) <p(Z2) <p(Z —o0z).

Results -Firstly, we observe an important variance, over the different paths, in the statishe standard deviation
oz is not negligible in comparison with the meah This is an evidence that the paths are not equivalent, which legit-
imates,a posteriori our sampling method. It comes from the high heterogeneity of the dataset, which makes our tests

3Even ifdraguPDFis supposed to fit the empirical distributia@mpPDF, better thamormPDF, we want to compare it with the best fit possible, the
one obtained with a Neural Network. This Neural Network must be as simple as possible, but should fit the main characteristics of the empirical time
series, fat tail and kurtosis. The structure chosen was the following: it is a feed-forward back-propagation network, with a five node hidden layer and a
single node output layer. The transfer functions are respectiuelyig andpurelin, wheretansig(n) = — 1 andpurelin(n) = n. This
structure appears to be a good trade-off between the complexity and the goodness of fit.

4The p-value is the probability of observing the given sample result under the assumption that the null hypothesis (the tested model) is true. If the
p-value is less than the level of significanegthen you reject the null hypothesis. For exampley = 0.05 and the p-value is 0.03, then you reject the
null hypothesis.

2
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Figure 3: Cumulative Density Functions for the different models; 5 days.

less robust. But any test performed on this heterogeneous dataset would suffer from the same problem. Even though this
apparent lack of consistency prevents us from drawing any strong and global conclusion, the knowledge of the mean and
standard deviatiol + o, provides us with a fair overview of the statistic

On plots, the DY formula seems to fit the empirical cumulative distribution better than the Gaussian. But in fact, on
average, both models are rejected for high frequencies-(ferl and5 days) at the 0.01 level of significance. Even the
Neural Network is rejected for a one day time lag. This rejection of the three models may come from the fact that this test
is based on the maximum discrepancy between the empirical and the theoretical cumulative distrilontionsy;. To

pass this test, a model must fit the observed data sufficiently well everywhere, i.e. in the tails (problem of fat tails) and in
the middle (problem of high kurtosis for high frequencies) of the distribution.

We point out that even if the DY formula is rejected for a one day time lag, the stéfisgismaller than the Gaussian one

(0.109 vs 0.131), which is an indication that the model fits the data a bit better. For other time lags, the p-value are equiv-
alent: both models are systematically rejected for 5 days (0.01), sometimes rejected for 20 dayi{E +o0z) <0.01,

butp(Z — oz) > 0.05) and never rejected for higher frequencigss 0.05). For medium and low frequencies, the fact

that the simple hypothesis is not rejected does not guarantee that the composite hypothesis can be accepted.

Conclusion - The Kolmogorov-Smirnov goodness-of-fit test rejects both the Gaussian and the DY formula for high
frequencies{ = 1 and5 days). For medium and low frequencies, we cannot come to a firm conclusion because of the
theoretical limits of this test. To continue with the investigation, we need a more powerful statistical test that can be used
even when the parameters of the model are derived from the dataset being tested. staistic is suitable in those
conditions.

2.2 2 Statistic

The x2 goodness-of-fit test, based on binned data, is a powerful statistical tool to test if an empirical sample comes
from a given distribution. Contrary to the Kolmogorov-Smirnov test, it is designed to evaluate a composite hypothesis, i.e.



time lag Ztoy p-values
1 0.131 2.93e-75
5 0.081+0.020 1.75e-09 < 2.98e-06 < 9.88e-04
20 0.089+0.013 9.51e-03 < 0.036 < 0.112
40 0.104+0.020 0.038 < 0.122 < 0.321
80 0.1134+0.021 0.199 < 0.385 < 0.649
100 0.1134+0.021 0.322 < 0.533 < 0.778
200 0.148+0.038 0.339 < 0.630 < 0.917
250 0.170+0.047 0.291 < 0.598 < 0.919
Table 3: KS-Test on the Gaussian.
time lag Ztoy p-values
1 0.109 1.2e-53
5 0.087+0.019 2.08e-10 < 3.64e-07 < 1.48e-04
20 0.089+0.014 8.75e-03 < 0.033 < 0.104
40 0.09440.010 0.125 < 0.211 < 0.337
80 0.116+0.018 0.197 < 0.355 < 0.576
100 0.128+0.019 0.215 < 0.372 < 0.585
200 0.163+0.048 0.209 < 0.512 < 0.893
250 0.186+0.046 0.224 < 0481 < 0.816
Table 4: KS-Test on the DY formula.
time lag Z+oy p-values
1 0.106 3.27e-42
5 0.0484-0.014 1.64e-03 < 0.026 < 0.204
20 0.047+0.009 0.430 < 0.615 < 0.778
40 0.071+0.059 0.153 < 0.746 < 1
80 0.0754+0.061 0.729 < 0.919 < 0.995
100 0.0764-0.039 0.532 < 0.871 < 0.999
200 0.1164-0.034 0.126 < 0.453 < 0.932
250 0.1374+0.041 0.190 < 0.502 < 0.904

Table 5: KS-Test on the Neural Network.




the parameters of the model can be derivated from the empirical dataset tested. This test is a good trade-off between the
goodness-of-fit of a model (the better fit, the smaller{Restatistic) and its complexity (the more complex, the smaller
p-value). Indeed, even if a model fits the empirical data very well, a too large complexity may penalise its p-value, so
that it can still be rejected. Finally, to be meaningful, this test must be performed using relatively large bins, and a critical
value of 5 expected observations per bin is regarded as a minimum.

Methodology - If we perform this test with equal size bins, then the fats tails will be trimmed (there are less than
5 expected log-returns per bin in the tails) and will not participate in the value of the statistic, making the test irelevant.
Instead, we split the log-return axis inégual expected frequency bjrso that all of the log-returns participate in the
value of the statistic. We use an expected frequency of 5 log-returns per bin. Unfortunately, this test cannot be performed
for large time lags, because of the lack of data. Indeed, for the Dow-Jones index from 1982 to 2001 for instance, we
have initially around 5000 close prices, which means that for a time lag of 250 days, each path will have only about 20
log-returns. In those conditions, because of the critical value of 5 log-returns per bin, we will have at best 4 bins, which is
too small to perform a relevant test.

Results -We present our results of the goodness-of-fit test in Tablés 7 and8. The degree of freedom is given by
df = noBins — 1 — m, wherem is the number of parameters of the model £ 2 for the Gaussiany = 4 in the DY
formula, andn = 11 for the Neural Networks if we count the weights and the biases). For large timeifagscomes
smaller and smaller becauseBins decreases, as explained above.
Concerning the Neural Network, we cannot perform this test for time lags higher than 40 days, or else the degree of
freedom decreases to zero. This is due to the relatively high number of parameter$1(). With a structure even more
complicated, we could not have performed the test at all, except for high frequencies.
First we notice that the Neural Networkig statistic is slightly smaller than the DY’s one, itself smaller than the Gaus-
sian’s one, for all paths with a time lag from= 1 to 7 = 80 days. It means that the Neural Networks fits empirical
data better than the DY formula, which itself has a better fit than the Gaussian. But there is a price to pay, in terms of
complexity: due to too many parameters (and then a lower degree of freedom), the p-value of the Neural Networks and
DY formula are not systematically higher than the p-value of the Gaussian. And it is precisely the p-value that is used to
accept or reject a model, not directly thé statistic.
If we look at the p-value in detail, we observe that

e Fort =1, the three models are rejected at a 0.05 level of significance

e Forr =5, only the Neural Network is systematically accepted. The Gaussian and DY formula are only accepted
in the best situationy(x?) < 0.05 < p(x2 — 0y2))

e For7r = 20, the three models are accepted and the DY formula is better than the Neural Network and the Gaussian
e For7 = 40 andr = 80, the DY formula is still accepted, but its p-value is smaller than the one of the Gaussian

Conclusion - Thanks to they? goodness-of-fit test, we can assert that the DY formula fits empirical data slightly
better than the Gaussian, for high and medium frequencies. Nevertheless, both models are rejected for high frequencies
(7 = 1 andb days), at a 0.05 level of significance. In this sense, these results are consistent with the Kolmogorov-Smirnov
goodness-of-fit test.

We also observe a clear shift in the goodness-of-fit of the models around0 days: the probability of accepting the
Gaussian becomes larger than the probability to accept the DY formula (and even the Neural Network) due to the lower
complexity of the Gaussian (two parameters instead of four and eleven respectively).

To put it in a nutshell, using a complex model, such as the DY formula or a Neural Network, is only worthwhile for

T = 1,5 and20 days. For lower frequencies (> 40 days), the Gaussian is preferable because it is simpler. Given that

for these frequencies, we had observed neither fat tails nor kurtosis in the empirical datasets, the Gaussian represents the
best trade-off between goodness-of-fit and complexity.



time lag x2 + ox? df p-values
1 1790 1010 6.29%e-11
5 255 +30 198 5.38e-05 < 4.07e-03 < 0.0931
20 61 +12 47 7.99e-03 < 0.0819 < 0.409
40 29.1 +47.0 22 0.0295 < 0.141 < 0451
80 104 +4.6 9 0.0915 < 0.32 < 0.76
Table 6:y? Test on the Gaussian.
time lag X2 £ ox? df p-values
1 1420 1000 1.16e-04
5 244 +26 196 332e-04 < 0.0108 < 0.133
20 48,5 +11.5 45 0.0663 < 0.333 < 0.796
40 27.3 46.1 20 0.0301 < 0.126 < 0.385
80 9.7 444 7 0.049 < 0.206 < 0.624
Table 7:x? Test on the DY formula.
time lag x2 £ ox? df p-values
1 2230 997 0.0839
5 232 +38 189 0.0559 < 0.346 < 0.817
20 459 +11.1 38 0.0473 < 0.25 < 0.688
40 215 46.3 13 0.0057 < 0.0552 < 0.333
80 7.6 +6.3 0 NaN < NaN < NaN

Table 8:x? Test on the Neural Network.




3 Conclusion

The DY analytical formula is quite exciting, and would validate the Heston model, if the resulting expected distribution
was similar to the empirical one. Our method of pre-processing the data is different from the one suggeséeilegtr
and Yakovenko, and, we believe, more truly captures the market. We find that the DY formula consistently outperforms
the Gaussian in terms of best fit (the error between the model and the observed data), but a higher complexity is the price
to pay: the number of parameters is greater in the Heston model, which enables thedfittecexhibit kurtosis and
fat tails when the empirical dataset does, but also penalizes it when it doesn’'t. Hence, in terms of goodness-of-fit (the
trade-off between best fit and complexity), the Gaussian is preferable for low frequeftcies (< 250 days), since the
empirical dataset is then quite smooth and does not exhibit kurtosis. For medium frequercizsdays), both models
are accepted at a .05 confidence level. Finally, for high frequencies, although it performs better than the Gaussian, the DY
formula is still rejected#{= 1 and5 days), mainly because of the extremely high kurtosis of the observed data.
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