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Notwithstanding it was originally proposed to estimate Error Component Models (ECM)
using balanced panels, most applications use unbalanced panels. When unbalanced panels
include both time and individual random effects, special computational problems arise.
Wansbeek and Kapteyn (1989) analyze algorithms for estimating unbalanced two-way ECM;
Baltagi et al. (2002) compares three classes of estimators for the unbalanced two-way error
model. Here I show some differences between theoretical findings and empirical applications
by investigating how various proposed algorithms are implemented in the most widely used
econometric packages and by providing a comparative appraisal of the different methods the
various packages used to estimate the unbalanced two-way ECM. An illustration examines the
determinants of the bank deposit yield in Italy, comparing the outcomes of six popular
econometric packages available for the analysis of panel data: E-Views, LIMDEP, RATS,
SAS, STATA, and TSP. The packages give strikingly different numerical results. While the
relevant documentation is often elusive as to algorithmic details, my findings suggest one
reason for the differences lies in the means used for computing the variance of the two
idiosyncratic error component terms. Finally, I examine the small-sample properties of the
various algorithms by means of Monte Carlo experiments. According to preliminary results,
these algorithms show approximately the same performance in terms of bias and variability.
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1. Introduction

The last twenty-five years have witnessed a steady increase of interest for the analysis of

panel data (i.e., data characterized by both a time and a cross-section dimension).

The simplest possible case is one in which the number of time observations is the same

for each individual observation unit (balanced panels). A partial list of relevant references

includes Wallace and Hussain (1969), Nerlove (1971), Swamy and Arora (1972) and Fuller

and Battese (1974). These papers propose different methods to estimate Error Component

Models (ECM); while the various approaches share the same asymptotic properties, they

differ as to the computational details. Indeed, previous empirical work has shown that

different econometric packages often deliver different numerical results. As to the sources of

those differences, no firm conclusion may be easily reached, partly because essential

algorithmic details are often omitted in the package documentation.

A more realistic occurrence is one in which some observations are missing (unbalanced

panels). This case is relatively simple to deal with when the model only includes either

individual or time effects (the small sample properties of a wide range of different estimation

methods for the case of unbalanced panels with one-way error are investigated in Baltagi and

Chang (1994)). If the panel is unbalanced and the model includes random two-way effects,

then special computational problems arise. A theoretical analysis of the algorithms that have

been proposed in the literature to estimate ECM with unbalanced panel data when the error

has a two-way structure may be found in Wansbeek and Kapteyn (1989) (WK). Building on

their work, Baltagi et al. (2001, 2002) have carried out a comparison of three different

“families” of alternatives estimators for the unbalanced two-way error model. Davis (2002)

extends the WK algorithms to unbalanced data with multi-way error components. As to the

packages that are available to deal with unbalanced panel models, some of them simply do not

allow estimation of two-way error models with unbalanced panel samples. As to the rest of the

available packages, they have been found to provide remarkably different numerical results.

Once again, it is hard to ascertain the sources of those differences, because of insufficient

algorithmic documentation.

This paper aims at filling the gap between theoretical findings and empirical

applications. To this end, we investigate how the algorithms that have been proposed in the

literature have been implemented in a few of the most widely used econometric packages. Our
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goal is to provide a comparative appraisal  of the different estimation methods that the various

packages use to deal with unbalanced panel data when the error is modeled with a two-way

structure (note that, although some algorithms share the same label, their actual functioning is

in fact rather different across packages).

Starting from a purposely modified version of the well known Grunfeld dataset (see

Boot and De Wit 1960), we first compute a numerical benchmark for the estimation of an

unbalanced panel data model with a two-way error panel. We then investigate the

determinants of bank deposit yields. The available data set is very large, in that it includes

more than 10,000 observations for the years 1990-2000. The dependent variable is the interest

rate on current account deposits while the pre-determined variables of our model are the

Herfindahl index, the number of banks in each province, the rate of growth of bank deposits,

the ratio of banking costs to total assets.

The core of the paper focuses on the comparison of the numerical outcomes produced,

for the model sketchily described above, by six of the most popular econometric packages

available for the analysis of panel data (E-Views, LIMDEP, RATS, SAS, STATA, and TSP).

Not all of these packages can deal with the case of unbalanced panel data models with a two-

way error structure. For those that can, our results show that they deliver strikingly different

numerical results. While the package documentation is often elusive as to the actual

algorithmic details, our findings suggest that one reason for those differences rests with the

method followed to compute the variance of the two idiosyncratic error component terms.

The small sample properties of the random-effects algorithms included in those

packages are investigated by means of Monte Carlo experiments. The preliminary results of

these simulations, with reference to the bias and the Monte Carlo variability of the different

estimation procedures, seem to show an equivalent behavior implying therefore a basic

analogy among these procedures.

2. The model and the algorithms proposed in the literature

In this paper we consider the following panel data regression model:

tititi uxy ,,, ’ += β ;,,2,1 Tt K= ;,,2,1 tNi K= (2.1

where:

tiy ,  is the observation on the dependent variable for the ith individual at the tth time

period,

tix ,  is i,tth observation on a vector of k nonstochastic regressors
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β  is a kx1 vector of regression coefficients including the intercept.

The panel is unbalanced and we observe only tN  individuals in period t. The

disturbances of (3.1) are assumed to follow the two-way error structure:

tititiu ,, νλµ ++= where ( ) ( )2
,

22 ,0,,0),,0( νλµ σνσλσµ NNN titi ∝∝∝

The literature proposes essentially two classes of algorithms:

a) two-step feasible GLS

b) Maximum Likelihood.

All the examined packages adopt the first method mainly because of its computational

simplicity.

The first step of the feasible GLS is the estimation of the three variance components

222 ˆ,ˆ,ˆ λµν σσσ . The second step, starting from an unbiased estimate of Ω̂ the variance-

covariance matrix of the disturbances, consists in a data transformation using  the Cholesky

factorization of 1ˆ −Ω : yy 2/1* ˆ −Ω= ,  kk xx 2/1* ˆ −Ω= and finally an OLS regression on the

transformed data. A straightforward spectral decomposition is available for Ω̂  when the

panel is balanced but when the panel is unbalanced there is no simple representation for the

inverse. This case is explored in detail in Wansbeek and Kapteyn (1989) and Baltagi et ali.

(2002).  The first paper derives the true projection matrix onto the null-space of the time and

individual dummies and uses this matrix for deriving an unbiased estimator for the three

variance components.

3. The empirical application

The application presented here examines the determinants of the interest rates paid on

bank deposits in 95 Italian provinces between 1990 and 1999. The data on interest rates have

been taken from the Central Credit Register and refer to deposits of 10,000 �or more with a

sample of banks.

The data set is arranged using the individual code of each bank and the province in

which it is active. The unit of observation is a subset of the Cartesian product of the sets of

banks and provinces (for example, bank i in province j gives one unit of observation, i.e. the

couple i,j). The total number of individuals is obtained by summing the number of banks over

the provinces. This number equals 1,298 in our sample. Summing the individuals over the

available years we get a total of 10,561 observations after removal of few outliers.

The dependent variable in the regressions is the average rate on the total deposits of
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each bank. There has been an extensive debate in the United States on the determinants of

interest rates, with two opposing points of view. According to the first, market concentration

is still an important factor influencing bank interest rates. According to the second, the link

between traditional measures of competition and banking prices disappeared with the

deregulation of the banking system.

In this paper we measure concentration using the Herfindahl index for deposits.

Different control variables are used in the literature to check for the effect of concentration on

interest rates. We use per-capita income in each province, which is an indicator of the degree

of economic development, and the growth rate of deposits in each province, which may

influence the return offered on deposits. Other control variables include banks’ costs, which

may influence deposit rates on the assumption that banks consider their total costs when fixing

deposit rates. Here we consider two aggregates: the ratio between costs and total assets

(COSRAT) and average staff costs per employee (COSPER).

4. A comparison among the packages

All the considered packages allow some kind of panel data estimation with built-in

commands; in the following we emphasize the most relevant differences arisen.

4.1 E-Views

We have used the version 4.0 of the package in the windows environment because a

UNIX version is not available.

The basic panel data features are essentially the one-way fixed and random effects

model. It deals with both balanced and unbalanced panel. When dealing with unbalanced

panel data missing values must be explicitly coded to pad time ranges. The one-way random

effects models are not available when the panel has over 750 different cross sections. The

two-way error specification is not a built-in feature and has to be programmed by the user.

4.2 LIMDEP

We have had access to version 7.0 of the package under the UNIX operating system.

This package supplies a comprehensive menu for both one-way and two way error component

models. The estimation algorithms deals automatically with balanced and unbalanced panel.
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No special preprocessing is required for missing values.

4.3 RATS

We have worked with version 5.01 of RATS under the UNIX operating system. This

version of RATS provides both a one-way and two-way error modeling for both balanced and

unbalanced datasets. Analogously to E-Views panel data always have to have the same

number of entries per individual. Missing values are used to pad time ranges. It takes about

half an hour for carrying out the estimation on the whole dataset (10500 observations) when

both the individual and time period effects are taken into account in the estimation. It seems

like the algorithm spends a lot of time in building the set of dummy variables. When they are

built by the user the estimation is much faster.

4.4 SAS

Version 8 of SAS has been used in our experiments. This is the only package that

follows the assumptions proposed in WK, therefore the TSCSREG proc requires a dataset

with at least two observations for each individual. From the original dataset composed by

10561 observations, application of this rule removed only 22 observations.

4.5 Stata

We have been working with Stata verson 8.0. This version of STATA provides one-way

fixed and random effects modeling for both balanced and unbalanced datasets. The estimation

algorithms take care of the unbalanced nature of the dataset. The two-way error specification

is left to the programmer.

4.6 TSP

Version 4.5 of TSP has been used in our experiments. This version of TSP provides just

a one-way error modeling for both balanced and unbalanced datasets. Two way error

specifications are left to the user. As well as in LIMDEP, SAS and Stata, the estimation

algorithms deals automatically with unbalanced panel requiring no preprocessing for missing

values.
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4.7 Comparison of the Estimation results

In this section we present some numerical results for the estimation of one specification

severally for each package.

In following tables we present some results for the three packages that provide built in

estimation command for two-way unbalanced panel. Here we introduce an ad-hoc benchmark

built using the Grunfeld investment dataset and showing both the coefficients and the

estimated variance components

Balanced panel FIRMVAL CSTOCK CONSTANT

LIMDEP .11212 .33135 -66.782

RATS .11058 .29469 -54.999

SAS .11076 .31675 -61.279

Two-way R.E.
(balanced)

2
νσ 2

µσ 2
λσ

LIMDEP 2675.4 7584.2 5081.9
RATS 2644.1 270.53 8294.7
SAS 2675.4 8119.7 112.38

Unbalanced panel FIRMVAL CSTOCK CONSTANT

LIMDEP .09018 .22535 -17.079

RATS .11545 .12341 -15.593

SAS .09136 .22878 -19.842

Two-way R.E.
(unbalanced)

2
νσ 2

µσ 2
λσ

LIMDEP 2054.0 7292.7 205.26
RATS 2026.6 35.275 7559.4
SAS 2054.0 7111.9 0

Aside from the constant, the coefficient estimates are very close to each other in the

balanced case. In the unbalanced case differences are larger. As far as the variance

components are concerned only the uncorrelated error shows some similarities whereas the

two idiosyncratic terms are radically different from each other.

In our application we tested all the panel estimation methods available in the six
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examined packages and the results are summarized in the following tables:

Table n. 1.

One-way R.E. Herfin Cosper Cosrat
E-Views NA NA NA
LIMDEP .049427 -5.94800 .920840
RATS .054999 -5.91761 .699054
SAS .055264 -5.91611 .687921
Stata .055784 -5.91316 .665925
TSP .056172 -5.91094 .649390

Table n. 2.

Two-way F.E. Herfin Cosper Cosrat
E-Views -.22802 -6.4892 4.05737
LIMDEP -.22802 -6.4892 4.05740
RATS -.22802 -6.4892 4.05737
SAS -.22802 -6.4892 4.05737
Stata -.22802 -6.4892 4.05737
TSP -.22802 -6.4892 4.05737

Table n. 3.

Two-way R.E. Herfin Cosper Cosrat
E-Views NA NA NA
LIMDEP .67739 -45.1170 42.0240
RATS -.16214 -7.62244 5.08594
SAS -.00758 -6.21705 2.41711
Stata NA NA NA
TSP NA NA NA

As can be seen from the three tables the one-way Random-effects and the two-way fixed

effects algorithms produce essentially the same numerical results across the different

estimation package. When we go to the two-way Random-effects the situation is completely

different. Three of the examined packages do not provide built-in estimation methods for this

model. Albeit the other three packages do offer built-in two-way Random-effects algorithms

the numerical results show no similarity whatsoever. In order to provide a clear picture for the

random-effect algorithm the following table show the values of the variances components

provided by the  three packages:

Two-way R.E. 2
νσ 2

µσ 2
λσ
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LIMDEP .3069 1.1574 3.8697
RATS .3068 4.8722 .21288
SAS .3069 0.5244 5.2269

There is only an agreement on the computation of  the basic uncorrelated disturbance,

the two idiosyncratic terms are substantially different. Of course these variance components

are relevant determinants for the regression coefficients.

It is also relevant to mention some algorithmic details of the various packages.

LIMDEP adopts an ANOVA estimator for the variance components, using the two-way

fixed-effects residuals for estimating the variance of the remainder disturbance. The other two

idiosyncratic disturbances are estimated by means of the between groups and between time

periods regressions. After the estimation the three variance components, random-effects

estimates of the coefficients are achieved by running OLS on the variables transformed

according to following:

..3.2.1
*
,

*
, zzzzz itiiititi ϑϑϑ +−−= .

Also RATS uses an ANOVA estimator for the variance components using the fixed-

effect residuals. Unfortunately the documentation does not go very deep into details of the

computation for the variance components for the two idiosyncratic components and the

treatment for the unbalanced case.

SAS adopts the method described by Fuller and Battese (1973) for the variance

component estimation. When the panel is unbalanced the estimation method is modified

according to Wansbeek and Kapteyn (1989).

The experiments carried out show that a second reason for these substantive differences

in the estimates are linked with the presence of the missing observations.

5. Monte Carlo Analysis

We have carried out some Monte Carlo experiments using the packages that provide a

two-way Random-effect estimation algorithm.

The estimators’ efficiency has been studied by running a parametric bootstrap procedure

using the OLS residuals for estimating the three variance components.

The simulation is based on the generation of multiple draws for the dependent variable

with a fixed set of explanatory variables.

The parametric bootstrap consists in the following steps It consists in a Monte Carlo

exercise made up of seven steps:
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1) Obtain the residuals for estimating the three variances

2) run a control random-effect estimation to compute the “true” estimated model; this

task is carried out separately for each package and provides a true value (a benchmark) for the

dependent variable and for the structural coefficients;

3) generate three normal random samples with zero mean and the standard deviations

computed in step 1;

4) add the three simulated residuals to the true value of the dependent variable

computed in step 3, thus simulating a new draw for the dependent variable;

6) perform a two-way random-effects estimation using this new dataset;

7) compute the mean and the standard deviation of the replications.

From the performances standpoint, LIMDEP is the fastest software. We have already

mentioned the fact the RATS takes about half an hour for just one two-way R.E. estimation

therefore we gauged the results of only three Monte Carlo experiments.

With the aim of comparing also the programming complexity, the programs for the

Monte Carlo experiments have been written using the looping features made available by each

package2.

A second and more important insight is the evaluation of the bias and standard deviation

for the Monte Carlo replications for each of the packages examined. Figures n.1 show the

behavior of the bias and the standard deviation around the Monte Carlo mean computed for

the coefficients of the Herfindahl concentration index and  the normalized cost of personnel.

Fig. 1

                                               
2 Code for these programs is available upon request.
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Fig. 2

Before drawing conclusions, we note some details of the Monte Carlo experiment.

1) The data-generation process is given by the fitted value of the random-effects

estimate for each of the three packages.

2) The total panel length was kept fixed over the different replications.

Taking into account these experimental conditions, the observation of the graphs allows

the following considerations:

a) The estimated coefficients do remain stable over replications therefore the estimators are

robust with respect to the noise injection;

b) The bias seems decreasing and approaching the zero (for RATS we did not collect enough

information)

From the programming standpoint this experiment provide us with some insight on the
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programming flexibility and the performances of different packages.

6. Concluding remarks

We have shown that when two-way random effects modeling is adopted, some

econometric packages fail to provide built-in procedures. Even more worst the packages that

do provide this sort of algorithms disagree, in a substantial way, in the estimates of the

coefficients. The differences persist even on Monte Carlo experiments. One reason is the way

in which the variance components are computed, the other one is related to the difference with

which the packages deal with panels heavily unbalanced. Finally is worth remarking that the

documentation of some packages often lacks important details required for a thorough

understanding of the algorithms. When accuracy is at stake this lack means a costly software

reverse engineering.



14

References

Baltagi, B. H., S.H. Song and B.C. Jung (2001), The unbalanced nested error component
regression model, Journal of Econometrics, n. 101, pp. 357-381.
Baltagi, B. H., S.H. Song and B.C. Jung (2002), A comparative study of alternative estimators
for the unbalanced two-way error component regression model, Econometrics Journal, Vol. 5,
pp.480-493.   
Baltagi, B. H. and Y-J. Chang (1994), Incomplete panels. A comparative study of alternative
estimators for the unbalanced one-way error component regression model, Journal of
Econometrics, n. 62, pp. 67-89.
Boot, J. and G. de Wit (1960), Investment demand: an empirical contribution to the
aggregation problem, International Economic Review, n. 1, pp. 3-30.
Bruno, G., and R. De Bonis (2003), A comparative study of alternative econometric packages
with an application to Italian deposit interests rates, Journal of Economic and Social
Measurement, forthcoming.
Davis, P. (2002), Estimating multi-way error components models with unbalanced data
structures, Journal of Econometrics vol. 106 pp. 67-95.
Fuller, W.A., G.E. Battese (1974), Estimation of Linear Models with Crossed-Error Structure,
Journal of Econometrics vol. 2 pp. 67-78.
Nerlove, M. (1971), A note on error component models, Econometrica vol. 39 pp. 383-396.
Wallace, T.D., A. Hussain (1969), The Use of Error Components Models in Combining
Cross-Section with Time Series Data, Econometrica vol. 37 pp. 55-72.
Swamy, P.A., A. A. Arora (1972), The exact finite sample properties of the estimators of
coefficients in the error components regression models, Econometrica vol. 40 pp. 261-275.
Wansbeek, T., A. Kapteyen (1989), Estimation of the error-components model with
incomplete panels, Journal of Econometrics vol. 41 pp. 341-361


