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ABSTRACT. In this paper we analyse the dynamics of the traditional cobweb model
with risk averse heterogeneous agents under bounded rationality. We consider a learn-
ing mechanism in which heterogeneous producers seek to learn the distribution of as-
set prices using a geometric decay processes (GDP)—the expected mean and variance
are estimated as a geometric average of past observations—uwith either finite or infinite
fading memory. With constant absolute risk aversion, the dynamics of the model can
be characterized with respect to the length of memory window and the memory decay
rate of the learning GDP. We show that the decay rate of the GDP of heterogeneous
producers plays a complicated role on the pricing dynamics of the nonlinear cobweb
model. In general, the decay rate plays a stabilizing role on the local stability of the
steady state price when the memory is infinite, but this role becomes less clear when
the memory is finite and the heterogeneity has double edged effect on the dynamics
in the sense that heterogeneous learning can stabilize an otherwise unstable dynamics
in some cases and destablize an otherwise stable dynamics in other cases as well. It
is shown that (quasi)periodic solutions and strange (or even chaotic) attractors can be
created through Neimark-Hopf bifurcation when the memory is infinite and through
flip bifurcation as well when the memory is finite. In addition, it is found that the
source of risk is the risk itself in the sense that the behaviour of producers in response
to risk can generate market failure.
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1. INTRODUCTION

Consider the well-known cobweb model:

{ Py =ag, +b (supply) (1.1)
Dy =Qq+ p (demand) '

Here,q; andp, are quantities and prices, respectively, at petiog is the price ex-

pected at time based on the information at— 1, anda, b, (> 0) anda < 0 are
constants.

Under the naive expectation schepfe= p;_;, the price either converges to the
optimal market equilibrium (whefn/a| < 1) or explodes (whena/a| > 1). To
obtain more realistic, oscillatory, price time paths, the literature has introduce non-
linearities and time lag into the cobweb model and such nonlinearities can come from
either nonlinear supply or demand curve or risk aversion, discussed as follows.

When the producers are homogeneous, it has been shown that non-linearities in the
supply or demand curves may lead the cobweb model to exhibit both stable periodic
and chaotic behavior (i.e., Artsein (1983), Jensen and Urban (1984), Chiarella (1988),
Holmes and Manning (1988), Hommes (1991), Puu (1991) and Day (1992).). These
authors consider a variety of backward looking mechanisms for the formation of the
expectationg; ranging across the traditional naive expectafipa- p;_;, learning ex-
pectations (e.g., learning by arithmetic meén= (p;_, +- - - +p;—r)/L) and adaptive
learning expectatiop; = p;_, + w(pi—1 — pf_;) with0 < w < 1.

Nonlinearity can also come from risk and risk aversion (i.e., Boussard and Gerard
(1991), Burton (1993) and Boussard (1996)). As pointed in Boussard (1996), with
risk averse producers, the traditional linear cobweb model becomes nonlinear. By
assuming that the actual prigeis uncertain so that{ has mearp; and variancey,
Boussard (1996) shows that, under the simplest learning schemep andv;, =
(p:—1 — p)? with constantp, the nonlinear model may result in the market generating
chaotic price series, and market failure, and therefore the source of risk is the risk itself
(p.435, Boussard (1996)). Consequently, the stladgts a new light on expectations.

Not only are expectations pertaining to mean values important for market outcomes.
Those pertaining to variability can be just as cruc(@l445, Boussard (1996)).

By assuming the bounded rationality, when producers are somewhat uncertain about
the dynamics of the economic system in which they are to play out their roles, they
need to engage in some learning scheme to update their beliefs. Among various learn-
ing schemes, the properties of recursive learning processes under homogeneous ex-
pectations have been studied extensively (e.g., Bray (1982, 1983), Evans and Ramey
(1992), Balasko and Royer (1996), Evans and Honkapohja (1994, 1995, 1999), Barucci
(2001, 2002)). In Bray (1982, 1983) and Evans and Honkapohja (1994, 1995), the
agent’s expectation is computed as the arithmetic average of all the past observations
with full memory (the same weight is employed for each observation). In Barucci
(2001, 2002), agent’s expectation is computed as a weighted average of all the past ob-
servation with no-full memory. The weights of the average are described by a geomet-
ric process with a ratio smaller than 1 and therefore, the weights for older observations
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are smaller than the weights for recent observations. As pointed by Barucci (2001,
2002), these features of fading memory learning mechanisaygrealing because the
assumption of a constant weight for past observations are not fully plausible from a be-
havioral point of view. As a matter of fact, agents do not stop to learn as time goes on
and they ‘forget’ remote observatiorfsor a class of nonlinear deterministic forward-
looking economic model under the fading memory learning, Barucci shows that the
decay rate of the memory of the learning process plays a stabilizing role—it enlarges
the local stability parameters region of the prefect foresight stationary equilibria.

Apart from Boussard (1996), a great deal of attention in the expectations formation
literature has been devoted to schemes for the mean, but very little to schemes for the
variance. Chiarella and He (1998, 2000) extend Boussard’s framework in a way that
takes account of the risk aversion of producers and allows them to estimate both the
mean and variance via the arithmetic learning process (@LB)% Zle Diiy Uy =

LS [pei — pi)? with some integel, > 1. Chiarella and He (1998, 2000) show that
the resulting cobweb dynamics form a complicated nonlinear expectations feedback
structure whose dimensionality depends upon the length of the window of past prices
(the lag length) used to estimate the moments of the price distributions. It is found
that an increase of the window lengthcan enlarge the parameter region (in terms of
|a/a|) of the local stability of the steady state and, at the crossover from local stability
to local instability, the dynamics exhibits resonance behavior which is indicative of
qguite complicated dynamical behavior, and even chaos (for the model with constant
elasticity supply and demand functions).

Chiarella et al (2003) extend the homogeneous model in Chiarella and He (1998,
2000) to a heterogeneous model and characterise the price dynamics by the window
lengths of the heterogeneous ALP. It is found that increase of window lengths plays a
stabilizing role when both lags are the same, but this stabilizing effect becomes less
clear when both lags are different. This paper extend our discussion further to study
the role of the memory decay rate when producers follow GDP. It is found that, when
the memory is infinite, the decay rate plays a stabilizing role on the local stability
of the steady state price. However, this role becomes less clear when the memory
is finite and the heterogeneity has double edged effect on the dynamics in the sense
that heterogeneous learning can stabilize an otherwise unstable dynamics in some
cases and destablize an otherwise stable dynamics in other cases as well. It is shown
that (quasi)periodic solutions and strange (or even chaotic) attractors can be created
through Neimark-Hopf bifurcation when the memory is infinite and through flip bifur-
cation as well when the memory is finite. In addition, it is found that the source of risk
is the risk itself in the sense that the behaviour of producers in response to risk can
generate market failure.

The paper is organised as follows. A general cobweb model with heterogeneous
producers is established in Section 2. The heterogeneous geometric decay (learning)
processes (GDP) is introduced, and the existence of steady-state is then discussed in
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Section 2 in Section 3. The dynamics of the heterogeneous model is analyzed for both
finite and infinite memory in Sections 4 and 5, respectively.

2. CoBWEB MODEL WITH HETEROGENEOUSPRODUCERS

This section is intended to establish a cobweb model when producers are heteroge-
neous in their risk and expectation formulation on both the mean and variance. In the
case of linear supply and demand functions, the model may be written as

Supply: pf, =aigi;+0b;, (i=1,2); 2.1)
Demand: p, =aq+p (a<0), '

whereg; is the aggregate supplyy;; andp;, are the quantity and price expected of
producer: at timet based on the information set &t 1, andp; is the price, and
a;, b;, 1 (> 0) anda < 0 are constants.

Our approach to the formation of expectations will be somewhat different in that we
assume that the actual pripgis uncertain so that the heterogeneous producers treat
p;, as a random variable drawn from a normal distribution whose mean and variance

they are seeking to leakn

2.1. Market Clearing Price and Heterogeneous Model.Let p; ; andv; ; be, respec-
tively, subjective mean and variance of prige of producer: formed at timef based
on the information set @t— 1, andg; be quantity at time. With constant absolute risk
aversiond,, the marginal revenue certainty equivalent of produdst

Pit = Dix — 2Ai0i1Gig-- (2.2)

Suppose a linear marginal cost, as in (2.1), so that the supply equation, under marginal
revenue certainty equivalent becomes

Pit = aiGiz + bi (2.3)
It follows from (2.2) and (2.3) that
agis + by = Piy — 2A:0;4Gi 4
and hence the supply for produdes given by

Dit — b
o= Pt =0 2.4
q ot a; —+ 2Ai@i,t ( )

L1t would of course be preferable (and more in keeping with models of asset price dynamics in continu-
ous time finance) to treaf , as log-normally distributed. However this would then move us out of the
mean-variance framework so we leave an analysis of this approach to future research.

2With constant absolute risk aversieh), we assume the certainty equivalent of the receipt pq is

R(qt) = pi,,qt — A;vi+q?. Then maximisation of this function with respectgoleads to the marginal

revenue certainty equivalept = g—ﬁ = pi+ — 24,7, ,q;. We recall that this objective function is

consistent with producers having the utility of receipts funclior) = —e=4i".
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Denote byn, the proportion of type producerd then the market clearing price is
determined by

Dit — b;
= — . 2.5
Dt H +a ZZ: n a; —+ 2Ai@i,t ( )

In fact, it follows from (2.1) and (2.4) that the aggregated supply is given by

Pt —
gy = an’%’,t = ta

and hence

De— |  Dig — b
a Z i a; +2A;0;4
from which (2.5) follows.

2.2. Homogeneous Cobweb ModelAs a special case of the heterogeneous model
(2.5), assume that producers are homogeneous, that is, a, b; = b, p;y = Dy,
A; = A, v;; = v, then the corresponding homogeneous model has the form

pr—b
a+ 2AUt ’
and its dynamics is considered in Chiarella and He (1998).

Pt =M+« (2.6)

2.3. A Cobweb Model with Two Types of Heterogeneous Producers Following
GDP. In the following discussion, the simplest heterogeneous model when there are
two types of producers is considered. Then the population of heterogeneous producers
can be measured by a single parameter.rlet (1 + w)/2,ny = (1 —w)/2. Then

(2.5) can be rewritten in the following form

D2t — bo

) Dt — b
as + 2A09,

o
=pu+—-—(1+w
pr=H ( a; + 2A,01,

o)
=(1 —
5 +51-w)

(2.7)

The heterogeneous model (2.7) is incomplete unless producers’ expectations are spec-
ified. In this paper, thgeometric decay processes (GIN&h either finite and infinite
memory is assumed. More precise definition is introduced in the following section.

3. HETEROGENEOUSBELIEFS—GEOMETRIC DECAY PROCESS(GDP)

This section introduces the geometric decay process (GDP) with both finite and
infinite memory and the dynamics of the GDP of the heterogeneous agent model is
then analyzed in the following sections.

3In general, the proportion; is a function of timet, that is,n; ¢, which can be measured by cer-

tain fithess function and discrete choice probability, as in Brock and Hommes (1997). Because of the
complexity of the dynamics, we consider only the case with fixed propitiation and leave the changing
proportion problem to our future work.
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3.1. GDP with Finite Memory. For type: producers, assume that the price follows
a geometric probability distribution with decay ratedpbver a window length of;,
that is,

{ Pig =M1 = B, Zf;l 0 prj, (3.1)

Uit =vig-1= B Zf;l 07 pimg — mag1),

whereB; = 1/(1+0;+02+---+6%71), L, are integers, and} € [0, 1] are constants
fori=1,2.
Two special cases of the geometric decay process (GDP) are of particular interested:
(i) Whené; = 1, the GDP (3.1) is reduced to the standard arithmetic learning
process (ALP), discussed in Chiarella et al (2003).
(i) When¢; = 0, the expectation of the mean follows the naive expectatipnr=
Pi—1 andl_)i’t = 0.

3.2. GDP with Infinite Memory. As the window lengthl,; — oo, it is shown (see
Appendix A.1) that, as a limiting process of geometric decay process with finite mem-
ory, the GDP with infinite memory satisfy

miz = 0imir—1+ (1 —8)ps
' ' 3.2
{ Vit = Oivig—1+ 0i(1—8)(pr — mis—1)* (3.2)

3.3. Existence of the Unique Steady State PriceDenote byp* the state steady price
of the GDP model with finite memory. Then, for the GDP with finite memory (3.1), it
is found from (2.7) thap* satisfies

S+ w) gt + (1 - w) 2]
a 1 171"
5[(1 -+ w)a—l + (1 — w)a]
For the GDP model with infinite memory, the state stegdym, ;,v;;) = (p*, p*,0).
Note thatp* is the same under GDP with both finite and infinite memory.

In the following sections, dynamics of the heterogeneous model (2.7) are studied

when agents update their estimations on both mean and variance by using the GDP
with both finite memory (3.1) and infinite memory (3.2).

« P~
= — (3.3)

4. DYNAMICS OF THE HETEROGENEOUSMODEL WITH FINITE MEMORY GDP

This section focuses on the dynamics of (2.7) when producers follow the GDP with
finite memory and different window lengtlis. Without loss of generality, we assume
L, < L,. DenoteL. = max{L,, Ly} = L. Because of the dependence of the subjec-
tive meanp; and variancey; on price lagged. periods, equation (2.7) is a difference
equation of ordel. (see system (A.7) in Appendix A.2).

The local stability of the unique steady state= p* is determined by the eigen-
values of the corresponding characteristic equation (equation (A.9) in Appendix A.2),
which is difficult to analyze in general, in particular wherns large. In the rest of this
section, we examine the case wher< 3.
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Denote

{ 61 :_%(1+w) (41)

62 = —ﬁ“. — U))

Theng; > 0,4, > 0. As indicated from the following results, the local stability of
the steady state depends on the parameters, including those from supply and demand
functionsas, as, «, the proportion difference of two types of producershe window
lengthsL; and L, used by the heterogeneous producers, and the decayratgesThe
discussion here is focused on two different aspects. On the one hand, for a fixed win-
dow length combination ofL,, L.), we consider how the demand parametand the
proportion differencev of producers affect the local stability of the steady state and
bifurcation. On the other hand, for a set of fixed parameters, we examine how these
results on the local stability and bifurcation are affected by different combination of
the window lengths. Regarding the first aspect, it is found that both the local stability
region and bifurcation boundary are geometrically easy to construct by using parame-
ters(3; and/3,, instead ofw anda. However, the one-one relation (4.1) betwéena)
and((, 2) makes it possible to transform the results between different set of param-
eters, and in addition, to preserve the geometric relation of the local stability regions
between the two sets of parameten the following discussion, we consider the case

L, = Ly, = Lfirstand thenl; # L,. Because of the geometric advantage, the results
are formulated in terms af3;, 5>), although some of the stability regions are plotted
using(w, «) as well.

4.1. Case 1: L, = L, = L. Consider first the case when both types of producer use
the same window length, thatils = L, = L, but different decay ratg9, d>).

4.1.1. Local Stability and Bifurcation AnalysisThe proofs of the following Proposi-
tions 4.1-4.3 can be found in Appendix A.3.

The simplest case of = 1 can be treated as special case of GDP when the decay
rated; = 0, that is, agents use the traditional naive expectation, taking the latest price
as their expected price for the next period.

Proposition 4.1. For L; = L, = 1, the local stability regionD;; in terms of(;, /35)
is given by
D11 (81, B2) = {(B1,B2) : 0 < By + P2 < 1}
Furthermore, a flip bifurcation occurs along the boundaky+ G, = 1.
Proposition 4.1 indicates that, when agents use the naive expectation, the steady

state becomes unstable through a flip bifurcation, leading to a two-period cycle of two
prices, one is above and one is below the steady state price.

4Note that the determinant of the Jacobian of the transformation (4.1) does not change the sign, implying
the reservation of the transformation.
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Proposition 4.2. For L; = L, = 2, the local stability regionD,, (51, 32) of the state
steady is defined by

Dyy = {(51,52) - Ay < 1,49 < 1}

where
B 01 09
1—46; 1 — 09
Ay = )
2 1+5151+1+5252
Furthermore,

e a flip bifurcation occurs along the boundary, = 1 where two eigenvalues
satisfy\; = —1, X2 € (—1,1);

e a Neimark-Hopf bifurcation occurs along the boundaxy = 1 where the two
eigenvalues are given by , = e*2™ heref is determined by

61 ﬁ?
p = 2cos(2m0) = [1+51 + 1+5J' (4.2)
Comparing the stability conditions in Propositions 4.1 and 4.2, one can see that

the parameter (in terms @fs;, 35)) region on the local stability of the steady state

is enlarged ad. increases fronl. = 1 to L = 2. This means that agents can learn

the steady state price over a wide region of parameters as they follow the GDP with
L = 2. However, as one can see from the following discussion, these learning process,
in particular the decay ratég(i = 1,2), can generate far more complicated dynamics
when the steady state price becomes unstable. To understand the effect of parameters
Gi,6; (i = 1,2) on the stability of the state steady and types of bifurcation, we now
undertake a more detailed analysis by considering various cases in terms of parameters

(01,02).

16 I'y: Flip curve
3
['y: Hopf curve
2
1

Wl
N[

FIGURE 1. Stability region and bifurcation boundaries for = L, =
2,51 :52:5and6:ﬁ1+52.
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e The case&, = d, = 0: In this case, it follows from Proposition 4.2 that the
stability region of the state steady can be characterized by two parameters
andé:

Doy = {(61,02) : 0 < B =61+ b2 < B},

_ 1+ 5 < 1
RS
5> 1

In this case, a flip bifurcation occurs along the boundary
I':8=(1+9)/(1-9), d €[0,1/2],
and a Neimark-Hopf bifurcation occurs along the boundary
[y:B8=(1+0)/0, § e (1/2,1], p=-—1/§ € (-2,—1].

Note that functionsf(z) = 1££,g(z) = 22 satisfy f' > 0, " > 0,4 <
0,¢” > 0. The stability regionD, is plotted in Figure 1. One can see that the
different decay raté has different effect on the stability:
(i) for 6 € [0, 3], the stability regionD,, in terms of the parametet is
enlarged as increases;
(i) for § € [%, 1], the stability regionDy, in terms of the paramete? is
enlarged as decreases;

(i) for o = 0, we have the smallest parameteregion for the local stability:

0 < g8 < 1; while for § = 1/2, we have the largest parameteregion for
the local stability:0 < g < 3; for § > 1/2, increase ob does not enlarge
the parameter region on the local stability;

(iv). for small decay raté < 1/2, the steady state price becomes unstable
through flip bifurcation (implying a two-period cycle), while for large de-
cay rate) > 1/2, the steady state price become unstable through Neimark-
Hopf bifurcation, which in turn generates either period cycle or aperiodic
orbit.

e Thecas® < 41,9, < 1/2 andj, # 0,. Inthis case, it follows from Proposition

4.2 that the local stability region is defined by

Doy = {(B1,B2) : Ag < 1}

and the steady state becomes unstable through a flip bifurcation only, as indi-
cated in Figure 2(a). Furthermore, as eitheor J, increases, the local stability
region D, of the state steady with respect to parametgiss.) is enlarged,

as indicated in Figure 3(b).

where

=
+
[seis o)

e The casé,, ), > 1/2 ands, # 0-. In this case, it follows from Proposition 4.2
that the local stability region is defined by

Doy = {(B1,32) : Ay < 1}
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B2 2
e 1+ 5
flip curve Hopf curve
B 5
= L+5
(@) 61 # 02,0 < 81,00 < 5 (b) 81 # 02,5 < 01,00 < 1
B2 B2
1+ 5 Ern
Hopf curve flip curve
A A
flip curve Hopf curve
B 5
= L
(0)517&52,51<%752>% (d)517é52751>%,52<%

FIGURE 2. Stability region and bifurcation boundaries for (&)<
01,00 <1/2;(0)1/2 < 61,0, < 1;(€)0 < 6; < 1/2 <6, < 1; and (d)
0< (52 < 1/2 < (52 <1, whereA : (61,62) = ((1 —2§2>(1+61>/(51 —
02), (1 —281)(1 + 02) /(02 — d1).

and the steady state becomes unstable through a Neimark-Hopf bifurcation,
as indicated in Figures 2(b) and 3(a). Along the bifurcation boundary, the
nature of bifurcation is characterised Byvhich satisfies (see Appendix A.2

for the detailsy = 2 cos(276) € (—1/ min(dy, d2), —1/ max(dy, 02)). Say, for
example, for fixed, = 2/3, the region for the parametgwarious for different

01, as illustrated in Table 1.

(ol p 6] p ]
12| (-2, -312) | 3/4] (-312, -413)
213 =312 | 1| (-3/2,-1)

TABLE 1. Parameter region fgr with fixed 6, = 2/3 and different);.




FADING MEMORY LEARNING OF HETEROGENEOUS PRODUCERS 11

Different from the previous case, as eitlagior §, increases, the local stability
region of the paramete(g,, 5,) becomes smaller, as indicated in Figures 2(c),
(d) and 3(b).

e The case eithar < 0, < 1/2,9 > 1/2 0r0 < 6 < 1/2,0; > 1/2. In this
case, the stability region is bounded by two bifurcation boundaries, as indicated
in Figures 2(c), (d) and 3. One is the flip bifurcation boundary definefi by
1, the other is the Neimark-Hopf bifurcation boundary defineddy = 1,
along which the types of bifurcation are characterised bich satisfies (see
Appendix A.2 for the detailsp) = 2cos(270) € (-2, —1/max(d,d)). Itis
interesting to see that, unlike the previous case, the parapet@etermined
only by eithers; (whend; > 1/2) or §, (whend, > 1/2). Also, the parameter
region for(/3;, 52) on the local stability is enlarged as eithgrincreases and
0o decreases ay, increases andl decreases.

The previous Propositions 4.1 and 4.2 seems to indicate thairageases from 1
to 2, on the one hand, the stability region is enlarge and, on the other hand, instability
leads to a more complicated price dynamics. One may expect a similar dynamics
would occur if we increasé from 2 to 3. However, the following Proposition 4.3
indicates that this may not be the case.

Proposition 4.3. For L; = L, = 3, the local stability regionDs3(51, 32) of the state
steady is defined by

D33 = {(p1,32) : Az < 1}
where
1=+ 8¢ 1— 8y + 62
146+ 67 1+ 0y + 03

Furthermore, the steady state price becomes unstable through a flip bifurcation bound-
ary defined by\; = 1.

A3 61 + 52-

It is interesting to see that, similar to the case= 1, but different from the case
L = 2, the steady state becomes unstable only through flip bifurcation Whers.
Moreover, the parameter region on the local stability is enlarged as the decay; rates
increase. The stability regions are plotted in Figure 4(ayfot 6, = 6,3 = b1 + 5o
and Figure 4(b) fon; # d, and fixedd, = 1/2.

A general comparison amorg= 1, 2 and 3 may not be easy for variotisand?,.
However, such comparison whén= §, = ¢ can lead to some insight regarding the
role of the decay rate on the price dynamics. In such case, the stability condition for
L = 3is given by

1+6+ 62

B=p01+ P < 1_s+62

Note thatH (0) = 1, H(1) = 3, H' > 0, H” > 0. Stability regions forL, = 1,2 and 3
are plotted in Figure 4(c) . One can see that

= H(J).
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G2

Neimark-Hopf bifurcation surface

3
2
Flip bifurcation
surface
1 1 01
2
1
2
3
a
3 (a)
Ba
Flip bifurcation surface
2
1
01
1
2
3 Neimark-Hopf bifurcation
(b) surface
b

FIGURE 3. Stability region and bifurcation boundary surfaces for (a)

52 = 2/3, and (b)52 = ]./3
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&) B2 B
3 i 3 L=3
3
2 2 L=2
1 o q L—1
1
2
1 9 3 Y5-11 0
2
B
(a) (b) (©)

FIGURE 4. Stability region and bifurcation boundary (or surfaces) for
L =3and (@), =, =0,8= 31+ B2 (b) 02 = 1/2,6, € [0,1]. (c)
Comparison of the stability regions far= 1, 2, 3.

e for ¢ € [0,1/2], the parametes region on the local stability of the steady state
is enlarged as increase,l = 2 leads to the largest stability region, and the
steady state becomes unstable through a flip bifurcation;

e for § € (1/2,1], L = 2 gives a larger stability region far < (v/5 — 1)/2,
while L = 3 gives a larger stability region far > (v/5—1)/2. In addition, the
steady state becomes unstable through a Neimark-Hopf bifurcatidn$o2,
but a flip bifurcation forl, = 3.

4.1.2. Dynamics of the Nonlinear System—Numerical AnalySisided by the above
local analysis, numerical simulations are used to demonstrate the dynamics of the non-
linear system (2.7) and (3.1).

For L = 1, the GDP is reduced to the naive expectation and numerical simulations
show the prices are either converge to the steady state price (wheb, + 5, < 1) or
explode (whers = 3, + 3, > 1). The flip bifurcation does not lead to price oscillation
and fluctuation.

For L = 2, the stability regions and bifurcation boundaries in terms of parameters
(v, w) of the nonlinear system (2.7) are plotted in Figure 5.

e Ford, = 9, = 4, the local stability region is bounded by a flip bifurcation
boundary fo) < § = 0.25,0.5 < 1/2 and a Neimark-Hopf bifurcation bound-
ary foro = 0.75,1 > 1/2 with p € [—2, —1], respectively, as indicated by
Figure 5(a).

e Ford, # §, and a fixeds; = 0.15, the local stability region is bounded by
a flip bifurcation boundary fof < ¢, = 0.15,0.5 < 1/2 and both flip and
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Neimark-Hopf bifurcation boundaries for = 0.75 > 1/2, as indicated in
Figure 5(b).

(@) (b)

FIGUREDS. Local stability regions and bifurcation boundaries fo«
2 and (a)51 =0y = 1/4/ 1/2, 3/4 1; (b) 01 = 0.15, 6 = 0.25,0.5,0.75
with parameters; = 0.8 < a, = 1, A1 = A, = 0.05,0 = 11,b; =
b2 = O

To illustrate the dynamics of the memory decay parameter, a bifurcation diagram
for parametep; is plotted in Figure 6 with parametets = —2.5,w = —0.6,0; =
0.15,a1 = 0.8,a3 = 1,A; = Ay = 0.005,3 = 11,b; = by = 0. In particular, for
0, = 0.2 and0.88, the phase plots and the corresponding time series are illustrated in
Figure 7. For, = 0.2, the prices converge to a two-period cycle, characterized by the
flip bifurcation, while ford, = 0.88, the prices converge to a closed orbit in their phase
plot, which is characterized by the Neimark-Hopf bifurcation.

It is interesting to see that the local stability condition and bifurcation in Proposi-
tion 4.1-4.3 are independent of the risk aversion coefficidntsf the heterogeneous
agents. This is because that they are associated with the variance, a higher order term
of the linearised system of the nonlinear system at the steady state. In the above simu-
lations in Figures 6 and 7, both the risk aversion coefficients are small, and hence the
risk aversion and variance have no significant influence on the price dynamics induced
from local stability analysis. When agents are more risk averse and willing to learn
both mean and variance, the price dynamics are expected to be stabilized in the sense
that irregular price patterns, such as quasi-periodic cycles, with higher variability may
become regular, such as cycles, with lower variability. This can be verified (not re-
ported here) for the case corresponding to the right panel in Figure 7, in which the
steady state price becomes unstable through a Neimark-Hopf bifurcation and prices
converge to aperiodic pattern characterized by the closed orbit on the phase plot for
small risk aversion coefficientd; = A, = 0.005. As eitherA, or A, increases,
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FIGURE 6. Bifurcation diagrams of the nonlinear system #grwith
parametersy = —2.5,w = —0.6,0; = 0.15,a; = 0.8,a, = 1, A} =
Ay =0.005,8 =11,by = by = 0..

(@) (b)

FIGURE 7. Phase plot and time series of the nonlinear system for (a)
0, = 0.2 and (b)d, = 0.88 with parametersy = —2.5,w = —0.6,; =
0.15,a1 = 0.8,ap = 1, Ay = Ay = 0.005,3 = 11,by = by = 0..

the closed orbit becomes smaller (say for = A, = A = 0.01). However, asA;
increases further (say = 0.05), prices converge to either aperiodic cycles (charac-
terised by closed orbits for the phase plots) with lower variability for initial values
near the steady state price or 3-period cycles with higher variability for initial val-
ues not near the steady state price. Similar price dynamics are also observed when
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91,02 > 1/2. This suggests that, when the steady state price becomes unstable through
a Neimark-Hopf bifurcation, an increase in the risk aversion can stabilise otherwise
unstable price patterns initially and leads to even simple price dynamics. However,
this is not necessarily true when the steady state price becomes unstable through a flip
bifurcation.

FIGURE 8. Phase plot and time series of the nonlinear system for
a=-25w=—06,0 =015 = 0.02,a; = 0.8,as = 1, A, =
A2 - O5,ﬁ - 11,[)1 = bQ - O

For a set of parameters:
5 = 0.15,0, = 0.02,0 = —2.5, 8 = 11,b; = by = 0,w = —0.6,a; = 0.8, as = 1,

local stability analysis implies that the steady state price becomes unstable through a
flip bifurcation whend, is small. This can be verified fod,; small (sayA4; = 0.005
or 0.05). As A; increases, the prices converge to period-4 cycleffor 0.2, period-
8 cycle for A; = 0.35, period-16 cycle ford; = 0.36, and a strange attractor for
A; = 0.5. This strange attractor and the corresponding chaotic time series generated
through such flip bifurcation foA; = 0.5 are plotted in Figure 8.

For L = 3, numerical simulations (not reported here) show that parametegion
on the stability of the steady state price is enlarged; ascreases. The steady state
price become unstable through a flip bifurcation only, as indicated by Proposition 4.3.
Figure 9 illustrates the phase plot of price dynamics when the steady state price is un-
stable. For = —4, prices converge to a two-period cycle (as indicated by the flip
bifurcation), asy decreases further, the attractors become two coexisting closed orbits
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FIGURE 9. Phase plot of the nonlinear system foy = L, = 3,
a=—4,-5—6,—7andw = —0.6,0; = 0.8,05 = 0.5,a1 = 0.8, a5 =
1,A; = Ay = 0.005,8 = 11,b; = by = 0..

for « = —5 and—6. However, fora = —7, prices converge to a 10-period cycle. Fur-
thermore, there seems no chaotic attractor generated from the flip bifurcation, unlike
the case of. = 2.

4.2. Case 2: L, # L,. Consider now the case when both types of producer use the
different window lengthl,; # L, and decay rate@, Js).

4.2.1. Local Stability and Bifurcation AnalysisiVhend; = 0, the GDP with(L,, L,) =
(2,2) and(3, 3) are reduced to the GDP witlL,, L,) = (1,2) and(1, 3), respectively.
Therefore, one obtains the following Corollaries 1-2 from Propositions 4.2-4.3 by tak-
ing 6, = 0.

Corollary 1. For L, = 1, Ly = 2, the stability regionD1, (3, 52) of the state steady
is defined by
Dyy = {(B1,32) : Ay < 1}
for 0, € [0,1/2] and
Do ={(01,52) : Ay < 1,A5 < 1}
for 6, € (1/2,1], where

1—52 52

Ay =P+ mﬁz; A5 = Ba.

In addition,
e aflip bifurcation occurs along the boundarty, = 1 for 6, € [0,1/2];
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e both flip and Neimark-Hopf bifurcations occur along the boundary = 1
and A; = 1, respectively, fov, € (1/2,1]. Furthermore, the nature of the
Neimark-Hopf bifurcation is determined by

p = 2cos(2m0) = —[Fy + 1/d2].

Ba
Bo
3
3
2 2
1 1
1 0 &
1 1
6
61
(a) (b)

FIGURE 10. Stability region and bifurcation boundaries for (a)
<L17 LQ) — (1, 2), and (b)(Lh L2> — (1, 3)

The stability region and the bifurcation boundaries in parameters, 3,) space
are plotted in Figure 10(a). One can see that the stability region is bounded by a flip
bifurcation surface fod, < 1/2 and both flip and Neimark-Hopf bifurcation surfaces
for 6, > 1/2.

By applying Proposition 4.3, we obtain the following result tér, L,) = (1, 3).
The stability region and the flip bifurcation surface are plotted in Figure 10(b).

Corollary 2. For L, = 1, Ly = 3, the stability regionD;5(3;, 52) of the state steady
is defined by

Dig = {(B1, B2) : A < 1},
where
1 — 6y + 03
1+0dy+ 5%52.

In addition, the stability region is bounded only by a flip bifurcation boundary defined

Ag =1+
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For L, = 1, comparing the stability regions betweépn = 2 and L, = 3, one can
verify that D3 C Dy, for &, € [0, (v/5—1)/2]. However, fors, € ((v/5—1)/2—1,1],
Dy, C Dizwhenp, < gf andDy3 C Dy, Whenp, > 35, wheregy = 1 — (1 +
63)/[62(1 + 02 + 63)].

For (Ly, Le) = (2,3), the following result can be obtained (see Appendix A.4 for
the proof).

Proposition 4.4. For L; = 2, L, = 3, the stability regionDy3(/;, 52) of the state
steady is defined by
Dyz = {(51,B2) : A7 < 1}
for 6, € [0,1/2] and
Doz = {(01,52) : A7 < 1,Ag < 1}
for 6, € (1/2,1], where
1—4 1 — 05+ 63

T 1+5lﬁl+ 1+52+5552;
o 02 023 I (1 —03)5s
Ag = — )
8 1+(5151+1+(52—|—5%ﬂ2 1+52+5§(1+51+1—|—(5z+5§
Furthermore,

e aflip bifurcation occurs along the boundaty; = 1 for 6, € [0,1/2];
e both flip and Neimark-Hopf bifurcations occur along the boundary = 1
andAg = 1, respectively, fon; € (1/2,1].

Because of the nonlinearity @f in Ag, it is not easy to get a complete geometric
relation forL; = 2, L, = 3 and related discussion can be conduct by using numerical
simulation in the following subsection.

4.2.2. Dynamics of the Nonlinear System—Numerical Analys@.(L,, L) = (2, 3),

we choose a set of parametéis = 0.15,9, = 0.3,5 = 11,b; = by = 0,w =
—0.6,a; = 0.8,a2 = 1. Sinced; < 1/2, the steady state become unstable through
a flip bifurcation. It is found that the price dynamics generated through bifurcation
parametety is different from that through the risk aversion coefficients.

e For fixed risk aversion coefficientd; = A, = 0.005, the price dynam-
ics generated through the bifurcation parametas similar to the case of
(L1, Ly) = (1,3). That is, asa decreases, the steady state price becomes
unstable and prices converge to 2-period cycle, and then to aperiodic cycles
(characterised by two coexisting closed orbits), and then to simple periodic
cycles again. In addition, the variability of the prices is also increasing as
decreases.

e For fixeda = —4, changing of the risk aversion coefficients can generate a
very rich dynamics. For fixedl; = 0.05 and changingd,, prices converge
to various types of attractors, such as 4-, 8-cycles, strange attractors induced
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by period-doubling bifurcation, period-5, 10 cycles and strange attractors, as
indicated in Table 2 and Figure 11. Fdi = 1 fixed, asA, increases, prices
converge to 5-period cycles (say, fdp = 0.6), strange attractors (say, for

Ay = 0.7), three coexisting closed orbits (fakr, = 0.79), and 3-period cycle

(for A, = 0.81), as indicated in Figure 12.

A, | Attractor|| A, | Attractor
0.005| 2-cycle || 0.13| 5-cycle
0.05 | 4-cycle || 0.35| 10-cycle
0.07 | 8-cycle || 0.42| 20-cycle
0.08 | SA(4) ||0.47| SA(5)
0.09| SA(2) | 0.6 | SA(5)
0.12 | SA(1) 1 SA(1)

TABLE 2. Attractors generated by the risk aversion coefficiehts=
0.005 and variousd,, where SA(m) stands for strange attractor with
pieces on the phase plane.

Instead ofé; = 0.15 < 1/2, we can select; = 0.6 > 1/2. In this case, the
steady state price can become unstable through either a flip or Hopf bifurcation. A
similar price pattern and bifurcation routine to complicated price dynamics can be
observed for changing the risk aversion coefficients, except non-regular, even chaotic,
price dynamics can be generated through the bifurcation parameter

5. DYNAMICS OF HETEROGENEOUSBELIEFS— GEOMETRIC DECAY PROCESS
WITH INFINITE MEMORY

From the discussion in the previous section, we can see that the lags involved in
the GDP can have different effect on the stability of the steady state price and price
dynamics. In this section, we consider a limiting case when the lags tend to infinite.
Let §; be the decay rate of agefis memory. Then it follows from (3.2) that the
conditional meamn, ; and variance; , are given by

myy = 01mys—1+ (1 —061)pry

Moy = OaMaoy—1 + (1 — 2)piy (5.1)
vig = 010141+ 61 (1 — 1) (pr — m1,t—1)2 '
Vay = Oavay1 + 02(1 — 82)(pr — mai—1)>.

Let

Ty = Mg, Yo = Moy, 2t = V14, Ug = Vg
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FIGURE 11. Phase plot of the nonlinear system fdr,, L,) = (2, 3),
Ay = 0.08(a),0.12(b),0.47(c), 1(d) andaw = —4,w = —0.6,0; =
0.8,0o =0.5,a; =0.8,a0 =1,A4; =0.05,3=11,by = by = 0..

Then, under the GDP with infinite memory (5.1), the nonlinear system (2.7) is equiv-
alent to the following 5-dimensional system

bt = f(pax?ya Z,U)t,1

r, =01+ (1 —61)p

Y =0t + (1 —82)pi—a (5.2)
z = 01z-1 4+ 01(1 = 81)(pr — 14-1)?

up = Oguy1 + 0o(1 — 02)(pr — y1-1)%,

where

I—bl

(634
fp,z,y,z,u) =5+ 5[(1+w)m
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FIGURE 12. Phase plot of the nonlinear system fdr,, L.) = (2, 3),
Ay = 0.7(a),0.79,0.81(b) anda = —4,w = —0.6,6; = 0.8,0, =
0.5,a1 =08,a5 =1, 4, =1,8=11,b; = by = 0..

We first obtain the following result on the local stability and bifurcation and its proof
can be found in Appendix A.5.

Proposition 5.1. The fixed equilibriunx* is LAS if
2

6152<1 — 52) + 5251(1 — 51) _ 51-552

+o(1—0) + Bi(1— §)) < 14 @2f

Furthermore, the steady state becomes unstable through a Neimark-Hopf bifurcation
and the nature of the Neimark-Hopf bifurcation is determined by

(5.3)

p=01[1 = Ba2(1 — &2)] + da[1 — B1(1 — 61)]. (5.4)
In particular, whend; = §; = 9, the steady state is stable if
1
=0+ 0 < 1=3

and the steady state becomes unstable through a Neimark-Hopf bifurcatiop with
Je0,1).

Itis interesting to see that the steady state become unstable through a Neimark-Hopf
bifurcation only. It may not be easy to see the effect of the decay rates on the stability
region from condition (5.3), but the condition (5.4) wh&n= J, = ¢ indicates that
the parameter region fgt = 3; + 3, on the local stability is enlarged @sncreases,
as shown in Figure 13(a). In addition, the parameter region on the stability becomes
unbounded a8 — 1. This general feature is still hold whehn £ §, and this can be
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verified by numerical plot of the bifurcation surface, which can be indicated by Figure
for fixed 9; = 0.5. Hence the stability region is enlarged as the decay rates increase.

B B
L = +oo
3 3 L=3
1 1 L=1
) ) 1 )
0 =0, =10 2
(@) (b)

FIGURE 13. (a) Stability region and bifurcation boundary for GDP
with L = oo andd; = d, = 6; (b) Comparison of stability regions for
Li=Ly,=L= 1,2,3,ooand§1 =0y = 0.

A comparison wherl,; = L, = L andd; = d, = ¢ is plotted in Figure 13(b) for
L = 1,2,3andL = oo. One can see that, farnot close to 1, the stability region
may not be enlarged dsincreased foll. to be both finite and infinite. However, this
is indeed the case ass close to 1. Therefore, loosely speaking, high decay rate with
long memory can improve the stability of the steady state price.

Numerical simulations can be used to show various price dynamics when the steady
state price becomes unstable and it is found that the price dynamics is more dependent
on the decay rates, rather than the risk aversion coefficients. For a set of parameters:
G=11,w=0,a; = 0.8,a3 = 1,b; = by = 0, we have the following observations.

e For both decay rates close to 1, say= d, = 0.9, the steady state price
becomes unstable whenis small, sayx = —8. As « decreases further, prices
converge aperiodically, characterised by closed orbits in the phase plot, with
high variability. Also, for fixeda, a sufficient highy; (close to 1) can lead
an otherwise unstable price dynamics to converge to the steady state price, as
indicated by the above local stability analysis.

e For fixedaa = —10,0; = 0.2,6, = 0.9 and A; = 0.05, prices converge
to some strange attractors for a wide rangedgf(say A, € (0.05,2)), as
shown in Figure 14(b) for; = 0.05. However, when we fixedl, = 0.05
and increased; from 0.05 up to 2, it is found that prices in the phase plane
converge to strange attractors fér small (say(A; = 0.05,0.8)), and then to
a 5-period cycle for; = 1.2, and then to a strange attractor for = 1.5. This
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FIGURE 14. Phase plot of the nonlinear system for GDP with infinite

memory and (apr = —20,6; = 0.6; (b) « = —10,9; = 0.2 and
Al = AQ = 005,w = 0,51 = 0.8752 = 0.5,@1 = O.8,a2 = 1‘6 =
11,b; = by = 0..

indicates that when agents have infinite memory, the risk aversion coefficient
has no significant influence on the price dynamics when agents have high decay
rate (and in particular, when agents have almost full memory over the whole
history of price), however such influence can be significant when agents have
a low decay rate.

e Forthe GDP with finite memory case discussed in the previous section, some of
the regular or strange attractors are generated through bifurcation with certain
period cycles. However, for the GDP with infinite memory, such attractor may
have no connection with such periodic-cycle-induced bifurcation, as shown in
Figure 14(a).

6. CONCLUSIONS

In this paper we have introduced a GDP learning mechanism into the traditional
cobweb model with risk averse heterogeneous agents by allowing producers to learn
both mean and variance with different geometric decay rate. For a class of nonlinear
forward-looking models with homogeneous agents, Barucci (2001, 2002) show that,
when the memory is infinite, the memory decay rate plays a stabilizing role in the sense
that increasing the decay rate of the learning process the parameters stability region of
a stationary rational expectation equilibrium becomes larger and eliminate cycles and
chaotic attractors created through flip bifurcation, but not Hopf bifurcation. We have
shown in this paper that the memory decay rate plays a similar stabilizing role and
complicated price dynamics can be created through Neimark-Hopf bifurcation, not flip
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bifurcation, when memory is infinite and agents are heterogeneous. However, when
memory is finite, we show that the decay rate of the GDP of heterogeneous producers
plays a complicated role on the pricing dynamics. When both the lag lengths are odd,
increasing of the decay rate enlarges the parameters region of the stability of the steady
state and complicated price dynamics can only be created through flip bifurcation.
However when both the lag lengths are not odd, there exists a critical value (between O
and 1) such that, when the decay rate is below the critical value, the decay rate plays the
stabilizing role and, for the decay rate is above the critical value, the decay rate plays
a destabilizing role in the sense that the parameters stability region becomes smaller
as the decay rate increases. In addition, (quasi)periodic cycles and strange attractors
can be created through flip bifurcations when the decay rate is below the critical value
and Neimark-Hopf bifurcations when the decay rate is above the critical value. It is
also found that the source of risk is the risk itself in the sense that the behaviour of
producers in response to risk can generate market failure.

The heterogeneous GDP considered in this paper are some of the simplest learning
processes and the analysis has shown how they yield very rich dynamics in terms of
the stability, bifurcation and routes to complicated dynamics. In practice, agents revise
their expectations by adapting the decay rate in accordance to observations. How the
GDP learning affects the dynamics in general is a question left for future work.

APPENDIX

A.1l. Mean and Variance of GDP with Infinite Memory. Let m; andv; be the
mean and variance of the GDP with lag lengththat is

mi—1 = Blpi1+0pro+---+ 5L_1pt—L]a
Vo1 = Bl(pr—1 — mu—1)? + 0(pr—o — my_1)? (A.1)
+52(Pt—3 — mt—1)2 + -+ 6L71(pt—L — mt—1)2]7
where

1 —
B=-——
1 -6
The mean process, can be rearranged as follows:

foro € [0,1) andB = % foro = 1.

my = Blp, — 5Lpth} + omy_y.
Then foré € [0,1), asL — oo, the limiting mean process is given by
my = (1 = 8)pe + 0my_q,
which can be written as follows
My — M1 = (1 - 5)(1% - mt—l) (A.2)

or
my — Py = 5(mt—1 - pt). (A.3)
For the variance process, from

vy = Bl(pr — my)® + 0(pe—1 — mu)* + -+ 5L_1(pt—(L—1) —my)?.
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we have

Vp— OV = B[(pt - mt)2
+6[(pr—1 — mt)2 — (p—1 — mt—1)2]
+0%[(pr—2 — mu)* — (-2 — Mu—1)’]
+5 M (pe—(p—1) — me)* — (Pe—(z-1) — Mu—1)’]
_5L(pth - mt71>27

which can be rewritten as follows:

v —o0v1 = B(p — mt)2 - B5L(pt—L - mt—1)2
+B{0[(pi—1 — mu) + (Pe—1 — mu—1)][Mme—1 — my]
+0%([(pr—2 — my) + (pr—2 — my_1)][me_1 — my]
+6" M (pe—-1) — mu) + (Pe—p—1) — Mu—1)][my—1 — me]}
= B(p: — mt)2 - B5L(pt—L - mt—1)2
+(my—1 — m){B[6(p—1 — my) + 6*(pr—2 — my)
+eeet+ §L71<pt—(L—1) - mt)]
+B[6(pr1 — my—1) + 6 (Proo — My_1) + - + 5L71(pt—(L—1) —my)]}
= B(p:— mt)2 - BéL(pth - mt)2
+(my—1 — my)[=B(pe — my) — B6"(pr—r, — my))]

Note that, ford € [0,1), asL — oo,

and, using (A.3),
por—my = 0P —My-1) = 52(pt—L —Myp) =+
= §"(py_p —mu_g) — 0.
Therefore the limiting variance process is given by
v = 0v1 = (1= 08)(pe — my)? + (M — my)[—(1 = 0)(p — my)]

= (1 =08)(pe — me)[(pr — 1) + (my — my1)]
= (1=06)(pe — me)(pr — mi1),

that is,
vp = 6vp—1 + (1 = 6)(pr — mu) (pr — 1) (A.4)



FADING MEMORY LEARNING OF HETEROGENEOUS PRODUCERS 27
Based on the above argument, foe [0, 1), the limiting process (a8 — o) of the
mean and variance are given by

my = omy_1+ (1 —0)p,
Vs = 51)75_1 + (1 — 5)(]% — mt)(pt — mt_l) (A5)
= 5Ut_1 "‘ 5(]. — 5)(pt — mt_l)z.

A.2. Characteristic Equation of the Heterogeneous GDP Model with Finite
Memory. When the memory is finite, the heterogeneous GDP can be written as fol-

lows:
{ Digt = ZjLzl WijPi—j (A.6)
Vip = Z]l'il[ﬁi,t - pt—j]2 -
in which,w;; = B;6~! (i=1,2andj =1,---, L;). Let

Tit = Pt

Tot = Pt—1

T3t = Pt—2

Trt = Pt—(L-1)»

whereL = max{Ly, Ly}. Then, (2.7) with finite memory GDP is equivalent to the
following L-dimensional difference system

Tit+1 = f(ilit)
Totr1 — Tig
* (A7)
Tpi+1 = TL-1pt
where
21 —b To +—b

f(Xt) = ﬁ + %(1 + w)af—l‘r’;Algl + %(1 o w)a:i;A;b
Xt = ($1,t> Loty s XLt
_ L;
Tig = D0 Wiy
_ L; ~
Uit = Zjil Wi [Tie — 5]

At the steady statg*, 7, = 7o = p* andv; = v, = 0. Without loss generality, it is
assumed that; < L, and then.. = L,. Evaluating functiorf(x;,) at the steady state,
one obtain that

of Q@

1 1
Z -~ e 1 — w)—1wos
D B [(1+w) 0 wi; + ( w) angJ]

= —[wi;B1 + wa; o]
forj=1,---,L; and
of

8xj 2]62
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forj =L, +1,---, L. Therefore the corresponding characteristic equation is given
by
F()\ = )\L + Z wl]ﬂl + w2]62 - + Z w2]62)\ (A8)
J=L1+1

In particular, for the GDP, it follows fromw;; = B;6’~!, L; < L, and (A.8) that

L1 L
T =M+ [BiBis! 4 BoBad) N+ Y 3Bad) A = 0. (A9)

j=1 j=L1+1

A.3. Stability and Bifurcation Analysis When L, = L, = L. WhenL,; = L, = L,
one can see from (A.9) that the corresponding characteristic equation is given by

L
TN =X+ [BiBis] ! + BoBad) A =0, (A.10)
j=1
CaseL = 1—Consider first the case whdn= 1. Then
Li(A) = A+ [+ 5] = 0.

Hence,|\| < 1 holds if and only if3 = 8, + 5, < 1. Furthermore\A = —1 when
0 = 1. which leads to a flip bifurcation.

CaseL = 2—WhenL = 2, the characteristic equation has the form
[y(N) = A2+ (0181 + B2 Bo| A + [81B161 + 32 B26s] = 0,

whereB; = 1/[1+6;] (i = 1,2). It follows from Jury’s test that\;| < 1 if and only if

(). To(1) =141+ 52> 0;
(ll) FQ(—1> =1- [ﬁlBl +6282] + [513151 +/BQB262] > 0, which can be rewritten

as
1= 1—6y,
2 = 1+6151+r5252— L. (A.11)
(iii). (1 B101 + B2 B2dy < 1, which can be rewritten as

92

1. A12
1+5151 1+@@< (A-12)

| < 1if and only if (A.11) and (A.12) hold. Note thdi,(—1) = 0
implies that a flip bifurcation occurs whek, = 1. Also, when), 5, = 2™ we have
)\1)\2 6131(51 +ﬂ23252 Al =1 and>\1 +)\2 [6131+ﬁ232] == 2(308(271’9) =p,
which implies that\,; = 1 leads to a Neimark-Hopf bifurcation. In addition, the nature
of the bifurcation is characterised by the paramétevhich is determined by (4.2).

When the local stability region is bounded by Neimark-Hopf bifurcation, the na-
ture of the bifurcation is characterised by valueg afhich have different region for
different combination oféy, d5).

1=
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e When1/2 < §;,9, < 1, the stability region is bounded only by the Neimark-
Hopf bifurcation boundarny\, = 1. Then,p = —1/4, for (5, 32) = (0,[1 +
d2]/d2) andp = —1/6; for (By, B2) = ([1 + 61]/01,0). Hence

2 cos(270) € ! !
= 2cos(27 - - ).
P min(dy, dy)’ max(dy, )

e When0 < §; < 1/2,1/2 < é, < 1, the stability region is bounded by both
flip and Neimark-Hopf bifurcation boundaries. The Neimark-Hopf bifurcation
boundary corresponds to the line segment betwéen (5, 52) = (0,[1 +
d2]/d2) and B which is the interaction point betweek; = 1 andA, = 1,
leading top = —2. Therefore,

p = 2cos(2m0) € ( -2 ;>

 max(dy, 63)

Casel = 3—WhenL = 3, the characteristic equation has the form
[3(A) = A + A2 + e\ +c3 =0,
where
c1 = [B1B1 + (2B,
¢y = [B1B161 + B2 B20s],
c3 = [f1B167 + (2 Bad3),
B; =1/[1 +6; + &7] (i=1,2).
It follows from Jury’s test that);| < 1 if and only if

(). Ts(1) =1+ p1+ 52> 0;
(ii). (—1)3C3(—1) > 0, which is equivalent to

1—06; 4 0% 1— 8y + 63

= 2 1. .
Ae = T T T s, 02 < (A13)
(iii)). 2 + c3(e3 — 1) < 1, which is equivalent to
0171+ 0272 + (0771 + 0572) [(0F — V)ya + (65 — 1)) < 1, (A.14)

(IV) Co = 51’)/1 + (52’}/2 < 3.
It follows from 3; > 0,6; € [0, 1] andd; < 1 — §; + 2 that condition (i) is satisfied and
condition (ii) implies conditions (iii) and (iv). Hence the only condition for the local
stability is A3 < 1. In addition,\ = —1 whenA3 = 1, implying that the stability
region is bounded by the flip bifurcation boundary defined\ay= 1.
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A.4. Stability and Bifurcation Analysis For (Li, Ls) = (2,3). ForL; =2, Ly, = 3,
the characteristic equation is given by

F273(/\) = /\3 + Cl/\2 + CQ/\ +c3 = O,
where
= [m+ 7l ca = 7101 + 7202, C3 = 7253;
7 = B1/[1 + 01, 72:52/[1"‘52"‘5%]-

It follows from Jury’s test thap)\;| < 1 if and only if

(|) F273<1) - 1 + ﬁl + 52 > 0,
(ii). (—1)3T93(—1) > 0, which is equivalent to
1-4 1— 09+ 63

= 2 1. Al
RN e (A-15)

7

(iii). co 4 c3(c3 — ¢1) < 1, which is equivalent to

I RPN B, (=)
1+67 T 1404027 140, +02\14+6 1406, + 02

Asg

)<1.m1®

(IV) Co = 51’}/1 + 52’72 < 3.
Note thats; > 0,4, € [0,1] andd, < 1 — & + 2, one can see thak; < 1 implies
condition (iv). In addition\ = —1 whenA; = 1 is satisfied and\; < 1 implies
Ag < 1foro, < 1/2.

A.5. Proof of Proposition 5.1.

bt = fl(pyxa?J,ZaU)t—l

vy =0x1+ (1 =061)p—1 = fo

Y =01+ (1 —=02)pi1 = f3

z = 01z-1 4+ 01(1 = 81)(pr — 24-1)* = [fa
up = dquup—y + 0o(1 = 02) (Pt — yi1)* = f5

fi=B+ 210+ w) I (1w L

a; + 24,z as + 2A5z
Evaluating at the unique fixed poiy;, z+, v, ¢, us) = (p*, p*, p*,0,0):
(%.:%H>
1 — w) __
5 oiaw o
dy 2 az 2
% = (1 u)=hlh =
G =5l w) P = Ay
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and
2]
% =1-46, %:51, %:%:a_i: ’
ofs _q_g Dhs_gs b _9f_ 0k _
B T 170 By T 0 9 T T gu = Y
%_ﬁ :0:%:%:0 %:51 %:0,
Ofs _ 5 om _Op ok Zon g
ou 25 Op ozr Jy 0z :
Hence

0 —f —Bh A} A

1-6, & 0 0 0
J=|11-6 O 09 0 0
0 0 0 o0 O

0 0 0 0 &

The characteristic equation is given by

A B B2 —A7 A}
—(1—=61) A—=6 0 0 0
rA)=M—-J = —(1—69) 0 A — 09 0 0
0 0 0 A — 0 0
0 0 0 0 A — 0y
A B B
= A=0)A=d2)| =(1=61) A=d 0
—(1—14y) 0 A — 09
- (/\ - 51)()‘ - 52)h()\>7
where
A B B
hA) =| —(1=6) A=0 0 |[=X+aXl+alta

—(1=6) 0 A—6

ca = 0102+ Ba(1 — d2) + B1(1 — 61),
C3 = —5152(1 - 52) - 5251(1 - 51)-

Sinced, 2 € (0,1) applying Jury’s test tdi(A) = 0, one can see thad;| < 1 if
m; > 0, where

{ C1 :—(51+52),

YS! :1+01+CQ+03,
T2 :1—01+C2—03,
3 :1—02+C3<01—C3),
cy < 3.
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Note that

m>0 & (1-6)1—08)|[1+08+06]>0

1—6 1 -4

1
1+551+1+5252} <

>0 & —{

51+ 0517
>0 & [51ﬁ2(1—52)+5261(1_51)+ : 2:|

2
+02(1 = 62) + fi(1 —d1) <1+ M
andc, < 3 is implied bym; > 0. Therefore, the only condition we need for the local
stability iswm3 > 0. Furthermore, fromh(1) = 71, (—1)3h(—1) = 7, there is no
saddle-node and flip bifurcation and the only boundary of the stability region is given
by Neimark-Hopf bifurcation boundary, defined by = 0. Along the bifurcation
boundary, let
)\12:€i2ﬂ9i, A3 =T1TE (—1,1)

)

Then it follows from

M+ Ao+ Xo] = —[p+ 7] = —[01 + 2],
AMA2 F MA3+ X3 =1+1p
= 0102 + B1(1 — 01) + B2(1 — 62),
Mg = —1r = —[0102(1 — dg + 0251 (1 — 01)]
that
p=01[1 — Ba(1l — d3)] + 02[1 — B1(1 — 61)].
In particular, foré; = , = 9, the stability condition becomes

[1= 81— 0)][0*8(1 —8) + (1 —4d)] >0,
which is equivalent to

1
0 < 5 where (= () + (5.

Along the bifurcation boundaryj(1 — §) = 1, and hence = J.
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