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Abstract

A recent study reports that habit formation in consumption can improve the

ability of the present value model of the current account (PVM) to forecast ac-

tual current account movements because habits make the current account more

volatile. This paper, however, shows that the habit-forming PVM is observation-

ally equivalent to the canonical PVM augmented with a transitory consumption

shock: the sample test statistics of the habit-forming PVM are not informative to

detect the role of habit formation in current account movements. This identifica-

tion problem is resolved by conducting Monte Carlo experiments of two small open

economy-real business cycle (SOE-RBC) models calibrated to Canadian postwar

quarterly data: one with habit formation and the other with the stochastic world

real interest rate. Results reveal that the SOE-RBC model with the stochastic

world real interest rate dominates the SOE-RBC model with habit formation in

explaining Canadian sample test statistics of the habit-forming PVM as well as the

standard PVMs. This suggests that research on the current account should con-

centrate on the determinants of the world real interest rate rather than alternative

specifications of utility.

Key Words: Current Account; Present Value Model; Habit Formation ;

World Real Interest Rate; Small Open Model.
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Non-technical Summary

Habit formation in consumption is often employed to explain puzzles between macro

models and aggregate data. One example is the present value model of the current

account (PVM) that includes habit formation. A recent study by Gruber(2000) argues

that habit formation improves the ability of the PVM to predict actual current account

movements.

This paper shows that the habit-forming PVM is observationally equivalent to the

canonical PVM augmented with a transitory consumption component that is serially

correlated. This means that given the data for the present value test, any test statistic

constructed from the former PVM takes the same value as that from the latter PVM.

Hence, by looking at the sample test statistics, a researcher cannot identify whether or

not habit formation plays an important role in actual current account movements.

To resolve this identification problem, this paper constructs two small open economy-

real business cycle (SOE-RBC) models: one with habit formation and the other with

a stochastic world real interest rate, as opposed to a constant world real interest rate,

respectively. The two SOE-RBC models are calibrated to postwar Canadian quarterly

data, and are used to generate artificial data to replicate the test statistics of the habit-

forming PVM. The idea is: if the sample test statistics of the habit-forming PVM really

reflect habit formation in consumption, the theoretical test statistics replicated by the

SOE-RBC model with habit formation should be closer to the sample test statistics than

those replicated by the SOE-RBC model with the stochastic world real interest rate.

Results from the Monte Carlo experiments reveal that to explain the sample test

statistics of both the habit-forming and standard PVMs, the SOE-RBC model with the

stochastic world real interest rate dominates the SOE-RBC model with habit formation;

in other words, the former model does a better job of replicating the data. This suggests

that research in this literature should concentrate on the determinants of the world real

interest rate rather than on alternative specifications of utility.
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1 Introduction

A small open economy model endowed with rational, forward-looking agents serves as a

benchmark for studying current account dynamics in the recent literature. This model, as

known as the intertemporal approach to the current account, stresses the consumption-

smoothing behavior of economic agents in the determination of the current account in

a small open economy1. When they expect changes in future income, forward-looking

agents smooth their consumption by borrowing or lending in international financial mar-

kets and hence by generating current account movements. This role of consumption-

smoothing behavior in current account determination is clearly expressed by the present

value model (PVM) of the current account, which is a closed-form solution of the in-

tertemporal approach. For example, the PVM predicts that the current account moves

into deficit when a country’s income is expected to decline temporarily, while no change

in the current account occurs if the decline in income is expected to be permanent2.

Many empirical studies including Sheffrin and Woo(1990), Otto(1992), Ghosh(1995)

and Bergin and Sheffrin(2000), however, fail to find empirical support for the standard

PVM of the current account in postwar data of the G-7 economies. The cross-equation

restrictions the standard PVM imposes on the unrestricted vector autoregression (VAR)

are statistically rejected for all of the G-7 economies except the U.S. Moreover, the fore-

casts of the standard PVM are too smooth to track actual current account movements.

The empirical failures of the standard PVM have led some researchers to explore the role

of consumption-tilting motives in current account movements: the current account might

be adjusted to factors that deviate consumption away from the random-walk, permanent

income level, for example, stochastic variations in the world real interest rate3.

1Obstfeld and Rogoff(1995) provide a recent and most detailed survey of the intertemporal approach

to the current account.
2A crucial prediction of the PVM is that only country-specific shocks matter for the current account

of a small open economy. A global shock does not give a small open economy an opportunity to borrow

or lend in international financial markets because all economies have identical preferences, technologies

and endowments and hence react to a global shock symmetrically. All that occurs is that the world real

interest rate adjusts to the global shock.
3For example, by using a structural VAR approach to identify global and country-specific shocks,
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One way to introduce the consumption-tilting motive into the standard PVM is

habit formation in consumption. Habit formation makes optimal consumption decisions

depend not only on permanent income but also on past consumption. The household

tends to maintain its past consumption level against unexpected shocks to permanent

income; therefore, habit formation makes consumption smoother and more sluggish than

in the basic permanent income hypothesis (PIH). The sluggishness of consumption in

turn implies more volatile current account movements than the standard PVM predicts.

Gruber(2000) uses habit formation in consumption to improve the ability of the PVM

to track actual current account movements in the postwar quarterly data of the G-7

economies, of the Netherlands, and of Spain. He concludes that habit formation plays

an important role in determining current account dynamics.

This paper shows that the habit-forming PVM is observationally equivalent to the

canonical PVM augmented with a serially-correlated transitory consumption shock. In

other words, given the information set studied by Gruber(2000), the two PVMs yield

the same values of the sample test statistics. Because of this identification problem,

Gruber’s tests of the habit-forming PVM are not informative to detect the role of habit

formation in current account movements.

In this paper, the source of the serially-correlated transitory consumption shock

is specified with stochastic movements in the world real interest rate because of two

reasons4. First, the stochastic real interest rate is a well-known way to introduce a

consumption-tilting motive into the PVM of the current account as well as the perma-

nent income hypothesis of consumption5. Expected future changes in the world real

Kano(2003) shows that almost all of Canadian current account movements are dominated by country-

specific shocks unrelated to variations in the smoothed, permanent income. This result empirically

suggests the importance of consumption-tilting motives in Canadian current account movements.
4Another sources of the transitory consumption shocks are a transitory government expenditure

shock affecting the utility function and the stochastic terms of trade.
5See Campbell and Mankiw(1989) for tests of the permanent income hypothesis (PIH), and Bergin

and Sheffrin(2000) and Kano(2003) for tests of the current account PVM. In particular, Bergin and

Sheffrin(2000) extend the standard PVM by introducing stochastic variations in the world real interest

rates as well as real exchange rates, which yield a serially-correlated transitory consumption component
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interest rate tilt the consumption path away from the random-walk, permanent income

level and, as a result, introduce the consumption-tilting component into the PVM of

the current account. Second, recent studies on small open economy-real business cycle

(SOE-RBC) model, Blankenau, Kose and Yi(2001) and Nason and Rogers(2003), pro-

vide evidence that the world real interest rate shocks play a crucial role in explaining

net trade balance/current account movements in a small open economy.

To solve the identification problem, this paper conducts Monte Carlo experiments

based on a small open-real business cycle model (SOE-RBC) that incorporates with

either habit formation or the stochastic world real interest rate. To this end, the SOE-

RBC model of Nason and Rogers(2003) is extended by introducing habit formation. The

extended model is then used to generate artificial data that yield theoretical distributions

of “moments” to be explained in this paper.

As in a standard calibration exercise, moments of the artificial data generated by

SOE-RBC models are compared with their sample counterparts. However, as exam-

ined by Nason and Rogers(2003), the “moments” this paper studies are not standard

unconditional variances and covariances of the sample. Instead, they are the sample

statistics conditional on the habit-forming and standard PVMs of the current account:

the sample estimate of the habit-formation parameter, the cross-equation restrictions

implied by the habit-forming and standard PVMs, and the current account forecasts of

the habit-forming and standard PVMs.

It is worth noting that by construction, the theoretical distributions have the null

hypothesis of the underlying SOE-RBC model as the data-generating process (DGP) of

the moments. This paper generates the theoretical distributions under two different null

hypotheses. First, setting the structural parameters of the SOE-RBC model to rule out

stochastic variations of the world real interest rate derives the theoretical distributions

under the null of the SOE-RBC model with habit formation. Second, setting the habit

parameter equal to zero provides the theoretical distributions under the null of the SOE-

independent of permanent income. They observe that the extension improves the PVM prediction in

Canada. Kano(2003) also shows the PVM of the current account in the presence of the stochastic world

real interest rate using a different approach.
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RBC model with the stochastic world real interest rate. The two different SOE-RBC

models are evaluated from the viewpoint of classical statistics; that is to say, the sample

statistics are used as critical values to derive empirical p-values. For example, if a sample

statistic drops into the five percent tail of the theoretical distribution, the null is rejected

at the five percent significance level.

The results from the Monte Carlo experiments support the SOE-RBC model with

stochastic world real interest rates. Although the SOE-RBC model with habit formation

can replicate a part of the empirical facts of the habit-forming PVM, the SOE-RBC model

with the stochastic world real interest rate mimics all the relevant sample moments. The

superiority of the SOE-RBC model with stochastic world real interest rates casts doubt

on habit formation as the significant source of the consumption-tilting behavior needed

to explain Canadian current account movements.

The structure of this paper is as follows. The next section introduces the habit PVM

and discusses the observational equivalence problem. The sample moments conditional

on the habit and standard PVMs are reported in section 3. Section 4 introduces the

SOE-RBC models of this paper to mimic the sample moments. Section 5 reports the

results of the Monte Carlo experiments. Concluding remarks are made in section 6.

2 The PVMs with Habit Formation and Transitory

Consumption: Observational Equivalence

Gruber (2000) extends the standard PVM by introducing habit formation in consump-

tion. Let Ct, Bt and NOt denote consumption, international bond holding, and net

output at period t, respectively. As in the standard literature, net output, which is

defined as output minus domestic investment minus government expenditure, follows a

nonstationary process having a country-specific, random-walk technology shock as the

4



driving force6. The period utility function is specified as a quadratic form

u(Ct+i − hC̄t+i−1) = Ct+i − hC̄t+i−1 −
1

2
(Ct+i − hC̄t+i−1)

2, 0 < h < 1

where h represents the habit parameter. C̄t represents aggregate consumption unaffected

by any representative household decision. This specification of habit formation is related

to external habit formation or the catching up with the Joneses, as in Abel(1990) and

Campbell and Cochrane(1999)7. Note that C̄t = Ct in equilibrium.

The problem the representative household faces is to maximize its expected dis-

counted lifetime utility

Et

∞∑
i=0

βiu(Ct+i − hC̄t+i−1)

subject to the budget constraint

Bt+1 = (1 + r)Bt +NOt − Ct

where r is the world real interest rate assumed to be constant and equal to the sub-

jective discount rate. In this case, the first-order necessary conditions together with

the transversality condition yield an optimal consumption decision rule. Letting εt de-

note a disturbance orthogonal to information at period t-1 and adding εt to the optimal

consumption decision rule provide

Ct =

(
h

1 + r

)
Ct−1 +

(
1− h

1 + r

) (
r

1 + r

) [
(1 + r)Bt +

∞∑
i=0

(
1

1 + r

)i

EtNOt+i

]
+ εt

(1)

where the equilibrium condition C̄t = Ct is imposed8. With habit formation, consump-

tion is determined by a weighted average of permanent income and past consumption

6The basic SOE-RBC model, which is well-known as the intertemporal approach to the current

account, is a single-shock model containing a country-specific, unit-root technology shock. See Obstfeld

and Rogoff(1995), Glick and Rogoff(1995), and Nason and Rogers(2003). Under this assumption, the

intertemporal approach has the standard PVM as a closed-form solution.
7If habits are internal, as in Constantinides(1990), they depend on the household’s own consumption

and the household takes habits into account when choosing the amount of consumption.
8Campbell(1987) argues that a transitory consumption error uncorrelated with lagged information

improves the ability of the PIH to fit the U.S. data.
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with the weight h/(1 + r). This fact makes adjustments of consumption to permanent

income shocks more sluggish than in the standard PIH.

Substituting the resulting consumption equation into the current account identity

CAt ≡ rBt +NOt − Ct produces the PVM with habit formation

CAt = hCAt−1 +

(
h

1 + r

)
∆NOt −

(
1− h

1 + r

) ∞∑
i=1

(
1

1 + r

)i

Et∆NOt+i − εt. (2)

Notice that the current account depends on its own past value. This makes the pro-

cess of the current account more persistent than in the standard PVMs of Sheffrin and

Woo(1990) and Otto(1992). Furthermore, the current account becomes sensitive to the

current change in net output: the current account depends on not only the expected

present value of future declines of net output but the current change of net output as

well. This makes the current account more volatile than in the standard PVM.

An important point is that the present value formula (2) is observationally equivalent

to the PVM derived from a multiple-shock model. Let CT
t denote arbitrary transitory

consumption that follows an exogenous AR(1) process

CT
t = ρcC

T
t−1 + ωt |ρc| < 1 (3)

where CT
t may be observable or may not, and ωt is a white noise shock. Assume that con-

sumption Ct is linearly decomposed into the transitory consumption CT
t and permanent

income CP
t :9

Ct = CT
t + CP

t (4)

where permanent income CP
t is determined by the standard PIH formula

CP
t =

(
r

1 + r

) [
(1 + r)Bt +

∞∑
i=0

(
1

1 + r

)i

EtNOt+i

]
. (5)

Appendix 1 shows that the non-habit-forming, multiple-shock model specified by eqs.(3),

(4), and (5) has the following present value representation of the current account

CAt = ρcCAt−1 +

(
ρc

1 + r

)
∆NOt −

(
1− ρc

1 + r

) ∞∑
i=1

(
1

1 + r

)i

Et∆NOt+i − vt (6)

9Because the underlying SOE-RBC model has the unique stochastic trend, i.e. the country-specific,

permanent, technology shock, it is possible to decompose consumption into a random-walk component

CP
t and a transitory component CT

t : see King, Plosser and Rebelo(1988).
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where υt is a disturbance orthogonal to information at period t-1, which satisfies Et−ivt =

0 for i ≥ 1.

Notice that the non-habit-forming PVM (6) is equivalent to the habit-forming PVM

(2). Therefore, given the data of CAt and ∆NOt, any statistics based on eq.(2), for

instance, an estimate of h, take the same values as those statistics from eq.(6). The

habit-forming PVM is observationally equivalent to the non-habit PVM augmented with

the AR(1) transitory consumption component. This implies that the statistics based

on the habit-forming PVM (2) are not informative to identify whether or not habit

formation helps to explain current account movements.

3 Sample Moments Conditional on the Habit-Forming

and Standard PVMs

This section reports the sample moments conditional on the habit-forming and the stan-

dard PVMs. As mentioned in the introduction, this paper considers the sample test

statistics of the two PVMs as the sample “moments” explained by SOE-RBC models.

The next subsection discusses econometric issues related to estimation and test of the

habit-forming PVM. The following subsection reports the sample moments.

3.1 Econometric Issues

Gruber(2000) exploits the generalized method of moments (GMM) procedure to estimate

the habit parameter h in the habit-forming PVM (2). Define a variable Dt ≡ CAt −

∆NOt − (1 + r)CAt−1 and rewrite the PVM (2) as

Dt = hDt−1 − εt + (1 + r)εt−1 + et (7)

where εt, εt−1 and et are disturbances orthogonal to the information set at period t− 2,

Ωt−2 [See Appendix 2 for the detailed derivation of eq.(7).]. Let Wt−2 denote a k × 1

vector that contains k different variables in Ωt−2. Eq.(7) then implies unconditional

moment conditions

EWt−2(Dt − hDt−1) = 0 (8)

7



where E is the unconditional expectation operator. Eq.(8) makes it possible to estimate

h by the GMM/two step-two stage least square (2SLS) procedure by West(1988). Let

ĥ2SLS be the 2SLS estimate of h. When k > 1, ĥ2SLS is overidentified. The J-statistic

of Hansen(1982) tests the orthogonality conditions (8). Given k(> 1) instruments, the

J-statistic is asymptotically distributed χ2 with k − 1 degrees of freedom.

This paper proposes a more efficient estimate of the habit parameter than the 2SLS

estimate ĥ2SLS. In addition to the unconditional moment conditions (8), other theoretical

restrictions the habit-forming PVM imposes on a p-th order bivariate vector autoregres-

sive (VAR) of CAt and ∆NOt are used to estimate the habit parameter. Recall that a

VAR(p) process has a corresponding first-order representation with a companion matrix

A:

Yt = AYt−1 + Ut (9)

where Ut is a 2p × 1, zero mean, homoskedastic, serially uncorrelated error vector such

that Ut ≡ [u∆NO
t 0 · · · 0 uCAt 0 · · · 0]′, and Yt is a 2p× 1 vector constructed

as

Yt ≡ [∆NOt ∆NOt−1 · · · ∆NOt−p+1 CAt CAt−1 · · · CAt−p+1]
′.

By assumption of the VAR, Yt−1 is orthogonal to the VAR disturbances Ut = [u∆NO
t

uCAt ]. That is, the following unconditional moment conditions are satisfied:

EYt−1 ⊗ Ut = 0 (10)

where ⊗ is the operator of the Kronecker product.

Define a 1×2p vector ei that includes zeros except for the ith element equal to 1, i.e.

ei = [0 · · · 0︸︷︷︸
i−1st

1︸︷︷︸
ith

0︸︷︷︸
i+1st

· · · 0].

The habit-forming PVM (2) then implies that under the null hypothesis, the following

cross-equation restrictions should be the case:

ep+1AYt = KhAYt (11)

8



where Kh is a 1× 2p vector such that

Kh = hep+2 +

(
h

1 + r

)
e1 −

(
1− h

1 + r

) (
1

1 + r

)
e1A

[
I −

(
1

1 + r

)
A

]−1

.

Note that the cross-equation restriction (11) can be considered as an unconditional mo-

ment condition

E(ep+1 −Kh)AYt = 0. (12)

Eq.(12) holds under the null hypothesis of the habit-forming PVM (2).

As a result, if the joint probability distribution of CAt and ∆NOt is specified by

the unrestricted VAR (9), the habit-forming PVM (2) yields the unconditional moment

conditions (10) and (12) in addition to (8)10. Construct a (4p + k + 1)× 1 vector gt(θ)

such that

gt(θ) =


Wt−2(Dt − hDt−1)

Yt−1 ⊗ Ut

(ep+1 −Kh)AYt


where θ is a vector constructed by stacking the habit parameter h and the elements of

the companion matrix A, i.e. θ ≡ [h vec(A)′]′. The sample analogs of the theoretical

moment conditions (8), (10), and (12) are given as

G(θ) = T−1

T∑
t=1

gt(θ) = 0

where T is the sample number. To obtain an efficient estimate of θ, this paper conducts

the two-step GMM procedure of West(1988)11. Let θ̂GMM be the resulting two-step

GMM estimate of θ with the asymptotic covariance matrix V̂θGMM
. In this case, the

J-statistic JT for the overidentifying restriction test, which satisfies

JT = TG(θ̂GMM)′M∗G(θ̂GMM)

under the optimal weighting matrix M∗, asymptotically follows the χ2 distribution with

degrees of freedom k.

10Gruber(2000) does not use the moment conditions (10) and (12) to estimate h. This fact makes

Gruber’s estimation and specification test based only on the overidentifying restrictions (8) inefficient

since his procedure does not use all of information the model provides potentially.
11Appendix 3 reviews the two-step GMM estimation in detail.
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Notice that the J-statistic jointly tests the overidentifying restrictions implied by

the unconditional moment conditions (8), (10), and (12), but does not test the exact

cross equation restrictions (11). To do so, define a 1 × 2p vector F(θ) as F(θ) ≡

(Kh − ep+1)A + ep+1. Let θ0 denote the true parameter vector under the null of the

habit-forming PVM. Eq.(11) implies that F(θ0) = ep+1 under the true parameter vector

θ0, i.e. the p + 1st element of the vector F(θ0) should be one, while the others should

be zero. The GMM estimate of the vector F(θ), F(θ̂GMM), makes possible piecewise

tests of the 2p cross-equation restrictions by the standard t-statistics, as well as joint

test of those restrictions by the Wald statistic. The asymptotic standard error of the

estimate F(θ̂GMM) is calculated from its covariance matrix numerically derived by the

Delta method
∂F(θ̂GMM)

∂θ′
V̂θGMM

∂F(θ̂GMM)

∂θ′

′

.

Let k(θ) ≡ ep+1 − F(θ). Then the estimates θ̂GMM and V̂θGMM
yield the Wald statistic

WT satisfying

WT = k(θ̂GMM)

[
∂k(θ̂GMM)

∂θ′
V̂θGMM

∂k(θ̂GMM)

∂θ′

′]−1

k(θ̂GMM)′.

Under the null hypothesis of k(θ0) = 0, the Wald statistic WT asymptotically follows

the χ2 with degrees of freedom 2p.

Finally, the predictions of the habit-forming PVM on actual current account move-

ments, denoted by CAf
t , are constructed as CAf

t ≡ F(θ̂GMM)Yt. Under the null, it is the

case that CAf
t = CAt. Therefore, comparing the predictions with actual current account

series provides another information to test the null hypothesis of the habit-forming PVM

(2).

3.2 Empirical Results

This paper studies the quarterly, real, seasonally-adjusted Canadian data that spans

the sample periods Q1:1963 and Q4:1997. The data construction follows Otto(1992) and

Nason and Rogers(2003)12. The current account series and the first difference series of net

12All the data are distributed by Statistics Canada.
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output are demeaned to construct the sample vector Yt. The fourth lag p = 4 is chosen

as the optimal lag by the general-to-specific likelihood ratio (LR) tests. To construct

the series Dt, this paper uses the calibrated value of the constant world real interest rate

r = 0.0091 [or equivalently 3.70 percent point on an annual basis: r = (1.037)0.25 − 1].

A crucial point for conducting the GMM/2SLS estimation is how to choose the in-

strument variables Wt−2. Theoretically, any variables in the information set Ωt−2 can be

included in Wt−2. This paper lags the instruments more than one period and includes in

Wt−2 the fourth and fifth lagged values of CAt and ∆NOt to avoid potential correlation

between Dt − hDt−1 and any variable at period t − 2 or t − 3. In this case, Wt−2 is a

4× 1 vector satisfying

Wt−2 = [∆NOt−4 ∆NOt−5 CAt−4 CAt−5]
′.

Therefore, p = k = 4 are chosen in the following analysis.

Table 1(a) summarizes the empirical results. First, the two estimates of the habit

parameter, ĥ2SLS and ĥGMM , are reported in the first two columns. The 2SLS estimator

based only on the unconditional moment conditions (8) yields ĥ2SLS = 0.931 with the

asymptotic standard error 0.192. This number is close to the estimate Gruber(2000)

obtains (ĥ2SLS = 0.902 and s.e. = 0.257, respectively). On the other hand, the GMM

estimator based on the full moment conditions (8), (10), and (12) provides ĥGMM = 1.002

with the asymptotic standard error 0.152. Therefore, the GMM estimate based on the

full moment conditions draws an inference of a larger habit parameter than the 2SLS

estimate13. Although it is safe to claim that h is non-zero, either ĥ2SLS or ĥGMM has a

95 % confidence interval including h = 1 14. This inference violates the constraint h < 1.

The statistic JT is 0.455 with a p-value of 0.978, which means that the overidentifying

restrictions out of the unconditional moment conditions (8), (10), and (12) cannot be

jointly rejected even at 97.8 % significance level. However, the Wald statistic WT for the

13It is worth while mentioning that the standard error of the GMM estimate is smaller than that of

the 2SLS. This means that the sampling uncertainty of the GMM estimate is smaller that that of the

2SLS estimate.
14If h = 1, the utility function implies that the household wants to smooth change in consumption,

rather than level of consumption, across periods.
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cross-equation restrictions is 37.128 with a small p-value. This means that the cross-

equation restrictions k(θ0) = 0 are jointly rejected at any standard significance levels.

Furthermore, the piecewise tests of the eight elements in the vector F(θ) reflect this joint

rejection of the cross equation restrictions. Recall that under the null, the fifth element

F5 should be one, while all the other elements should be zero. The table reports that the

GMM estimate F̂5 is 1.276 with the asymptotic standard error 0.226. Hence, the estimate

is not significantly different from one. The observation that two estimates F̂1 = −0.302

and F̂6 = −0.400 are statistically significant, however, violates the respective single null

hypotheses. All the other estimates F̂i for i 6= 1, 5, 6 are statistically insignificant based

on the two standard error rule.

Figure 1(a) plots the actual current account series, the predictions of the habit-

forming PVM CAf
t , and the corresponding asymptotic two standard error band. Observe

that the predictions of the habit-forming PVM track the actual current account fairly

closely. The narrow standard error band reflects small sampling uncertainty attached to

the predictions. The standard error band includes the actual current account in all the

sample periods. These observations support the inference that the habit-forming PVM

explains actual movements of the Canadian current account fairly well, as Gruber(2000)

reports.

Comparing the empirical results of the habit-forming PVM (2) with those of the

standard PVM demonstrates how introducing habit formation improves the ability of

the PVM to track actual current account movements. Setting h = 0 and εt = 0 in the

habit-forming PVM (2) provides the following cross-equation restrictions imposed on the

unrestricted VAR (9) under the null of the standard PVM

k∗(θ0) ≡ ep+1 −F∗(θ0) = 0

where

F∗(θ) = −e1(1 + r)−1A[I8 − (1 + r)−1A]−1.

Note that θ includes only the VAR parameters. Hence, the unbiased estimate of θ is

obtained by OLS. Let θ̂OLS denote the OLS estimate.

Table 1(b) reports the Wald statistic W∗
T to test the cross-equation restrictions
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k∗(θ0) = 0 jointly, and the estimates of the eight elements of the vector F∗(θ̂OLS) to

test the cross-equation restrictions piecewisely. First, the Wald statistic W∗
T is 20.589

with the asymptotic p-value 0.009. Therefore, the cross-equation restrictions are jointly

rejected at any standard significance levels. The failure of the standard PVM is clearer in

the piecewise tests of the null hypotheses. If the standard PVM holds, the fifth element

of the vector F∗(θ̂OLS) should be one, while the other elements be zero. The estimate of

the fifth element F̂∗
5 is -0.115 with the asymptotic standard error 0.408. Hence, the single

null F∗
5 = 1 is strictly rejected by the standard t-statistic. All of the other estimates are

statistically insignificant.

Figure 1(b) plots the actual Canadian current account series, the predictions of the

standard PVM CA∗f
t = F(θ̂OLS)Yt, and the asymptotic two standard error band. The

predictions are too smooth to track the actual series. The standard error band excludes

the actual series at almost all periods. Hence, the standard PVM cannot predict the po-

sition of the Canadian current account. These observations clearly reveal the superiority

of the habit-forming PVM to the standard PVM at least in the predicting ability.

The empirical results of this paper track those of Sheffrin and Woo(1990), Otto(1992),

and Gruber(2000). Tables 2(a) and (b) summarize the empirical facts - the sample

moments - of both the habit-forming and standard PVMs. In particular, this paper shares

with Gruber(2000) the observation that taking habit formation into account greatly

improves the PVM’s prediction on the Canadian current account. The empirical results

of both Gruber and this paper appear to support the claim that habit formation helps

to explain Canadian current account movements.

However, the observational equivalence between the PVMs with habit formation and

serially-correlated transitory consumption makes a researcher unable to identify whether

the successful aspects of the habit-forming PVM are actually attributed to habit forma-

tion or other factor that generate consumption-tilting motives. A leading example for a

small open economy is the stochastic world real interest rate. The next section discusses

this paper’s strategy to solve the identification problem.
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4 Monte Carlo Investigation

Facing the identification problem, this paper conducts calibration-Monte Carlo exercises

based on the SOE-RBC models with habit formation and the stochastic world real in-

terest rate. The first task is to extend the SOE-RBC model of Nason and Rogers(2003)

by introducing habit formation in consumption, as discussed in the next subsection.

4.1 The Small Open Economy Real Business Cycle Model

The lifetime utility function of the representative household is

Ut = Et

∞∑
i=0

βiu(C∗t+i, Lt+i) (13)

where C∗t = Ct − hC̄t−1 and Lt is leisure at period t. Eq.(13) implies that the lifetime

utility is non-separable not only across periods but also between consumption and leisure

in each period. In particular, the period utility function u(C∗, L) is parameterized as a

constant relative risk aversion type

u(C∗, L) =
(C∗φL1−φ)1−γ − 1

1− γ

for γ 6= 1. For γ = 1,

u(C∗, L) = φ lnC∗ + (1− φ) lnL

and in either case 0 < φ < 1. Therefore, in the case of γ = 1 the preferences are separable

between consumption and leisure.

Define Yt, It, Gt and rt to be output, investment, government consumption expen-

diture, and the real interest rate the representative household faces at period t. The

household’s budget constraint is

Bt+1 = (1 + rt)Bt + Yt − It −Gt − Ct. (14)

Output Yt is produced by a Cobb-Douglas production function

Yt = Kψ
t [AtNt]

1−ψ 0 < ψ < 1 (15)

where Kt, At and Nt are capital stock, county-specific, labor-augmenting technology,

and labor input at period t. Since the household is endowed with a unit hour to allocate
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between labour and leisure, the restriction Lt + Nt = 1 must be satisfied. The law of

motion for capital is represented as

Kt+1 = (1− δ)Kt +

(
Kt

It

)ϕ

It 0 < ϕ < 1 (16)

where 0 < δ < 1 is the depreciation rate. Eq.(16) includes adjustment costs of investment

with the parameter ϕ. This specification of the adjustment costs follows Baxter and

Crucini(1993).

As studied by Nason and Rogers(2003) and Schmitt-Grohé and Uribe(2003), the

real interest rate rt is decomposed into two components. The first component qt is the

exogenous and stochastic return that is common across the world. In this paper, qt follows

a covariance stationary process. The other component is the risk premium specific to

this small open economy. The risk premium is given as a linear function of the economy’s

bond-output ratio. Following Nason and Rogers(2003), this paper specifies the stochastic

real interest rate rt to be

rt = qt − η
Bt

Yt
, 0 < η. (17)

Eq.(17) implies that if the small open economy is a debtor (i.e. Bt < 0), the economy

must pay a premium above qt.
15

The processes of the three exogenous variables Gt, At and qt are specified as follows.

Government consumption expenditure Gt is proportional to output Yt with a constant

ratio g:16

Gt = gYt. (18)

The country-specific, labor-augmenting technology At is a random walk with drift

At = At−1 exp(α+ εat ), α > 0, εat ∼ i.i.d.N(0, σ2
a). (19)

15The endogenous risk premium in eq.(17) excludes an explosive/unit root path of international bonds

in the linearized solution of the equilibrium. Moreover it solves the famous problem in the SOE-RBC

model that the deterministic steady state depends on the initial condition.
16For example, consider the government budget that Gt is financed by lump-sum tax Tt satisfying

Tt = gYt. This assumption means that Gt and Yt share not only a common trend but also a common

cycle. Although this restriction is strict, it is reasonable for the Monte Carlo exercise in this paper

because any shock to Gt can be considered as a shock to induce the consumption-smoothing motive,

rather than the consumption-tilting motive.
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Finally, the world real interest rate qt follows an AR(1) process

1 + qt = (1 + q∗)(1−ρq)(1 + qt−1)
ρq exp(εqt ), |ρq| < 1, εqt ∼ i.i.d.N(0, σ2

q ) (20)

where q∗ is the deterministic steady state value of qt. In the following analysis, εat and

εqt are assumed to be uncorrelated at all leads and lags.

4.2 The Optimality Conditions and Interpretations

The problem of the representative household is to maximize eq.(13) subject to eqs.(14)-

(17), given the processes of the exogenous variables, eqs.(18)-(20), and the initial condi-

tions C̄t−1 > 0, Kt > 0, and Bt T 0. The optimality conditions are

Γt+1 = β

(
Ct+1 − hC̄t
Ct − hC̄t−1

)φ(1−γ)−1 (
1−Nt+1

1−Nt

)(1−γ)(1−φ)

, (21)

1 = EtΓt+1

[
1 + rt+1 − η

(
Bt+1

Yt+1

)]
, (22)

(
1− φ

φ

) (
Ct − hC̄t−1

1−Nt

)
= (1− ψ)

Yt
Nt

[
1 + η

(
Bt

Yt

)2
]
, (23)

and

1

1− ϕ

(
It
Kt

)ϕ

=

EtΓt+1

{
ψ
Yt+1

Kt+1

[
1 + η

(
Bt+1

Yt+1

)2
]

+

[
1− δ

1− ϕ
+

ϕ

1− ϕ

(
It+1

Kt+1

)1−ϕ
] (

It+1

Kt+1

)ϕ
}
. (24)

Recall that in equilibrium, the level of aggregate consumption must equal that of the

representative household’s consumption: C̄t = Ct. Any equilibrium path must satisfy the

optimality conditions (21)-(24), the constraints (14)-(17), and the exogenous processes

(18)-(20) with the transversality conditions

lim
i→∞

βiEtλB,t+iBt+i+1 = 0 and lim
i→∞

βiEtλK,t+iKt+i+1 = 0

where λB,t and λK,t are the shadow prices for the constraints (14) and (16), respectively.

Eq.(21) shows the stochastic discount factor, which turns out to be a familiar form

β(Ct+1/Ct)
−1 when h = 0 and γ = 1. When h 6= 0 and γ 6= 1, the stochastic discount
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factor depends further on past consumption Ct−1 and leisure at periods t and t+1, Lt and

Lt+1. The higher Ct−1 is, the lower Γt+1 is because the marginal utility of consumption

at period t rises due to habit formation and the marginal rate of the intertemporal

substitution falls17. Similarly, the higher Lt is, the lower Γt+1 is because the marginal

utility of consumption at period t positively depends on leisure.

Eq.(22) is the optimality condition for holding the international bonds, i.e. the Euler

equation. Notice that if η = 0, h = 0, γ = 1, and the world real interest is constant,

under the assumption of β(1 + r) = 1, the Euler equation requires perfect smoothness

of consumption across periods. Habit formation h > 0, the non-separable period utility

over consumption and leisure γ 6= 1, and stochastic variations in the world real interest

rate tilt consumption from the perfectly smoothed level through their effects on the

stochastic discount factor18. The optimal consumption deviates away from the perfect

smoothed level, i.e. permanent income. Hence, the deviation can be considered as the

consumption-tilting motive or the transitory consumption component.

Eq.(23) is the optimality condition for the intratemporal substitution between con-

sumption expenditure and leisure. It implies that the marginal rate of substitution

between Ct and Lt should be equal to the marginal product of labour gross of the re-

sponse of the endogenous risk premium to a change in labour. The Euler equation for

capital, (24), has the interpretation that the expected loss of holding one more capital

(represented by the LHS) should be equal to the expected benefit of the additional cap-

ital (represented by the RHS). The benefit consists of increased production gross of the

risk premium, depreciation and smaller future adjustment costs of investment. On the

other hand, the household needs to pay the cost that consists of the current utility loss

due to investment in capital.

17A rise in Ct increases the stochastic discount factor Γt+1 as in the standard case.
18Habit formation makes the household want to smooth not only consumption level but also con-

sumption growth. The non-separable utility over consumption and leisure makes the household desire

to smooth not only consumption but also leisure. Finally, if the real interest rate is expected to rise

the future, the household wants to tilt consumption toward the future by lending out in international

capital markets.
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4.3 The Numerical Solution and Calibration

To derive the numerical solution of the equilibrium path, this paper takes linear ap-

proximation of the equilibrium conditions. First, all of the endogenous variables except

for Nt and Γt are stochastically detrended by dividing them by the random walk tech-

nology shock A. Define the stochastically detrended variables ct ≡ Ct/At, it ≡ It/At,

yt ≡ Yt/At, $t ≡ Ct−1/At−1, kt ≡ Kt/At−1 and bt ≡ Bt/At−1. Next, a first-order Taylor

expansion of each of the equilibrium conditions (14)-(17) and (21)-(24) is taken around

the deterministic steady state. Let x̃t ≡ xt − x and x̂t ≡ xt/x − 1 for any variable xt

with the steady state x. Define vectors Pt and St by

Pt = [ĉt ît ŷt N̂t]
′ and St = [$̂t k̂t b̂t ∆̃ lnAt ˜ln(1 + qt)]

′.

Then the solution method of Sims(2000) shows that there exists the unique equilibrium

path and the vectors Pt and St follow the processes

Pt = H1St and St = H2St−1 +H3εt (25)

where εt = [εat εqt ]. Eq.(25) is the state space representation of the SOE-RBC model of

this paper(see Appendix 4 in detail).

Recall that there are fourteen structural parameters in the model. Table 3 gives

the calibrated values of the structural parameters used in Monte Carlo experiments.

This paper conducts two types of Monte Carlo experiments as discussed below. The

baseline parameters β, γ, φ, ψ, ϕ, δ, η, g, α, σa and q∗ are fixed across the experiments

and set as the mean values of the prior distributions of Nason and Rogers(2003). In

particular, across the experiments, the risk premium parameter η is chosen to be a very

small number 0.000071 in order to cut the effect of the endogenous risk premium on the

consumption-tilting motive/the transitory consumption component. In this case, the

real interest rate rt is almost equivalent to the world common real interest rate qt
19.

The first Monte Carlo experiment is related to the SOE-RBC model with habit for-

mation. This case sets the habit parameter depending on the estimated value. Although

19As Nason and Rogers(2003) study, the specific number 0.000071 implies that the risk premium in

Canada is one basis point at an annual rate at the steady state.
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there are two candidates from two different estimations, the GMM estimate from the

full moment conditions, ĥGMM , is suitable because it is more efficient than ĥ2SLS. The

problem is that ĥGMM is greater than one, under which there exists no steady state in

the SOE-RBC model. Therefore, in this experiment, the habit parameter is chosen to be

0.990, which is close to the estimate and included in the corresponding 90 % confidence

interval. This experiment does not allow the world real interest rate to vary stochastically

in order to maintain the assumptions of the habit-forming PVM: there is only a country-

specific, unit-root technology shock. To this end, the persistence of the world real interest

rate, ρq, and its standard deviation σq are set to be negligible: ρq = σq = 1.00 × 10−7.

Therefore, the resulting theoretical distributions of the text statistics of the PVMs have

the SOE-RBC model with habit formation as the null hypothesis.

The second experiment is related to the SOE-RBC model with the stochastic world

real interest rate. In this case, the world real interest rate is allowed to vary stochastically.

Nason and Rogers(2003) also estimate the persistent parameter ρq and the standard

deviation σq of the common component of the world real interest rate20. They give 0.903

and 0.004 as the means of the prior distributions of ρq and σq, respectively. This paper

uses these values, and also set the habit parameter to zero to rule out the effect of the

habit formation. The resulting theoretical distributions of the statistics of the PVMs

have the null hypothesis of the multi-shock SOE-RBC model - the SOE-RBC model

with the stochastic world real interest rate.

Each of the experiments generates 1000 sets of artificial data by which the theoreti-

cal distributions of the test statistics, ĥ2SLS, ĥGMM , WT , F(θ̂GMM), W∗
T , and F∗(θ̂OLS),

are constructed. The GMM procedure is repeatedly applied to the sets of the artificial

data, and the resulting 1000 replications of θ̂GMM are used to construct the theoretical

distributions of the statistics. The matching of the theoretical moments with the sample

moments is evaluated as in Christiano(1989) and Gregory and Smith(1991). That is,

taking the sample statistics as critical values, this paper counts the proportion of times

that the simulated number exceeds the corresponding sample point estimate. This pro-

20They calculate the world real interest rate by using Fisher’s equation, the three-month Euro-dollar

deposit rate, the Canadian dollar-U.S.dollar exchange rate, and the implicit GDP deflator of Canada.
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portion is considered as the empirical p-value of the corresponding sample point estimate

under the null hypothesis that the data generating process - the underlying SOE-RBC

model - is true. Extreme values below 5 % or above 95 %imply a poor fit in the dimension

examined.

5 Results

This section reports the results of the Monte Carlo experiments. The first experiment

is related to the SOE-RBC model with habit formation. Three successful aspects of

the habit-forming SOE-RBC model should be mentioned. The third column of Table

4 summarizes the empirical p-values of the sample estimates. First, observe that the

p-values of ĥ2SLS and ĥGMM are 0.7245 and 0.3824, respectively. Figures 2(a) and (b)

show the nonparametrically smoothed theoretical distributions of ĥ2SLS and ĥGMM
21.

Notice that the modes of the theoretical distributions are close to the sample estimates,

especially in ĥGMM . Second, Table 4 reveals that there are no elements of the vector

F(θ̂GMM) that take extreme p-values above 0.95 or below 0.05. The third successful

aspect is observed in the predictions of the habit-forming PVM, CAf
t . Figure 4(a) plots

the estimated predictions of the habit-forming PVM and the 90 % theoretical confidence

band. Note that all the point estimates fall inside the confidence band. The probability

that the sample predictions are inside the band through the whole periods is actually

equal to 1. Hence at least from these observations, it is hard to reject an inference that the

true distributions of ĥ2SLS, ĥGMM , F(θ̂GMM) and CAf
t are the theoretical distributions

under the null of the SOE-RBC model with habit formation.

The habit-forming SOE-RBC model, however, fails to replicate the sample estimates

WT , W∗
T , F∗(θ̂OLS) and CA∗f

t . The third column of Table 4 reports that the empirical p-

values of the Wald statistics for both the habit-forming and standard PVMs, WT andW∗
T ,

are 0.0696 and 0.0141, respectively. The p-value of W∗
T implies that at the significance

level of 5 %, the sample estimate rejects the habit-forming SOE-RBC model as the

21The smoothed distribution is obtained by the nonparametric kernel density estimation with the

normal kernel.
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underlying DGP, while the p-value of WT means rejection of the habit-forming SOE-

RBC model on boundary and at least at 10 % significance level. The nonparametrically

smoothed theoretical distributions of WT and W∗
T in Figures 2(c) and (d) visually show

the failure of the habit-forming SOE-RBC model to replicate the test statistics of the

habit-forming and standard PVMs, WT and W∗
T : the sample estimates are at the far

right tails of the theoretical distributions. Moreover, all the p-values of the elements of

the vector F∗(θ̂OLS) take extreme values above 0.95 or below 0.05, except for F̂∗
7 equal

to 0.0605. Finally, Figure 4(b) plots the sample predictions of the standard PVM and

the corresponding 90 % theoretical confidence band. Observe how frequently the sample

predictions fall outside the confidence band. The probability that the sample predictions

are inside the confidence band through the whole period equals to 0.3972.

The next Monte Carlo experiment is based on the SOE-RBC model with the stochas-

tic world real interest rate. The surprising result of this experiment is that there is no

clear evidence to reject the null hypothesis that the true DGP is the SOE-RBC model

with the stochastic world real interest rate. The fourth column of Table 4 reports the

empirical p-values of the sample estimates in this experiment. First, note that the em-

pirical p-values of ĥ2SLS and ĥGMM are 0.115 and 0.1070, which in turn imply that the

underlying SOE-RBC model cannot be rejected even at 10 % significance level. Figures

3(a) and (b) draw the smoothed theoretical distributions of ĥ2SLS and ĥGMM . Although

the dispersion of the theoretical distribution of ĥ2SLS is large, and the theoretical dis-

tribution of ĥGMM is heavily skewed toward the left, their modal values are close to

the sample estimates. Regarding the vector F(θ̂GMM), the empirical p-values of all the

elements except for the first one support the SOE-RBC model with the stochastic world

real interest rate as the true DGP. As shown in Figure 5 (a), even with a couple of

exceptions, almost all of the sample predictions on the current account, CAf
t , fall inside

the theoretical 90 % confidence band. The probability that the sample predictions are

inside the band is equal to 0.9858.

The result of the Wald statistic WT is the first clear difference between the two Monte

Carlo experiments. In the SOE-RBC model with the stochastic world real interest rate,

the empirical p-value of the Wald statistic WT is 0.5499. This implies that the sample

21



estimate is fairly close to the median of the theoretical distribution, and the underlying

null cannot be rejected at any standard significance levels. Its smoothed theoretical dis-

tribution in Figure 3(c) visually repeats this inference. Furthermore, striking differences

are observed regarding the sample statistics related to the standard PVM. The empiri-

cal p-value of the Wald statistics for the standard PVM, W∗
T , is 0.3259, which in turn

implies together with the smoothed theoretical distribution in Figure 3(d) that the null

of the SOE-RBC model with the stochastic world real interest rate cannot be rejected in

this dimension. Except for F̂4, all the estimates of the elements of the vector F∗(θ̂OLS)

have the p-values between 0.05 and 0.95. Moreover, Figure 5(b) shows that the sample

predictions are inside the 90 % theoretical confidence band in greater number of periods

than in the case of the habit-forming SOE-RBC model. Indeed, the probability that

the sample predictions are inside the band through the whole periods is 0.8156. This

observation echoes the main finding of Nason and Rogers(2003): stochastic variations in

the world real interest rate can explain the rejections of the standard PVM observed in

the literature.

The results of the two Monte Carlo experiments are summarized in Table 5. This

paper therefore reveals the superiority of the SOE-RBC model with the stochastic world

real interest rate to the habit-foming SOE-RBC model to explain the broad empirical

facts of the habit-forming and standard PVMs. Better than habit formation in con-

sumption, stochastic variations in the world real interest rate explain the transitory

consumption component/the consumption-tilting behavior, which is a crucial factor of

the DGP of the Canadian current account.

6 Conclusion

This paper issues a caution about interpreting the empirical results from the habit-

forming PVM as evidence that habit formation in consumption plays a significant role

in explaining current account movements. One reason is that the habit-forming PVM

is observationally equivalent to the non-habit PVM associated with serially correlated

transitory consumption. This makes identification of the habit-forming PVM of the
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current account problematic.

Monte Carlo simulations based on SOE-RBC models are one to avoid this identifica-

tion problem. The simulation exercises study the ability of different SOE-RBC models

to mimic the sample moments or the empirical facts conditional on the habit-forming

and standard PVMs. Two SOE-RBC models are hypothesized as the true DGPs of the

sample moments: the one with with habit formation and the other with the stochastic

world real interest rate. The Monte Carlo simulations make it possible to construct the

theoretical distributions of the sample moments from the two hypothesized DGPs.

The results of the matching exercise based on the post-war Canadian data support

the SOE-RBC model with the stochastic world real interest rate. The model matches

all the key sample moments of the habit-forming and standard PVMs. The SOE-RBC

model with habit formation mimics only a part of the empirical facts of the habit-

forming PVM. This model fails to mimic the cross-equation restrictions predicted by

the habit-forming PVM and all the empirical facts related to the standard PVM. Thus,

the SOE-RBC model with a world real interest rate shock dominates the habit forming

SOE-RBC model. Recent studies of Lettau and Uhlig(2000) and Otrok, Ravikumar and

Whiteman(2002) claim counterfactual predictions of habit formation on several aspects

of macroeconomics, e.g. consumption volatility and the equity premium puzzle. This

paper also casts doubts on habit formation as an important source for the Canadian

current account movements.
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Appendices

Appendix 1: Derivation of Eq.(6)

Let CAPt denote the standard PVM under h = 0 and CTt = 0:

CAPt ≡ rBt +NOt − CPt = −
∞∑
i=1

(
1

1 + r

)i

Et∆NOt+i. (A.1.1)

Substituting the decomposition Ct = CPt + CTt into the current account identity and using

eq.(A.1.1) yield

CAt ≡ rBt +NOt − Ct

= rBt +NOt − CPt − CTt

= CAPt − CTt . (A.1.2)

Applying the AR(1) process of CTt to eq.(A.1.2) gives

CAt = CAPt − CTt

= CAPt − ρcC
T
t−1 − ωt

= ρcCAt−1 + CAPt − ρcCA
P
t−1 − ωt (A.1.3)

Several calculations easily show that the term CAPt −ρcCAPt−1 has the following representation

CAPt − ρcCA
P
t−1 =

(
ρc

1 + r

)
∆NOt −

(
1− ρc

1 + r

) ∞∑
i=1

(
1

1 + r

)i

Et∆NOt+i

−
(

ρc
1 + r

) ∞∑
i=0

(
1

1 + r

)i

(Et − Et−1)∆NOt+i.

Note that the last term of the RHS represents revision of expectation for future changes in net

output between periods t and t − 1. Let this term be, say, ξt, and notice that expectation of

ξt+s conditional on the information set at period t is zero for any s ≥ 1 by law of the iterated

expectation. Substituting back the term CAt−ρcCAt−1 into eq.(A.1.3) and setting vt = ξt+ωt

provide eq.(6).
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Appendix 2: Derivation of Eq.(7)

Substituting the PVM (2) into the definition of Dt yields

Dt ≡ CAt −∆NOt − (1 + r)CAt−1

= −(1 + r − h)CAt−1 −
(

1− h
1 + r

) ∞∑
i=0

(
1

1 + r

)i

Et∆NOt+i − εt

= hDt−1 − hDt−1 − (1 + r − h)CAt−1 −
(

1− h
1 + r

) ∞∑
i=0

(
1

1 + r

)i

Et∆NOt+i − εt.

(A.2.1)

Substituting the definition Dt−1 ≡ CAt−1 −∆NOt−1 − (1 + r)CAt−2 into the second term in

the RHS of eq.(A.2.1) and using the PVM (2) to eliminate the resulting term CAt−1 further

rewrite eq.(A.2.1) as

Dt = hDt−1 − εt + (1 + r)εt−1

+ (1 + r − h)
∞∑
i=1

(
1

1 + r

)i

Et−1∆NOt+i−1 −
(

1− h
1 + r

) ∞∑
i=0

(
1

1 + r

)i

Et∆NOt+i. (A.2.2)

Note that the fourth term in the RHS of eq.(A.2.2) equals(
1− h

1 + r

) ∞∑
i=0

(
1

1 + r

)i

Et−1∆NOt+i.

Therefore eq.(7) is the case:

Dt = hDt−1 − εt + (1 + r)εt−1 −
(

1− h
1 + r

) ∞∑
i=0

(
1

1 + r

)i

(Et − Et−1)∆NOt+i

= hDt−1 − εt + (1 + r)εt−1 + et.

Note that expectation of et+s conditional on the information set at period t is zero for any

s ≥ 1 because

Etet+s = −
(

1− h
1 + r

) ∞∑
i=0

(
1

1 + r

)i

Et(Et+s − Et+s−1)∆NOt+i+s

= −
(

1− h
1 + r

) ∞∑
i=0

(
1

1 + r

)i

(Et − Et)∆NOt+i+s

= 0

by the law of the iterated expectation.
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Appendix 3: The Two-Step GMM Estimation

In the first step, the criterion function J(θ) = G(θ)′MG(θ) is minimized with respect to θ under

the restriction that the weighting matrix M is the identity matrix I. The resulting estimate of

θ, say θ∗, is used to construct the optimal weighting matrix M∗ such that

M∗ =

[
T−1

T∑
t−1

gt(θ∗)gt(θ∗)′
]−1

when gt(θ∗) follows an i.i.d. process. Because there is a possibility of serial correlation of gt(θ∗)

in the first step, this essay exploits the heteroskedasticity-autocorrelation consistent estimator

of Newey and West(1987) to calculate the optimal weighting matrix M∗. In the second step,

minimizing the criterion function J(θ) under the optimal weighting matrixM∗ yields the second

step estimate θ̂GMM with the asymptotic variance-covariance matrix

V̂θGMM
= T−1

[
∂G(θ̂GMM )

∂θ′
M∗∂G(θ̂GMM )

∂θ′

′]−1

.

Appendix 4: The State Space Representation of the Equilibrium

Path

The purpose of this appendix is to explain in detail the derivation of the state space representa-

tion from the system of stochastic difference equations, which contains eqs.(14)-(24). The first

step is to convert the system to the stationary one. To do that, it is convenient to introduce a

new variable $t satisfying

$t = Ct−1/At−1. (A.4.1)

That is, $t is stochastically detrended consumption at period t− 1.

A.4.1: Deriving the Stationary System

Using the stochastically detrended variables and eqs.(17), (18) and (A.4.1) rewrites the system

of equations (14)-(16) and (21)-(24) as the following stationary system:

The Stationary System

bt+1 =
[
1 + qt − η

(
bt
yt

)
exp(−∆ lnAt)

]
exp(−∆ lnAt)bt + (1− g)yt − it − ct (14’)
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yt = kψt N
1−ψ
t exp(−ψ∆ lnAt) (15’)

kt+1 = (1− δ) exp(−∆ lnAt)kt +
(
kt
it

)ϕ

it exp(−ϕ∆ lnAt) (16’)

β exp {[φ(1− γ)− 1]∆ lnAt+1}
[
ct+1 − h exp(−∆ lnAt+1)$t+1

ct − h exp(−∆ lnAt)$t

]φ(1−γ)−1 (
1−Nt+1

1−Nt

)(1−φ)(1−γ)

= Γt+1 (21’)

1 = EtΓt+1

[
1 + qt+1 − 2η exp(−∆ lnAt+1)

(
bt+1

yt+1

)]
(22’)

1− φ

φ

[
ct − h exp(−∆ lnAt)$t

1−Nt

]
= (1− ψ)

yt
Nt

[
1 + η exp(−2∆ lnAt)

(
bt
yt

)2
]

(23’)

1
1− ϕ

(
it
kt

)ϕ

exp(ϕ∆ lnAt) =

EtΓt+1

{
1− δ

1− ϕ
+

ϕ

1− ϕ
exp[(1− ϕ)∆ lnAt+1]

(
it+1

kt+1

)1−ϕ
}

exp(ϕ∆ lnAt+1)
(
it+1

kt+1

)ϕ

+ EtΓt+1ψ exp(∆ lnAt+1)
yt+1

kt+1

[
1 + η exp(−2∆ lnAt+1)

(
bt+1

yt+1

)2
]

(24’)

and eq.(A.4.1). The stationary system contains the eight equations, the eight endogenous

variables and the two exogenous variables following the processes (19) and (20).

A.4.2: The Deterministic Steady State

Let c, y, i, N , k, b, Γ and $ denote the deterministic steady state values of the corresponding

variables. From the stationary system, the deterministic steady state is characterized as follows.

First, from eq.(21’), the steady state value of the stochastic discount factor, Γ, is given as

Γ = β exp{[φ(γ − 1)− 1]α}

where α is the unconditional mean of ∆ lnAt. Eq.(A.4.1) shows that the steady state value $

is equal to c

$ = c.

From eqs.(16’) and (22’), the steady state ratios i/k and b/y are determined by

i

k
= [1− (1− δ) exp(−α)]

1
1−ϕ exp(ϕα)

1
1−ϕ
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and
b

y
=

[
1 + q∗ − 1

Γ

2η exp(−α)

]
.

Given i/k and b/y, the steady state ratio y/k is determined as a solution of the equation

1
1− ϕ

(
i

k

)ϕ

exp(ϕα) =

Γ

{
1− δ

1− ϕ
+

ϕ

1− ϕ
exp[(1− ϕ)α]

(
i

k

)1−ϕ
}

exp(ϕα)
(
i

k

)ϕ

+ Γψ exp(α)
y

k

[
1 + η exp(−2α)

(
b

y

)2
]
.

Because i/k and y/k have been already derived, the steady state ratio i/y can be constructed

by dividing i/k by y/k. Eqs.(15’) and (23’) then yield the steady state ratios k/N and c/y as

k

N
=

[y
k

exp(ψα)
] 1
ψ−1

and
c

y
=

[
1 + q∗ − η

(
b

y

)
exp(−α)

]
exp(−α)

(
b

y

)
+ (1− g)−

(
i

y

)
−

(
b

y

)
.

Finally, eq.(23’) determines the steady state level of N as a solution of the equation

1− φ

φ
[1− h exp(−α)]

c

y
= (1− ψ)

1−N

N

[
1 + η exp(−2α)

(
b

y

)2
]
.

Given N , the steady state level k is obtained by multiplying the ratio k/N by N . The steady

state level y is obtained by multiplying y/k by k. Similarly, the other steady state levels c and

i are constructed by multiplying c/y and i/y by y, respectively.

A.4.3: Derivation of the State Space Representation

The next step is to take a first-order Taylor expansion of the system (A.4.1), (14’)-(16’) and

(21’)-(24’) around the deterministic steady state. Applying Sim’s (2000) method to the lin-

earized rational expectation model shows that there exists the unique equilibrium path, and

the vectors Pt and St follow the state space representation eq.(25).
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Figures and Tables



Table 1: The Sample Statistics of the PVMs

(a) The Habit-Forming PVM

ĥ2SLS ĥGMM JT WT

0.931 1.002 0.455 37.128

(0.192) (0.152) [0.978] [0.000]

F̂1 F̂2 F̂3 F̂4 F̂5 F̂6 F̂7 F̃8

-0.302 -0.068 0.017 0.006 1.276 -0.400 0.062 0.138

(0.130) (0.059) (0.073) (0.049) (0.226) (0.157) (0.073) (0.079)

(b)The Standard PVM

W∗
T F̂∗

1 F̂∗
2 F̂∗

3 F̂∗
4 F̂∗

5 F̂∗
6 F̂∗

7 F̂∗
8

20.589 0.229 0.066 0.010 0.106 -0.115 0.046 -0.019 -0.095

[0.009] (0.171) (0.179) (0.126) (0.088) (0.408) (0.106) (0.113) (0.106)

Note: Table 1(a) reports the sample statistics of the PVM with habits. ĥ2SLS is the 2SLS

estimate of the habit parameter based on the single unconditional moment conditions (8) while

ĥGMM is the GMM estimate of the habit parameter based on the full unconditional moment

conditions (8), (10) and (12). JT is the χ2 statistic with the fourth degree of freedom for the

overidentifying restriction test. WT is the χ2 statistic with the eighth degree of freedom for

the cross-equation restrictions (13). The brackets below JT and WT show the corresponding

asymptotic p-values. F̂i represents the estimate of the ith element in the vector F(θ̂GMM ). The

numbers in parentheses give the asymptotic standard errors for the corresponding estimates.

On the other hand, Table 1(b) shows the sample statistics for the standard PVM. W∗
T is the

χ2 statistic with the eighth degree of freedom for the cross-equation restrictions of the standard

PVM. F̂∗i represents the estimate of the ith element in the cross-equation restrictions of the

standard PVM .



Table 2: Empirical Facts of the Present Value Models

(a) The Habit-Forming PVM

1. The Habit Parameter is Close to One.

2. The Cross-Equation Restrictions are Jointly Rejected.

3. The Fifth Element of F(θ̂GMM) is Close to One.

4. The Predictions Track the Actual Series Closely.

(b) The Standard PVM

1. The Cross-Equation Restrictions are Jointly Rejected.

2. The Fifth Element of F∗(θ̂OLS) is Close to Zero.

3. The Predictions are Too Smooth.



Table 3: Calibrated Parameters of the SOE-RBC Models

Baseline Parameters

β φ γ ψ ϕ δ

0.994 0.371 2.000 0.350 0.050 0.020

η g α σa

0.071× 10−4 0.230 0.0024 0.012

Monte Carlo Experiments with

Habit Formation

h ρq σq

0.990 1.000× 10−7 1.000× 10−7

Monte Carlo Experiments with

the World Real Interest Rate

h ρq σq

0.000 0.903 0.004



Table 4: Sample Estimates and Empirical P-values under the

Nulls of SOE-RBC Models

Empirical P-values:

SampleEstimates Habit Formation World Real Interest Rates

ĥ2SLS 0.931 0.7245 0.1150

ĥGMM 1.002 0.3824 0.1070

WT 37.128 0.0696 0.5499

F̂1 -0.302 0.7326 0.9536

F̂2 -0.068 0.6297 0.5217

F̂3 0.017 0.4733 0.4571

F̂4 0.006 0.4904 0.6670

F̂5 1.276 0.2593 0.1493

F̂6 -0.400 0.7841 0.7215

F̂7 0.062 0.4198 0.3885

F̂8 0.138 0.3481 0.1766

W∗
T 20.589 0.0141 0.3259

F̂∗
1 0.229 0.0000 0.7164

F̂∗
2 0.066 0.0000 0.8073

F̂∗
3 0.010 0.0071 0.7952

F̂∗
4 0.106 0.0131 0.0363

F̂∗
5 -0.115 0.9980 0.4773

F̂∗
6 0.046 0.0151 0.7548

F̂∗
7 -0.019 0.0605 0.8295

F̂∗
8 -0.095 0.0111 0.9072

Note: Empirical p-values are constructed as the frequency that the simulated number exceeds

the corresponding sample point estimate.



Table 5: The Monte Carlo Experiments: Which SOE-RBC

Model Mimics the Empirical Facts in Table 2?

1. The SOE-RBC model with habit formation mimics the first,
third and fourth facts of the habit-forming PVM.

2. The SOE-RBC model with habit formation fails to mimic the
second fact of the habit-forming PVM: the Wald statistic for
the cross-equation restrictions.

3. The SOE-RBC model with habit formation fails to mimic all
the facts of the standard PVM.

4. The SOE-RBC model with the stochastic world real interest
rate mimics all the facts of the habit-forming PVM.

5. The SOE-RBC model with the stochastic world real interest
rate mimics all the facts of the standard PVM. In particular,
the model does a better job to mimic the third fact of the
standard PVM than the habit SOE-RBC model does.












