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Summary 

Participants along a production chain which exchange intermediate products on spot markets 
face price risks, such as the transmission of price fluctuations of the final product. In a real 
options environment this uncertainty may cause investment reluctance on the different steps 
of the production chain. This paper analyzes weather a stronger vertical integration along the 
production chain allows to reduce the investment reluctance. Therefore, an agent-based com-
petitive model of the pork production chain is developed in which farmers use optimal in-
vestment strategies which are identified by genetic algorithms. Two production systems are 
compared: As example for a perfectly integrated system it is considered that every farmer can 
invest in closed systems in which piglets (the intermediate product) and finished hogs (the 
final product) are produced in equal amounts. In an alternative production system, farmers can 
either invest in farrowing (i.e. the production of piglets) or in hog finishing. The intermediate 
product, i.e. piglets, is traded on a spot market. Simulations show that the spot market solution 
and the closed system lead to the same production dynamics. The only precondition is that in 
the spot market system farrowers and hog finishers are aware of the investment strategies, 
respectively the production capacities of the market partners. This general finding is even 
independent of different depreciation rates on the production steps, though the price dynamics 
changes. 

Keywords:  real options, production chain, vertical integration, depreciation, agent-based 
models, genetic algorithms, stochastic simulation 



REAL OPTIONS: INSTITUTIONAL IMPLICATIONS FOR VERTICAL INTE-

GRATION OF SUPPLY CHAINS IN COMPETITIVE ENVIRONMENTS 

1. Introduction 

According to the real options approach to investment (Henry, 1974, McDonald and Siegel, 
1986, Pindyck, 1991) the Net Present Value (NPV) criterion in investment theory can be mis-
leading under certain conditions. These conditions are: the returns of an investment are sub-
ject to an ongoing uncertainty, the investment is (at least partly) irreversible (i.e. the invest-
ment causes sunk costs), and the investor can defer the investment decision for some time. If 
all these conditions are fulfilled, even in case of risk neutrality, it is not necessarily optimal to 
invest if the expected present value of the future returns covers the investment outlays. 
Rather, one should assign a positive value to the preservation of the flexibility whether to in-
vest or not; in other words, waiting for new information has a value. 

Recently, several studies showed that the real options approach may also be relevant for in-
vestments in agricultural production such as for pork (Pietola and Wang 2000, Odening et al. 
2003). Pork production requires irreversible investments in buildings, due to demand and 
supply fluctuations returns are uncertain, and usually investment decisions can be deferred. 
Based on price series for Finland, Pietola and Wang (2000) find arguments for significant 
investment reluctance for piglet production (farrowing) and for pork production (hog finish-
ing). Since piglets are an intermediate product in the hog production chain and prices for pig-
lets cause additional uncertainty, Pietola and Wang analyze the potential impact if farrowers 
and hog finishers would not trade piglets on spot markets but by contract production which 
defines piglet prices as a fixed multiple the actual pork price. Pietola and Wang find that con-
tracting between farrowers and hog feeders would reduce the uncertainty and that investment 
reluctance could be reduced significantly. In addition, contracting creates welfare gains.  

In this contribution we challenge this finding with regard to theoretical consistency. Instead of 
deriving investment strategies for each subsector individually on the basis of empirical price 
data, we explicitly model the subsectors and the spot market interaction. Because closed ana-
lytical solutions to determine optimal investment criteria only exist for rather simple situa-
tions, for example if the value of the project follows a geometric Brownian motion and the 
option never expires, Monte Carlo simulation is utilized. The main advantage of Monte Carlo 
simulation is its flexibility with respect to the stochastic process of the asset. However, in-
stead of looking at the market at an aggregate level, we start with a bottom up approach by 
explicitly modeling the individuals (i.e. the farms) and their behavior. In a discrete-time 
model of market interaction, N agents represent N identical farms which compete in each sub-
sector. Each of these farms can invest irreversibly into production assets (buildings) without 
knowing how the market environment will evolve in the future. Every farm invests according 
to its individual investment trigger which is derived by linking the agent-based model with a 
genetic algorithm (cf. Arifovic, 1994). Genetic algorithms (GA) can be understood as a cer-
tain form of computational intelligence which is based on a heuristic optimization technique 
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that is related to concepts of natural evolution, such as selection, crossover, and mutation. 
These mechanisms are repeatedly applied to a set (population) of solutions to the problem in 
order to find superior solutions. A fundamental advantage of using GA for complex optimiza-
tion problems are the low prerequisites: Essentially, one just needs to specify the variables to 
be optimized, an environment that allows the evaluation of potential solutions, and the respec-
tive GA operators which breed the solutions.  

Two production systems are compared: As example for a perfectly integrated system, it is 
considered that every farmer can invest in closed systems in which piglets (the intermediate 
product) and finished hogs (the final product) are produced in equal amounts. In an alternative 
production system, farmers can either invest in farrowing (i.e. the production of piglets) or in 
hog finishing. The intermediate product, i.e. piglets, is traded on a spot market. Simulations 
show that the spot market solution and the closed system lead to the same production dynam-
ics. The only precondition is that for the spot market system farrowers and hog finishers are 
aware of the investment strategies, respectively the production capacities of the market part-
ners. This general finding is even independent of different depreciation rates on the produc-
tion steps, though these modified assumptions change the price dynamics. 

2. The Model  

2.1. The investment problem 

Consider a number of N = 50 firms, each having repeatedly the opportunity to invest in iden-
tical assets or a fraction thereof, i.e. the assets are divisible. Initially, no firm is invested. The 
asset has a maximum size of 1 and can be used by firm n to produce up to  units of 
output per production period. Size, investment outlay and production are proportional, i.e. 
there are no economies of scale. If a firm invests for the first time, its maximum initial in-
vestment outlay  is I. The investment outlay Mt,n is considered to be totally sunk after 
the investment is carried out. For every future period, we consider a geometrical decay of the 
asset. The asset's productivity declines to (1-λ) of the previous period's output, i.e. we con-
sider a depreciation rate λ such that 

1, ≤ntx

max
,ntM

ntntt xx ,, )1( ⋅−=∆+ λ .1 However, in every period, each firm 
can invest or reinvest in order to increase production or to regain a production capacity of up 
to one unit of output. The outlay Mt,n then has a maximum amount  depending on the 
missing production capacity, i.e.  

max
,ntM

[ ] IxM ntnt ⋅⋅−−= ,
max
, )1(1 λ  (1) 

such that . Each firm’s investment decisions aim to maximize the expected net pre-
sent value of the future cash flows by choosing a specific investment trigger , i.e. the goal 
of firm n can be formulated as 

1max
, =∆+ nttx

*
nP

                                                 
1  The use of the decay parameter λ is analogous to the probabilistic approach presented in Dixit and Pindyck 

(1994, pp 200). To understand this, simply consider that any firm n actually consists of an infinite number of 
identical infinitely small firms. 
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with Pt as the output price in period t and ∇t , - n  denoting a certain market operator that cap-

tures demand developments which are assumed to be stochastic as well as to be dependent on 
the behavior of the other firms.2 Accordingly, we consider that the firms compete and interact 
on a market. To capture competition, the firms and their interaction are represented in an 
agent-based setting in which the firms are represented as agents that perceive their environ-
ment and respond to it individually and autonomously (e.g. Russel and Norvig 1995).  

The environment of a firm n can be considered as consisting of two parts. One is the behavior 
of the other firms. The other is the demand for outputs, which is modeled in terms of a de-
mand function. The environment can be described as follows: 

Total supply in period t is 

∑
=
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N

n
nt

S
t xX

1
,  

(3)
 

and demand is 

t
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For identity of demand and supply, we get  
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Consider now that the demand parameter αt follows geometric Brownian motion (GBM). As-
suming discrete time this can be modeled as 
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with a volatility σ, a drift rate µ, a standard normally distributed random number εt , and a 
time step length ∆t.  

Firm n invests in period t if the expected price with *ˆ
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The questions now are: Which firms invest? And how much do they invest? Therefore, let us 
assume that firms with lower trigger prices  have a stronger tendency to invest. Conse-*

nP

                                                 
2  Note, that equation (2) implicitly assumes risk neutrality. 
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quently, all firms can be sorted according to their trigger prices, starting with the lowest in-
vestment trigger, i.e. . The following propositions are straightforward: *

1
*

+≤ nn PP

01, =+M nt

1, =− MM nt

( )ttP ∆+

o
tn

Proposition 1: If firm n does not invest in t then firm n+1 will also not invest in t, i.e.  

0, ⇒=M nt   

Proposition 2: If firm n does invest in t then firm n-1 will invest  in t, i.e. max
1, −ntM

10 1,1
max

1,, =⇒⇒> −+− xM ntntnt   

Proposition 3: In every period t, a marginal (or last) firm  exists which invests such 

that the expected price for the next period is equal to the investment trigger of firm , 

i.e. 
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Now,  can be identified by iteratively testing all firms for . The last firm with a 

positive investment is .  
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Equation (11) is an equilibrium condition: All firms which fully invest and hence produce at 
maximum capacity have trigger prices which are less or equal to the trigger price of firm 

 which is also equal to the expected price for t+∆t. All firms which do not invest have 
trigger prices which are higher than or equal to the expected price for t+∆t. 

1+on

For a given set of trigger prices P* and arbitrary initializations for α0, the expected profitabil-
ity of each strategy 

( ) ( )(




∑ +∇−⋅=Π

∞

=

∆⋅−
−∆⋅∆⋅∆⋅∆⋅∆⋅

0
,

*
,,,

* )1(,,ˆ
l

tl
ntlnntlntltlntlnn rPxMPxEP )

                                                

 (12) 

can be determined simultaneously by a sufficiently high number of repeated stochastic simu-
lations of the market. For our analysis, we consider 5000 repetitions to be sufficient. 

As presented to this point, the model resembles a farm’s investment problem for a closed sys-
tem of pork production in which the intermediate product piglets and the final product pork 
are produced in appropriate amounts, such that trade of the intermediate product is not neces-
sary. The investment costs I cover the costs for both production assets, i.e. I = piI + hoI. The 

 
3  Notice, n  is zero if there is no investor in period t. o

t
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superscript on the left side self-explanatory marks the piglet producers and the hog finishers, 
respectively. 

What are the consequences for a spot market relationship between hog finishers and piglet 
producers for their investment triggers? Naturally, in such a system the production capacity of 
the hog finishers corresponds to the demand parameter of the piglet producers: 

  t
pi

t
ho X α= (13) 

Considering iso-elastic demand with demand elasticity –1, in the market equilibrium for the 
piglet producers is valid: 
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Piglet producer n invests, if the expected price for piglets  is larger or equal her trigger 

price . Total production of piglets in period t+∆t is: 
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Note, in contrast to the description above the net return for hog finishers hoGt must be adjusted 
by the piglet price (i.e. the variable costs of pork production).4 Additionally since finishers 
would not spend more money on buying piglets than the expected return for pork, the net re-
turn is zero in these cases, i.e. 
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For hog finishers is valid: 
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The remaining question is, how to determine appropriate sets of trigger prices  and 
? For this, the multi-firm market models are combined with a genetic algorithm (GA). 

*
n

ho P
*

n
pi P

2.2. The Genetic Algorithm and its implementation5 

GA are a heuristic optimization technique which has been developed in analogy to the con-
cepts of natural evolution and the terminology used reflects this. Even though there is no 
“standard GA” but many variations of GA, there are some basic elements which are common 
to all GA (cf. Holland, 1975, Goldberg, 1989, Forrest, 1993, Mitchell, 1996).6 The first task 
                                                 
4  For simplification and without loss of generality, we abstract from additionally variable cost, i.e. costs for 

feed etc. 
5  The following representation of GA draws on Balmann and Happe (2001). 
6  For other GA-applications to real options cf. Balmann, Mußhoff and Odening (2001) and Diaz (2000).  
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of an application of GA is to specify a way of representing each possible solution or strategy 
as a string of genes which is located on one ore more chromosomes. Usually this is achieved 
by representing solutions (e.g. strategies, numbers, etc.) as binary bits, i.e. zeroes or ones, 
which form the genes. Since our problem is relatively simple, i.e. we just search for a single 
value (i.e. every strategy just consists of a certain trigger price), we take the investment trig-
ger as a real value and apply the GA operators to the trigger price itself. The second task is to 
define a population of N genomes to which the genetic operators, i.e. selection, crossover and 
mutation, can be applied. The population size here is 50 genomes. This allows us to directly 
map the set of genomes to the firms' strategies, i.e. every firm’s trigger price in our model is 
represented by one genome of the genome population. Vice versa every genome can be un-
derstood as the strategy of a certain firm. 

Each application of the genetic operators to the population of genomes creates a new, modi-
fied generation of genomes. The number of generations depends on the problem to be solved. 
It can range from some 50 to a couple of thousand. In most GA applications the first genera-
tion of genomes is initialized by random values or it is set arbitrarily. During the following 
generations, the genome population passes through the following steps: 

a) Fitness Evaluation 

Each time before the GA operators b) to d) are applied, the goodness of every genome is 
evaluated by applying a fitness function. This function assigns a score to each genome in the 
current population according to the capability of the genome strategy to solve the problem at 
hand. The better the strategy performs, the higher its fitness value. For our applications, the 
fitness value is directly derived from the strategy's average profitability Πn( ) or payoff in 

5 000 stochastic simulations of the market model.  

*
nP

b) Selection and Replication 

Selection determines the genetic material to be reproduced in the next generation. The fitter 
the genome (i.e. the better adapted it is to the problem) the more likely it is to be selected for 
reproduction. Selection can be implemented in many different ways. In this model the 20 
most successful genomes always survive. The next 15 genomes are replaced with certain like-
lihood by the 15 most successful genomes of the last simulation series. The next 10 genomes 
are replaced by the 10 fittest genomes with a higher likelihood. And the least 5 successful 
genomes are always replaced by the 5 most successful genomes. Summarizing, the 5 most 
successful genomes can quadruplicate, the next 5 can triplicate, and the next 5 most success-
ful strategies can double. 

c) Crossover 

Figure 2 shows the simplest case of a 1-point-crossover, where the coded strings of two parent 
genomes are split at a randomly chosen locus and the sub-strings before and after the locus 
are exchanged between the two parent genomes resulting in two offspring. This technique is 
also used for our GA implementation. With a certain likelihood, for every genome a a partner 
b is randomly chosen from the selected genomes. The values are cut at a randomly chosen 
digit. If e.g., the numbers are cut after the third digit, offspring a' gets the first three digits of 
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parent a and all further digits of parent b and vice versa. Thus the triggers a=1.2345678 and 
b=1.1111111 become a'=1.2311111 and b'=1.1145678.  

Figure 1: Example of a 1-point-crossover after the 3rd digit. 
parent genomes   offspring genomes 

a … 1 2 3 4 5 6 7 8 … a' … 1 2 3 1 1 1 1 1 …

b … 1 1 1 1 1 1 1 1 …
→

b' … 1 1 1 4 5 6 7 8 … 

d) Mutation 

Mutation also brings new genetic varieties into the population of genomes. Furthermore, mu-
tation serves as a reminder or insurance operator because it is able to recover genetic material 
into the population which was lost in previous generations (Mitchell 1996). This insures the 
population against an early and permanent fixation on an inferior genotype. Mutation is im-
plemented here by multiplying every solution with certain, but small likelihood with a random 
number between 0.95 and 1.05. The mutation likelihood as well as the range of the random 
number may be chosen according to experience as well as according to the already obtained 
results. A flow diagram can be found in the appendix. 

In one particular point our GA application deviates from conventional applications. Here, the 
GA is not just used to solve a more or less complex optimization problem in which the good-
ness of the solution and the problem at hand are directly related. In our case, the goodness of a 
solution rather depends on the alternative solutions generated by the GA. In other words: in 
conventional GA applications the fitness of a genome can be obtained directly from a com-
parison of payoffs of the different solutions because the payoffs are independent of the com-
peting solutions. Here, a solution’s payoff depends on the other solutions. Thus, we are apply-
ing the GA to a game theoretic setting and we are not searching for an optimal solution, but 
for an equilibrium solution, i.e. the Nash-equilibrium strategy.7 

2.3. The scenarios 

The model as it is presented above can be used for many different scenarios. One motivation 
is to validate our approach for the standard case of a one step production system, i.e. the 
closed farrowing-finishing system, by showing that it leads to the same conclusions as ana-
lytical approaches. The calculations are based on an interest rate of r = 6%. The drift rate µ is 
assumed to be zero and the volatility σ is assumed to be 20%. Depreciation rate λ equals 5%. 
Thus, investment costs Iλ=5% = 8.36364 imply total production costs of 1 per unit of output. 
The total time span T simulated in every stochastic simulation is determined as 100 years. For 
later periods the expected returns are set equal to the returns in year 100. The possible error 
can be assumed to be negligible since later returns are discounted by more than 99.7%. 

In order to validate the agent-based model of multiple competing farms, it will now be shown 
that the agent-based approach leads for the closed system to the same dynamics like a direct 
                                                 
7  A number of publications during the past 10 years show that agent-based GA approaches function quite well. 

Examples and discussions are given for instance in Arifovic (1994, 1996), Axelrod (1997), Balmann and 
Happe (2001), Dawid (1996), Dawid and Kopel (1998) and Chattoe (1998). 
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simulation of the price dynamics that would have to be expected. For these reference experi-
ments, it is assumed that output prices directly follow GBM for competitive markets. This 
idea is based on the seminal finding of Leahy (1993) showing that the market impacts of e.g. 
depreciations and competition can be ignored in the way that myopic behavior leads to ade-
quate decisions if volatilities and the drift rate of the price process are estimated properly.8  

3. Results 

3.1. Validation 

Consider the existence of an equilibrium investment trigger P* at which all firms invest and 
assume that in period t-∆t firms have invested according to . From equations (5) and 
(6) we know that after the investment decisions are made, Pt purely depends on the relation of 
αt and αt-∆t. Hence, the price in t will be 

*ˆ PPt =
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Consider now that the actual price in period t is . Then the firms will respond and in-
vest such that . Now consider . Then, two cases have to be differentiated. If 

then some firms will reinvest, such that . Otherwise, if 
 no firm will reinvest and . With this knowledge and in 

accordance with equations (1) to (12) the price dynamics can be described as 
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With equation (19) price dynamics can be simulated directly, i.e. without the explicit repre-
sentation of firms. Moreover, (19) can be used to determine the equilibrium investment trigger 
P*. Repeated stochastic simulations of equation (19) for various values of P* should reveal 
that the zero-profit condition will only be fulfilled if P* is equal to the equilibrium investment 
trigger. If P* is higher, the dynamics should allow for profits. If P* is smaller, this should im-
ply losses. Accordingly, the equilibrium trigger price P* can be determined by minimizing the 
square of the expected profits, i.e. 

( )[ ] ( )( )
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8  For a detailed analysis with particular regards to depreciation and demand elasticities cf. Odening et al. 

(2002). 

 8



with  and Pt follows equation (15). 9 *
0 PP =

Figure 2 shows that for identical trigger prices and identical αt, the agent-based model and the 
direct price simulation lead to an identical price path. Moreover, the direct price simulations 
lead to practically identical trigger prices. Hence direct price simulation allows to validate the 
results of the agent-based approach. Unfortunately, this approach is not as generally as the 
agent-based approach and cannot be applied directly to production chains in which farms in-
teract on spot markets.  

Figure 2:  Price dynamics in the agent-based model and in the direct price simulation 
(identical trigger prices for all genomes) 

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
p e r io d

P t

m u lt i -a g e n t  m o d e l
d ir e c t  p r ic e  s im u la t io n

 

3.2. Closed systems versus spot market interaction 

Table 1 presents the trigger prices for investments under alternative assumptions. As a result 
the trigger prices of the closed systems correspond to the sum of the trigger prices of the spot 
market solution. Accordingly, one can conclude that stronger vertical integration does not 
increase investments and welfare. Moreover, vertical integration does not influence the pro-
duction volume - even if farmers are risk avers. This is shown by Figure 3. For a given dy-
namics of demand for pork, the scenarios lead to identical price paths for pork. 

Table 1: Trigger prices dependent on vertical integration and depreciation 

spot market  closed system 

piglet producer pork producer sum 

risk neutrality 2.362 1.018 1.345 2.363 

risik aversion1) 2.375 1.017 1.354 2.371 

1) Considering the utility function U=(a+X)1/2, with a=2 for piglet producers and a=10 for pork producers with 
X as the present value of all cash flow streams achieved with the respective strategy in a simulation. 

 

                                                 
9  This optimization problem can be solved by combining the required stochastic simulations with a GA. 
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Figure 3: Price paths as results from alternative scenarios 
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This result contradicts the empirically based results of Pietola und Wang (2000). How to dis-
solve this contradiction? On the one hand the simulation experiments are based on several 
specific assumptions, e.g. identical useful lifetimes of barns for piglets and hogs by using a 
fixed depreciation rate of 5 %, rational expectations about the behavior of the market partners 
as well as on the assumed piglet market which is based on a price elasticity of -1. On the other 
hand, the results are surprising. While real piglet prices show significant fluctuations, the pig-
let prices as represented in figure 3 are constant over wide phases. This can be explained by 
several assumptions of the model: the implicit synchronicity of the useful lifetime of the 
barns, the fixed depreciation rate, and the rational expectations hypothesis. These assumptions 
enable that the capacities of piglet production can be optimally adjusted to the hog finishing 
capacities.  

A variation of the useful lifetime of the farrowing barns changes the price dynamics for pig-
lets. Nevertheless, this has no significant effect on total pork production. According to table 2, 
variations of the depreciation rate for farrowing barns do not affect the sum of trigger prices 
for piglets and for pork. Higher depreciation rates for farrowing barns lower their trigger 
price, while equilibrium gross margins for finishing barns increase in the same amount. This 
is a consequence of the higher flexibility of the piglet production. Vice versa lower deprecia-
tion rates for farrowing barns leads to a higher volatility of the piglet prices and therefore to 
higher trigger prices. Simultaneous equilibrium gross margins of finishers can be reduced 
because finishers benefit from the farrowers’ inflexibility. For high depreciation rates of far-
rowing barns the trigger prices are even smaller than 1. The reason is that in the short run the 
piglet producers benefit from the small flexibility of hog finishers in the case of moderate 
demand declines for pork. In this case the trigger price forms a kind of lower reflecting bar-
rier. Figure 4 and Figure 5 illustrate this effect by showing exemplary dynamics of prices for 
hogs and piglet for different depreciation rates for farrowing barns (i.e. piλ  = 10% and 
piλ  = 2.5% for hoλ  = 5%).  
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Table 2: Trigger prices dependent on different depreciation rates for farrowing barns 
(piλ = 5%) 

 piλ = 2.5% piλ  = 5% piλ  = 7.5% pi λ  = 10% 
hoP* 1.2555 1.3450 1.4013 1.4238 
piP* 1.1184 1.0180 0.9601 0.9393 
hoP*+ piP* 2.3739 2.3630 2.3614 2.3631 

 

Figure 4: Price dynamics for hoλ = 5% and piλ = 10% 
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Figure 5: Price dynamics for hoλ = 5% and piλ = 2.5% 

0

0,5

1

1,5

2

2,5

3

3,5

4

0 50 100period

P hog prices piglet prices

 

The considerations above show that certain assumptions have a strong effect on specific re-
sults, such as the investment triggers on the different production steps. However, the funda-
mental result that closed systems are not superior compared to market solutions is not af-
fected, even if the assumptions are changed. Probably, the results would alter if one would 
assume some kind of bounded rationality, such as that farmers cannot observe the production 
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capacities of competitors and market partners in real time but with a certain time lag. How-
ever, this assumption would also affect stronger vertically integrated systems because one 
would need a kind of sectoral planning agency.  

4. Summary and conclusions 

Participants along a production chain which exchange intermediate products on spot markets 
face price risks, such as the transmission of price fluctuations of the final product. In a real 
options environment this uncertainty may cause investment reluctance on the different steps 
of the production chain. This paper analyzes whether a stronger vertical integration along the 
production chain allows to reduce the investment reluctance. Therefore, an agent-based com-
petitive model of the pork production chain has been developed in which farmers use optimal 
investment strategies which are identified by genetic algorithms. Two production systems are 
compared: As example for a perfectly integrated system it is considered that every farmer can 
invest in closed systems in which piglets (the intermediate product) and finished hogs (the 
final product) are produced in equal amounts. In an alternative production system, farmers can 
either invest in farrowing (i.e. the production of piglets) or in hog finishing. The intermediate 
product, i.e. piglets, is traded on a spot market. Simulations show that the spot market solution 
and the closed system lead to the same production dynamics. The only precondition is that in 
the spot market system farrowers and hog finishers are aware of the investment strategies and 
the production capacities of the market partners. This general finding is even independent of 
different depreciation rates on the production steps, though the price dynamics for the inter-
mediate product changes. Though this result is intuitively surprising, it is in accordance with 
several other insights of the real options theory such as that myopic investors which ignore 
impacts of competition behave efficient (Leahy 1993) and that real options theory does not 
justify political interventions such as price stabilization (Dixit and Pindyck 1993). However, 
as already mentioned, our findings are based on certain restrictive assumptions. Accordingly, 
the next steps of research will be to relax certain assumptions, such as the demand elasticity 
(respectively price flexibility) of –1. 
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Appendix: Flow diagram of the agent-based simulation approach. 
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