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ABSTRACT. In this paper we analyse the dynamics of the traditional cobweb model
with risk averse heterogeneous agents under bounded rationality. We consider a learn-
ing mechanism in which heterogeneous producers seek to learn the distribution of as-
set prices using a geometric decay processes (GDP)—the expected mean and variance
are estimated as a geometric average of past observations—with either finite or infinite
fading memory. With constant absolute risk aversion, the dynamics of the model can
be characterized with respect to the length of memory window and the memory decay
rate of the learning GDP. We show that the decay rate of the GDP of heterogeneous
producers plays a complicated role on the pricing dynamics of the nonlinear cobweb
model. In general, the decay rate plays a stabilizing role on the local stability of the
steady state price when the memory is infinite, but this role becomes less clear when
the memory is finite and the heterogeneity has double edged effect on the dynamics
in the sense that heterogeneous learning can stabilize an otherwise unstable dynamics
in some cases and destablize an otherwise stable dynamics in other cases as well. It
is shown that (quasi)periodic solutions and strange (or even chaotic) attractors can be
created through Neimark-Hopf bifurcation when the memory is infinite and through
flip bifurcation as well when the memory is finite. In addition, it is found that the
source of risk is the risk itself in the sense that the behaviour of producers in response
to risk can generate market failure.
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1. INTRODUCTION

Consider the well-known cobweb model:{
pe

t = aqt + b (supply),
pt = αqt + µ (demand),

(1.1)

Here,qt andpt are quantities and prices, respectively, at periodt, pe
t is the price ex-

pected at timet based on the information att − 1, anda, b, µ (> 0) andα < 0 are
constants.

Under the naive expectation schemepe
t = pt−1, the price either converges to the

optimal market equilibrium (when|α/a| < 1) or explodes (when|α/a| > 1). To
obtain more realistic, oscillatory, price time paths, the literature has introduce non-
linearities and time lag into the cobweb model and such nonlinearities can come from
either nonlinear supply or demand curve or risk aversion, discussed as follows.

When the producers are homogeneous, it has been shown that non-linearities in the
supply or demand curves may lead the cobweb model to exhibit both stable periodic
and chaotic behavior (i.e., Artsein (1983), Jensen and Urban (1984), Chiarella (1988),
Holmes and Manning (1988), Hommes (1991), Puu (1991) and Day (1992).). These
authors consider a variety of backward looking mechanisms for the formation of the
expectationspe

t ranging across the traditional naive expectationpe
t = pt−1, learning ex-

pectations (e.g., learning by arithmetic meanpe
t = (pt−1 + · · ·+pt−L)/L) and adaptive

learning expectationpe
t = pe

t−1 + w(pt−1 − pe
t−1) with 0 ≤ w ≤ 1.

Nonlinearity can also come from risk and risk aversion (i.e., Boussard and Gerard
(1991), Burton (1993) and Boussard (1996)). As pointed in Boussard (1996), with
risk averse producers, the traditional linear cobweb model becomes nonlinear. By
assuming that the actual pricept is uncertain so thatpe

t has mean̄pt and variancēvt,
Boussard (1996) shows that, under the simplest learning schemep̄t = p̂ and v̄t =
(pt−1 − p̂)2 with constant̂p, the nonlinear model may result in the market generating
chaotic price series, and market failure, and therefore the source of risk is the risk itself
(p.435, Boussard (1996)). Consequently, the study“casts a new light on expectations.
Not only are expectations pertaining to mean values important for market outcomes.
Those pertaining to variability can be just as crucial”(p.445, Boussard (1996)).

By assuming the bounded rationality, when producers are somewhat uncertain about
the dynamics of the economic system in which they are to play out their roles, they
need to engage in some learning scheme to update their beliefs. Among various learn-
ing schemes, the properties of recursive learning processes under homogeneous ex-
pectations have been studied extensively (e.g., Bray (1982, 1983), Evans and Ramey
(1992), Balasko and Royer (1996), Evans and Honkapohja (1994, 1995, 1999), Barucci
(2001, 2002)). In Bray (1982, 1983) and Evans and Honkapohja (1994, 1995), the
agent’s expectation is computed as the arithmetic average of all the past observations
with full memory (the same weight is employed for each observation). In Barucci
(2001, 2002), agent’s expectation is computed as a weighted average of all the past ob-
servation with no-full memory. The weights of the average are described by a geomet-
ric process with a ratio smaller than 1 and therefore, the weights for older observations
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are smaller than the weights for recent observations. As pointed by Barucci (2001,
2002), these features of fading memory learning mechanism areappealing because the
assumption of a constant weight for past observations are not fully plausible from a be-
havioral point of view. As a matter of fact, agents do not stop to learn as time goes on
and they ‘forget’ remote observations.For a class of nonlinear deterministic forward-
looking economic model under the fading memory learning, Barucci shows that the
decay rate of the memory of the learning process plays a stabilizing role—it enlarges
the local stability parameters region of the prefect foresight stationary equilibria.

Apart from Boussard (1996), a great deal of attention in the expectations formation
literature has been devoted to schemes for the mean, but very little to schemes for the
variance. Chiarella and He (1998, 2000) extend Boussard’s framework in a way that
takes account of the risk aversion of producers and allows them to estimate both the
mean and variance via the arithmetic learning process (ALP)p̄t = 1

L

∑L
i=1 pt−i, v̄t =

1
L

∑L
i=1[pt−i− p̄t]

2 with some integerL ≥ 1. Chiarella and He (1998, 2000) show that
the resulting cobweb dynamics form a complicated nonlinear expectations feedback
structure whose dimensionality depends upon the length of the window of past prices
(the lag length) used to estimate the moments of the price distributions. It is found
that an increase of the window lengthL can enlarge the parameter region (in terms of
|α/a|) of the local stability of the steady state and, at the crossover from local stability
to local instability, the dynamics exhibits resonance behavior which is indicative of
quite complicated dynamical behavior, and even chaos (for the model with constant
elasticity supply and demand functions).

Chiarella et al (2003) extend the homogeneous model in Chiarella and He (1998,
2000) to a heterogeneous model and characterise the price dynamics by the window
lengths of the heterogeneous ALP. It is found that increase of window lengths plays a
stabilizing role when both lags are the same, but this stabilizing effect becomes less
clear when both lags are different. This paper extend our discussion further to study
the role of the memory decay rate when producers follow GDP. It is found that, when
the memory is infinite, the decay rate plays a stabilizing role on the local stability
of the steady state price. However, this role becomes less clear when the memory
is finite and the heterogeneity has double edged effect on the dynamics in the sense
that heterogeneous learning can stabilize an otherwise unstable dynamics in some
cases and destablize an otherwise stable dynamics in other cases as well. It is shown
that (quasi)periodic solutions and strange (or even chaotic) attractors can be created
through Neimark-Hopf bifurcation when the memory is infinite and through flip bifur-
cation as well when the memory is finite. In addition, it is found that the source of risk
is the risk itself in the sense that the behaviour of producers in response to risk can
generate market failure.

The paper is organised as follows. A general cobweb model with heterogeneous
producers is established in Section 2. The heterogeneous geometric decay (learning)
processes (GDP) is introduced, and the existence of steady-state is then discussed in
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Section 2 in Section 3. The dynamics of the heterogeneous model is analyzed for both
finite and infinite memory in Sections 4 and 5, respectively.

2. COBWEB MODEL WITH HETEROGENEOUSPRODUCERS

This section is intended to establish a cobweb model when producers are heteroge-
neous in their risk and expectation formulation on both the mean and variance. In the
case of linear supply and demand functions, the model may be written as

{
Supply: pe

i,t = aiqi,t + bi, (i = 1, 2);
Demand: pt = αqt + µ (α < 0),

(2.1)

whereqt is the aggregate supply ,qi,t andpe
i,t are the quantity and price expected of

produceri at time t based on the information set att − 1, andpt is the price, and
ai, bi, µ (> 0) andα < 0 are constants.

Our approach to the formation of expectations will be somewhat different in that we
assume that the actual pricept is uncertain so that the heterogeneous producers treat
pe

i,t as a random variable drawn from a normal distribution whose mean and variance
they are seeking to learn1.

2.1. Market Clearing Price and Heterogeneous Model.Let p̄i,t andv̄i,t be, respec-
tively, subjective mean and variance of pricepe

i,t of produceri formed at timet based
on the information set att− 1, andqt be quantity at timet. With constant absolute risk
aversionAi, the marginal revenue certainty equivalent of produceri is2

p̃i,t = p̄i,t − 2Aiv̄i,tqi,t.. (2.2)

Suppose a linear marginal cost, as in (2.1), so that the supply equation, under marginal
revenue certainty equivalent becomes

p̃i,t = aiqi,t + bi (2.3)

It follows from (2.2) and (2.3) that

aqi,t + bi = p̄i,t − 2Aiv̄i,tqi,t

and hence the supply for produceri is given by

qi,t =
p̄i,t − bi

ai + 2Aiv̄i,t

. (2.4)

1It would of course be preferable (and more in keeping with models of asset price dynamics in continu-
ous time finance) to treatpe

i,t as log-normally distributed. However this would then move us out of the
mean-variance framework so we leave an analysis of this approach to future research.
2With constant absolute risk aversionAi, we assume the certainty equivalent of the receiptr = pq is
R(qt) = p̄i,tqt − Aiv̄i,tq

2
t . Then maximisation of this function with respect toqt leads to the marginal

revenue certainty equivalent̃pt = ∂R
∂qt

= p̄i,t − 2Aiv̄i,tqt. We recall that this objective function is

consistent with producers having the utility of receipts functionUi(r) = −e−Air.
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Denote byni the proportion of typei producers3, then the market clearing price is
determined by

pt = µ + α
∑

i

ni
p̄i,t − bi

ai + 2Aiv̄i,t

. (2.5)

In fact, it follows from (2.1) and (2.4) that the aggregated supply is given by

qt =
∑

niqi,t =
pt − µ

α

and hence
pt − µ

α
=

∑
ni

p̄i,t − bi

ai + 2Aiv̄i,t

,

from which (2.5) follows.

2.2. Homogeneous Cobweb Model.As a special case of the heterogeneous model
(2.5), assume that producers are homogeneous, that is,ai = a, bi = b, p̄i,t = p̄t,
Ai = A, v̄i,t = vt, then the corresponding homogeneous model has the form

pt = µ + α
p̄t − b

a + 2Avt

, (2.6)

and its dynamics is considered in Chiarella and He (1998).

2.3. A Cobweb Model with Two Types of Heterogeneous Producers Following
GDP. In the following discussion, the simplest heterogeneous model when there are
two types of producers is considered. Then the population of heterogeneous producers
can be measured by a single parameter. Letn1 = (1 + w)/2, n2 = (1 − w)/2. Then
(2.5) can be rewritten in the following form

pt = µ +
α

2
(1 + w)

p̄1,t − b1

a1 + 2A1v̄1,t

+
α

2
(1− w)

p̄2,t − b2

a2 + 2A2v̄2,t

. (2.7)

The heterogeneous model (2.7) is incomplete unless producers’ expectations are spec-
ified. In this paper, thegeometric decay processes (GDP)with either finite and infinite
memory is assumed. More precise definition is introduced in the following section.

3. HETEROGENEOUSBELIEFS—GEOMETRIC DECAY PROCESS(GDP)

This section introduces the geometric decay process (GDP) with both finite and
infinite memory and the dynamics of the GDP of the heterogeneous agent model is
then analyzed in the following sections.

3In general, the proportionni is a function of timet, that is,ni,t, which can be measured by cer-
tain fitness function and discrete choice probability, as in Brock and Hommes (1997). Because of the
complexity of the dynamics, we consider only the case with fixed propitiation and leave the changing
proportion problem to our future work.
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3.1. GDP with Finite Memory. For typei producers, assume that the price follows
a geometric probability distribution with decay rate ofδi over a window length ofLi,
that is, {

p̄i,t ≡ mi,t−1 = Bi

∑Li

j=1 δj−1
i pt−j,

v̄i,t ≡ vi,t−1 = Bi

∑Li

j=1 δj−1
i [pt−j −mi,t−1)]

j,
(3.1)

whereBi = 1/(1 + δi + δ2
i + · · ·+ δLi−1

i ), Li are integers, andδi ∈ [0, 1] are constants
for i = 1, 2.

Two special cases of the geometric decay process (GDP) are of particular interested:

(i) When δi = 1, the GDP (3.1) is reduced to the standard arithmetic learning
process (ALP), discussed in Chiarella et al (2003).

(ii) Whenδi = 0, the expectation of the mean follows the naive expectationp̄i,t =
pt−1 andv̄i,t = 0.

3.2. GDP with Infinite Memory. As the window lengthLi → ∞, it is shown (see
Appendix A.1) that, as a limiting process of geometric decay process with finite mem-
ory, the GDP with infinite memory satisfy

{
mi,t = δimi,t−1 + (1− δi)pt

vi,t = δivi,t−1 + δi(1− δi)(pt −mi,t−1)
2.

(3.2)

3.3. Existence of the Unique Steady State Price.Denote byp∗ the state steady price
of the GDP model with finite memory. Then, for the GDP with finite memory (3.1), it
is found from (2.7) thatp∗ satisfies

p∗ =
µ− α

2
[(1 + w) b1

a1
+ (1− w) b2

a2
]

1− α
2
[(1 + w) 1

a1
+ (1− w) 1

a2
]
. (3.3)

For the GDP model with infinite memory, the state steady(pt,mi,t, vi,t) = (p∗, p∗, 0).
Note thatp∗ is the same under GDP with both finite and infinite memory.

In the following sections, dynamics of the heterogeneous model (2.7) are studied
when agents update their estimations on both mean and variance by using the GDP
with both finite memory (3.1) and infinite memory (3.2).

4. DYNAMICS OF THE HETEROGENEOUSMODEL WITH FINITE MEMORY GDP

This section focuses on the dynamics of (2.7) when producers follow the GDP with
finite memory and different window lengthsLi. Without loss of generality, we assume
L1 ≤ L2. DenoteL = max{L1, L2} = L2. Because of the dependence of the subjec-
tive meanp̄t and variancēvt on price laggedL periods, equation (2.7) is a difference
equation of orderL (see system (A.7) in Appendix A.2).

The local stability of the unique steady statept = p∗ is determined by the eigen-
values of the corresponding characteristic equation (equation (A.9) in Appendix A.2),
which is difficult to analyze in general, in particular whenL is large. In the rest of this
section, we examine the case whenL ≤ 3.
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Denote {
β1 = − α

2a1
(1 + w)

β2 = − α
2a2

(1− w).
(4.1)

Thenβ1 > 0, β2 > 0. As indicated from the following results, the local stability of
the steady state depends on the parameters, including those from supply and demand
functionsa1, a2, α, the proportion difference of two types of producersw, the window
lengthsL1 andL2 used by the heterogeneous producers, and the decay ratesδ1, δ2. The
discussion here is focused on two different aspects. On the one hand, for a fixed win-
dow length combination of(L1, L2), we consider how the demand parameterα and the
proportion differencew of producers affect the local stability of the steady state and
bifurcation. On the other hand, for a set of fixed parameters, we examine how these
results on the local stability and bifurcation are affected by different combination of
the window lengths. Regarding the first aspect, it is found that both the local stability
region and bifurcation boundary are geometrically easy to construct by using parame-
tersβ1 andβ2, instead ofw andα. However, the one-one relation (4.1) between(w,α)
and(β1, β2) makes it possible to transform the results between different set of param-
eters, and in addition, to preserve the geometric relation of the local stability regions
between the two sets of parameter.4 In the following discussion, we consider the case
L1 = L2 = L first and thenL1 6= L2. Because of the geometric advantage, the results
are formulated in terms of(β1, β2), although some of the stability regions are plotted
using(w,α) as well.

4.1. Case 1:L1 = L2 = L. Consider first the case when both types of producer use
the same window length, that isL1 = L2 = L, but different decay rates(δ1, δ2).

4.1.1. Local Stability and Bifurcation Analysis.The proofs of the following Proposi-
tions 4.1-4.3 can be found in Appendix A.3.

The simplest case ofL = 1 can be treated as special case of GDP when the decay
rateδi = 0, that is, agents use the traditional naive expectation, taking the latest price
as their expected price for the next period.

Proposition 4.1. For L1 = L2 = 1, the local stability regionD11 in terms of(β1, β2)
is given by

D11(β1, β2) = {(β1, β2) : 0 ≤ β1 + β2 < 1}.
Furthermore, a flip bifurcation occurs along the boundaryβ1 + β2 = 1.

Proposition 4.1 indicates that, when agents use the naive expectation, the steady
state becomes unstable through a flip bifurcation, leading to a two-period cycle of two
prices, one is above and one is below the steady state price.

4Note that the determinant of the Jacobian of the transformation (4.1) does not change the sign, implying
the reservation of the transformation.
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Proposition 4.2. For L1 = L2 = 2, the local stability regionD22(β1, β2) of the state
steady is defined by

D22 = {(β1, β2) : ∆1 < 1, ∆2 < 1}
where

∆1 =
δ1

1 + δ1

β1 +
δ2

1 + δ2

β2,

∆2 =
1− δ1

1 + δ1

β1 +
1− δ2

1 + δ2

β2.

Furthermore,

• a flip bifurcation occurs along the boundary∆2 = 1 where two eigenvalues
satisfyλ1 = −1, λ2 ∈ (−1, 1);

• a Neimark-Hopf bifurcation occurs along the boundary∆1 = 1 where the two
eigenvalues are given byλ1,2 = e±2πθi, hereθ is determined by

ρ ≡ 2 cos(2πθ) = −
[

β1

1 + δ1

+
β2

1 + δ2

]
. (4.2)

Comparing the stability conditions in Propositions 4.1 and 4.2, one can see that
the parameter (in terms of(β1, β2)) region on the local stability of the steady state
is enlarged asL increases fromL = 1 to L = 2. This means that agents can learn
the steady state price over a wide region of parameters as they follow the GDP with
L = 2. However, as one can see from the following discussion, these learning process,
in particular the decay ratesδi(i = 1, 2), can generate far more complicated dynamics
when the steady state price becomes unstable. To understand the effect of parameters
βi, δi (i = 1, 2) on the stability of the state steady and types of bifurcation, we now
undertake a more detailed analysis by considering various cases in terms of parameters
(δ1, δ2).

δ

β

3

2

1

1
3

1
2

1

Γ2: Hopf curve

Γ1: Flip curve

FIGURE 1. Stability region and bifurcation boundaries forL1 = L2 =
2, δ1 = δ2 = δ andβ = β1 + β2.
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• The caseδ1 = δ2 = δ: In this case, it follows from Proposition 4.2 that the
stability region of the state steady can be characterized by two parametersβ
andδ:

D22 = {(β1, β2) : 0 ≤ β ≡ β1 + β2 < β̄},
where

β̄ =

{
1+δ
1−δ

δ ≤ 1
2

1+δ
δ

δ > 1
2
.

In this case, a flip bifurcation occurs along the boundary

Γ1 : β = (1 + δ)/(1− δ), δ ∈ [0, 1/2],

and a Neimark-Hopf bifurcation occurs along the boundary

Γ2 : β = (1 + δ)/δ, δ ∈ (1/2, 1], ρ = −1/δ ∈ (−2,−1].

Note that functionsf(x) = 1+x
1−x

, g(x) = 1+x
x

satisfyf ′ > 0, f ′′ > 0, g′ <
0, g′′ > 0. The stability regionD22 is plotted in Figure 1. One can see that the
different decay rateδ has different effect on the stability:
(i) for δ ∈ [0, 1

2
], the stability regionD22 in terms of the parameterβ is

enlarged asδ increases;
(ii) for δ ∈ [1

2
, 1], the stability regionD22 in terms of the parameterβ is

enlarged asδ decreases;
(iii) for δ = 0, we have the smallest parameterβ region for the local stability:

0 ≤ β < 1; while for δ = 1/2, we have the largest parameterβ region for
the local stability:0 ≤ β < 3; for δ > 1/2, increase ofδ does not enlarge
the parameter region on the local stability;

(iv). for small decay rateδ ≤ 1/2, the steady state price becomes unstable
through flip bifurcation (implying a two-period cycle), while for large de-
cay rateδ > 1/2, the steady state price become unstable through Neimark-
Hopf bifurcation, which in turn generates either period cycle or aperiodic
orbit.

• The case0 ≤ δ1, δ2 < 1/2 andδ1 6= δ2. In this case, it follows from Proposition
4.2 that the local stability region is defined by

D22 = {(β1, β2) : ∆2 < 1}
and the steady state becomes unstable through a flip bifurcation only, as indi-
cated in Figure 2(a). Furthermore, as eitherδ1 or δ2 increases, the local stability
regionD22 of the state steady with respect to parameters(β1, β2) is enlarged,
as indicated in Figure 3(b).

• The caseδ1, δ2 > 1/2 andδ1 6= δ2. In this case, it follows from Proposition 4.2
that the local stability region is defined by

D22 = {(β1, β2) : ∆1 < 1}
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β2

β1

1+δ2
1−δ2

1+δ1
1−δ1

flip curve

(a) δ1 6= δ2, 0 < δ1, δ2 < 1
2

β2

β1

1 + 1
δ2

1 + 1
δ1

Hopf curve

(b) δ1 6= δ2,
1
2

< δ1, δ2 < 1

A

β2

β1

1 + 1
δ2

1+δ1
1−δ1

Hopf curve

flip curve

(c) δ1 6= δ2, δ1 < 1
2
, δ2 > 1

2

A

β2

β1

1+δ1
1−δ1

1 + 1
δ1

flip curve

Hopf curve

(d) δ1 6= δ2, δ1 > 1
2
, δ2 < 1

2

FIGURE 2. Stability region and bifurcation boundaries for (a)0 ≤
δ1, δ2 ≤ 1/2; (b) 1/2 < δ1, δ2 ≤ 1; (c) 0 ≤ δ1 ≤ 1/2 < δ2 ≤ 1; and (d)
0 ≤ δ2 ≤ 1/2 < δ2 ≤ 1, whereA : (β1, β2) = ((1−2δ2)(1+ δ1)/(δ1−
δ2), (1− 2δ1)(1 + δ2)/(δ2 − δ1).

and the steady state becomes unstable through a Neimark-Hopf bifurcation,
as indicated in Figures 2(b) and 3(a). Along the bifurcation boundary, the
nature of bifurcation is characterised byθ which satisfies (see Appendix A.2
for the details)ρ ≡ 2 cos(2πθ) ∈ (−1/ min(δ1, δ2),−1/ max(δ1, δ2)). Say, for
example, for fixedδ2 = 2/3, the region for the parameterρ various for different
δ1, as illustrated in Table 1.

δ1 ρ δ1 ρ

1/2 (-2, -3/2) 3/4 (-3/2, -4/3)
2/3 -3/2 1 (-3/2, -1)

TABLE 1. Parameter region forρ with fixed δ2 = 2/3 and differentδ1.
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Different from the previous case, as eitherδ1 or δ2 increases, the local stability
region of the parameters(β1, β2) becomes smaller, as indicated in Figures 2(c),
(d) and 3(b).

• The case either0 < δ1 < 1/2, δ2 > 1/2 or 0 < δ2 < 1/2, δ1 > 1/2. In this
case, the stability region is bounded by two bifurcation boundaries, as indicated
in Figures 2(c), (d) and 3. One is the flip bifurcation boundary defined by∆2 =
1, the other is the Neimark-Hopf bifurcation boundary defined by∆1 = 1,
along which the types of bifurcation are characterised byθ which satisfies (see
Appendix A.2 for the details)ρ ≡ 2 cos(2πθ) ∈ (−2,−1/ max(δ1, δ2)). It is
interesting to see that, unlike the previous case, the parameterρ is determined
only by eitherδ1 (whenδ1 > 1/2) or δ2 (whenδ2 > 1/2). Also, the parameter
region for(β1, β2) on the local stability is enlarged as eitherδ1 increases and
δ2 decreases orδ2 increases andδ1 decreases.

The previous Propositions 4.1 and 4.2 seems to indicate that asL increases from 1
to 2, on the one hand, the stability region is enlarge and, on the other hand, instability
leads to a more complicated price dynamics. One may expect a similar dynamics
would occur if we increaseL from 2 to 3. However, the following Proposition 4.3
indicates that this may not be the case.

Proposition 4.3. For L1 = L2 = 3, the local stability regionD33(β1, β2) of the state
steady is defined by

D33 = {(β1, β2) : ∆3 < 1}
where

∆3 =
1− δ1 + δ2

1

1 + δ1 + δ2
1

β1 +
1− δ2 + δ2

2

1 + δ2 + δ2
2

β2.

Furthermore, the steady state price becomes unstable through a flip bifurcation bound-
ary defined by∆3 = 1.

It is interesting to see that, similar to the caseL = 1, but different from the case
L = 2, the steady state becomes unstable only through flip bifurcation whenL = 3.
Moreover, the parameter region on the local stability is enlarged as the decay ratesδi

increase. The stability regions are plotted in Figure 4(a) forδ1 = δ2 = δ, β = β1 + β2

and Figure 4(b) forδ1 6= δ2 and fixedδ2 = 1/2.
A general comparison amongL = 1, 2 and 3 may not be easy for variousδ1 andδ2.

However, such comparison whenδ1 = δ2 = δ can lead to some insight regarding the
role of the decay rate on the price dynamics. In such case, the stability condition for
L = 3 is given by

β ≡ β1 + β2 <
1 + δ + δ2

1− δ + δ2
≡ H(δ).

Note thatH(0) = 1, H(1) = 3, H ′ > 0, H ′′ > 0. Stability regions forL = 1, 2 and 3
are plotted in Figure 4(c) . One can see that
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δ11
2

1

β2

1

2

3

β1

1

2

3

Neimark-Hopf bifurcation surface

Flip bifurcation
surface

(a)

δ11

β2

1

2

β1

1

2

3

Flip bifurcation surface

Neimark-Hopf bifurcation
surface

(b)

FIGURE 3. Stability region and bifurcation boundary surfaces for (a)
δ2 = 2/3, and (b)δ2 = 1/3.
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1
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3

β1

1
2

3

L = 1

L = 3

L = 2

δ
1
2

√
5−1
2

1

β

1

2

3

(a) (b) (c)

FIGURE 4. Stability region and bifurcation boundary (or surfaces) for
L = 3 and (a)δ1 = δ2 = δ, β = β1 + β2; (b) δ2 = 1/2, δ1 ∈ [0, 1]. (c)
Comparison of the stability regions forL = 1, 2, 3.

• for δ ∈ [0, 1/2], the parameterβ region on the local stability of the steady state
is enlarged asδ increase,L = 2 leads to the largest stability region, and the
steady state becomes unstable through a flip bifurcation;

• for δ ∈ (1/2, 1], L = 2 gives a larger stability region forδ ≤ (
√

5 − 1)/2,
while L = 3 gives a larger stability region forδ > (

√
5−1)/2. In addition, the

steady state becomes unstable through a Neimark-Hopf bifurcation forL = 2,
but a flip bifurcation forL = 3.

4.1.2. Dynamics of the Nonlinear System—Numerical Analysis.Guided by the above
local analysis, numerical simulations are used to demonstrate the dynamics of the non-
linear system (2.7) and (3.1).

For L = 1, the GDP is reduced to the naive expectation and numerical simulations
show the prices are either converge to the steady state price (whenβ = β1 +β2 < 1) or
explode (whenβ = β1 +β2 > 1). The flip bifurcation does not lead to price oscillation
and fluctuation.

For L = 2, the stability regions and bifurcation boundaries in terms of parameters
(α,w) of the nonlinear system (2.7) are plotted in Figure 5.

• For δ1 = δ2 = δ, the local stability region is bounded by a flip bifurcation
boundary for0 ≤ δ = 0.25, 0.5 ≤ 1/2 and a Neimark-Hopf bifurcation bound-
ary for δ = 0.75, 1 > 1/2 with ρ ∈ [−2,−1], respectively, as indicated by
Figure 5(a).

• For δ1 6= δ2 and a fixedδ1 = 0.15, the local stability region is bounded by
a flip bifurcation boundary for0 ≤ δ2 = 0.15, 0.5 ≤ 1/2 and both flip and
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Neimark-Hopf bifurcation boundaries forδ2 = 0.75 > 1/2, as indicated in
Figure 5(b).

(a) (b)

FIGURE 5. Local stability regions and bifurcation boundaries forL =
2 and (a)δ1 = δ2 = 1/4, 1/2, 3/4, 1; (b) δ1 = 0.15, δ2 = 0.25, 0.5, 0.75
with parametersa1 = 0.8 < a2 = 1, A1 = A2 = 0.05, β = 11, b1 =
b2 = 0.

To illustrate the dynamics of the memory decay parameter, a bifurcation diagram
for parameterδ2 is plotted in Figure 6 with parametersα = −2.5, w = −0.6, δ1 =
0.15, a1 = 0.8, a2 = 1, A1 = A2 = 0.005, β = 11, b1 = b2 = 0. In particular, for
δ2 = 0.2 and0.88, the phase plots and the corresponding time series are illustrated in
Figure 7. Forδ2 = 0.2, the prices converge to a two-period cycle, characterized by the
flip bifurcation, while forδ2 = 0.88, the prices converge to a closed orbit in their phase
plot, which is characterized by the Neimark-Hopf bifurcation.

It is interesting to see that the local stability condition and bifurcation in Proposi-
tion 4.1-4.3 are independent of the risk aversion coefficientsAi of the heterogeneous
agents. This is because that they are associated with the variance, a higher order term
of the linearised system of the nonlinear system at the steady state. In the above simu-
lations in Figures 6 and 7, both the risk aversion coefficients are small, and hence the
risk aversion and variance have no significant influence on the price dynamics induced
from local stability analysis. When agents are more risk averse and willing to learn
both mean and variance, the price dynamics are expected to be stabilized in the sense
that irregular price patterns, such as quasi-periodic cycles, with higher variability may
become regular, such as cycles, with lower variability. This can be verified (not re-
ported here) for the case corresponding to the right panel in Figure 7, in which the
steady state price becomes unstable through a Neimark-Hopf bifurcation and prices
converge to aperiodic pattern characterized by the closed orbit on the phase plot for
small risk aversion coefficientsA1 = A2 = 0.005. As eitherA1 or A2 increases,
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FIGURE 6. Bifurcation diagrams of the nonlinear system forδ2 with
parametersα = −2.5, w = −0.6, δ1 = 0.15, a1 = 0.8, a2 = 1, A1 =
A2 = 0.005, β = 11, b1 = b2 = 0..

(a) (b)

FIGURE 7. Phase plot and time series of the nonlinear system for (a)
δ2 = 0.2 and (b)δ2 = 0.88 with parametersα = −2.5, w = −0.6, δ1 =
0.15, a1 = 0.8, a2 = 1, A1 = A2 = 0.005, β = 11, b1 = b2 = 0..

the closed orbit becomes smaller (say forA1 = A2 = A = 0.01). However, asAi

increases further (sayA = 0.05), prices converge to either aperiodic cycles (charac-
terised by closed orbits for the phase plots) with lower variability for initial values
near the steady state price or 3-period cycles with higher variability for initial val-
ues not near the steady state price. Similar price dynamics are also observed when
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δ1, δ2 > 1/2. This suggests that, when the steady state price becomes unstable through
a Neimark-Hopf bifurcation, an increase in the risk aversion can stabilise otherwise
unstable price patterns initially and leads to even simple price dynamics. However,
this is not necessarily true when the steady state price becomes unstable through a flip
bifurcation.

FIGURE 8. Phase plot and time series of the nonlinear system for
α = −2.5, w = −0.6, δ1 = 0.15, δ2 = 0.02, a1 = 0.8, a2 = 1, A1 =
A2 = 0.5, β = 11, b1 = b2 = 0..

For a set of parameters:

δ1 = 0.15, δ2 = 0.02, α = −2.5, β = 11, b1 = b2 = 0, w = −0.6, a1 = 0.8, a2 = 1,

local stability analysis implies that the steady state price becomes unstable through a
flip bifurcation whenδ2 is small. This can be verified forAi small (sayAi = 0.005
or 0.05). As Ai increases, the prices converge to period-4 cycle forAi = 0.2, period-
8 cycle forAi = 0.35, period-16 cycle forAi = 0.36, and a strange attractor for
Ai = 0.5. This strange attractor and the corresponding chaotic time series generated
through such flip bifurcation forAi = 0.5 are plotted in Figure 8.

ForL = 3, numerical simulations (not reported here) show that parameterα region
on the stability of the steady state price is enlarged asδi increases. The steady state
price become unstable through a flip bifurcation only, as indicated by Proposition 4.3.
Figure 9 illustrates the phase plot of price dynamics when the steady state price is un-
stable. Forα = −4, prices converge to a two-period cycle (as indicated by the flip
bifurcation), asα decreases further, the attractors become two coexisting closed orbits
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FIGURE 9. Phase plot of the nonlinear system forL1 = L2 = 3,
α = −4,−5,−6,−7 andw = −0.6, δ1 = 0.8, δ2 = 0.5, a1 = 0.8, a2 =
1, A1 = A2 = 0.005, β = 11, b1 = b2 = 0..

for α = −5 and−6. However, forα = −7, prices converge to a 10-period cycle. Fur-
thermore, there seems no chaotic attractor generated from the flip bifurcation, unlike
the case ofL = 2.

4.2. Case 2:L1 6= L2. Consider now the case when both types of producer use the
different window lengthL1 6= L2 and decay rates(δ1, δ2).

4.2.1. Local Stability and Bifurcation Analysis.Whenδ1 = 0, the GDP with(L1, L2) =
(2, 2) and(3, 3) are reduced to the GDP with(L1, L2) = (1, 2) and(1, 3), respectively.
Therefore, one obtains the following Corollaries 1-2 from Propositions 4.2-4.3 by tak-
ing δ1 = 0.

Corollary 1. For L1 = 1, L2 = 2, the stability regionD12(β1, β2) of the state steady
is defined by

D12 = {(β1, β2) : ∆4 < 1}
for δ2 ∈ [0, 1/2] and

D12 = {(β1, β2) : ∆4 < 1, ∆5 < 1}
for δ2 ∈ (1/2, 1], where

∆4 = β1 +
1− δ2

1 + δ2

β2; ∆5 =
δ2

1 + δ2

β2.

In addition,

• a flip bifurcation occurs along the boundary∆4 = 1 for δ2 ∈ [0, 1/2];
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• both flip and Neimark-Hopf bifurcations occur along the boundary∆4 = 1
and ∆5 = 1, respectively, forδ2 ∈ (1/2, 1]. Furthermore, the nature of the
Neimark-Hopf bifurcation is determined by

ρ ≡ 2 cos(2πθ) = −[β1 + 1/δ2].

δ1

β2

1

2

3

β1

1

δ2

β2

1

2

3

β1

1

(a) (b)

FIGURE 10. Stability region and bifurcation boundaries for (a)
(L1, L2) = (1, 2), and (b)(L1, L2) = (1, 3).

The stability region and the bifurcation boundaries in parameters(δ2, β1, β2) space
are plotted in Figure 10(a). One can see that the stability region is bounded by a flip
bifurcation surface forδ2 ≤ 1/2 and both flip and Neimark-Hopf bifurcation surfaces
for δ2 > 1/2.

By applying Proposition 4.3, we obtain the following result for(L1, L2) = (1, 3).
The stability region and the flip bifurcation surface are plotted in Figure 10(b).

Corollary 2. For L1 = 1, L2 = 3, the stability regionD13(β1, β2) of the state steady
is defined by

D13 = {(β1, β2) : ∆6 < 1},
where

∆6 = β1 +
1− δ2 + δ2

2

1 + δ2 + δ2
2

β2.

In addition, the stability region is bounded only by a flip bifurcation boundary defined
by∆6 = 1.
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For L1 = 1, comparing the stability regions betweenL2 = 2 andL2 = 3, one can
verify thatD13 ⊂ D12 for δ2 ∈ [0, (

√
5−1)/2]. However, forδ2 ∈ ((

√
5−1)/2−1, 1],

D12 ⊂ D13 whenβ1 ≤ β∗1 andD13 ⊂ D12 whenβ1 ≥ β∗1 , whereβ∗1 = 1 − (1 +
δ3
2)/[δ2(1 + δ2 + δ2

2)].

For (L1, L2) = (2, 3), the following result can be obtained (see Appendix A.4 for
the proof).

Proposition 4.4. For L1 = 2, L2 = 3, the stability regionD23(β1, β2) of the state
steady is defined by

D23 = {(β1, β2) : ∆7 < 1}
for δ1 ∈ [0, 1/2] and

D23 = {(β1, β2) : ∆7 < 1, ∆8 < 1}
for δ1 ∈ (1/2, 1], where

∆7 =
1− δ1

1 + δ1

β1 +
1− δ2 + δ2

2

1 + δ2 + δ2
2

β2;

∆8 =
δ1

1 + δ1

β1 +
δ2

1 + δ2 + δ2
2

β2 − δ2β2

1 + δ2 + δ2
2

(
β1

1 + δ1

+
(1− δ2

2)β2

1 + δ2 + δ2
2

)
.

Furthermore,

• a flip bifurcation occurs along the boundary∆7 = 1 for δ1 ∈ [0, 1/2];
• both flip and Neimark-Hopf bifurcations occur along the boundary∆7 = 1

and∆8 = 1, respectively, forδ1 ∈ (1/2, 1].

Because of the nonlinearity ofβi in ∆8, it is not easy to get a complete geometric
relation forL1 = 2, L2 = 3 and related discussion can be conduct by using numerical
simulation in the following subsection.

4.2.2. Dynamics of the Nonlinear System—Numerical Analysis.For(L1, L2) = (2, 3),
we choose a set of parametersδ1 = 0.15, δ2 = 0.3, β = 11, b1 = b2 = 0, w =
−0.6, a1 = 0.8, a2 = 1. Sinceδ1 < 1/2, the steady state become unstable through
a flip bifurcation. It is found that the price dynamics generated through bifurcation
parameterα is different from that through the risk aversion coefficients.

• For fixed risk aversion coefficientsA1 = A2 = 0.005, the price dynam-
ics generated through the bifurcation parameterα is similar to the case of
(L1, L2) = (1, 3). That is, asα decreases, the steady state price becomes
unstable and prices converge to 2-period cycle, and then to aperiodic cycles
(characterised by two coexisting closed orbits), and then to simple periodic
cycles again. In addition, the variability of the prices is also increasing asα
decreases.

• For fixedα = −4, changing of the risk aversion coefficients can generate a
very rich dynamics. For fixedA1 = 0.05 and changingA2, prices converge
to various types of attractors, such as 4-, 8-cycles, strange attractors induced
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by period-doubling bifurcation, period-5, 10 cycles and strange attractors, as
indicated in Table 2 and Figure 11. ForA1 = 1 fixed, asA2 increases, prices
converge to 5-period cycles (say, forA2 = 0.6), strange attractors (say, for
A2 = 0.7), three coexisting closed orbits (forA2 = 0.79), and 3-period cycle
(for A2 = 0.81), as indicated in Figure 12.

A2 Attractor A2 Attractor
0.005 2-cycle 0.13 5-cycle
0.05 4-cycle 0.35 10-cycle
0.07 8-cycle 0.42 20-cycle
0.08 SA(4) 0.47 SA(5)
0.09 SA(2) 0.6 SA(5)
0.12 SA(1) 1 SA(1)

TABLE 2. Attractors generated by the risk aversion coefficientsA1 =
0.005 and variousA2, where SA(m) stands for strange attractor withm
pieces on the phase plane.

Instead ofδ1 = 0.15 < 1/2, we can selectδ1 = 0.6 > 1/2. In this case, the
steady state price can become unstable through either a flip or Hopf bifurcation. A
similar price pattern and bifurcation routine to complicated price dynamics can be
observed for changing the risk aversion coefficients, except non-regular, even chaotic,
price dynamics can be generated through the bifurcation parameterα.

5. DYNAMICS OF HETEROGENEOUSBELIEFS — GEOMETRIC DECAY PROCESS

WITH INFINITE MEMORY

From the discussion in the previous section, we can see that the lags involved in
the GDP can have different effect on the stability of the steady state price and price
dynamics. In this section, we consider a limiting case when the lags tend to infinite.
Let δi be the decay rate of agenti’s memory. Then it follows from (3.2) that the
conditional meanmi,t and variancevi,t are given by





m1,t = δ1m1,t−1 + (1− δ1)pt−1

m2,t = δ2m2,t−1 + (1− δ2)pt−1

v1,t = δ1v1,t−1 + δ1(1− δ1)(pt −m1,t−1)
2

v2,t = δ2v2,t−1 + δ2(1− δ2)(pt −m1,t−1)
2.

(5.1)

Let

xt = m1,t, yt = m2,t, zt = v1,t, ut = v2,t.
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FIGURE 11. Phase plot of the nonlinear system for(L1, L2) = (2, 3),
A2 = 0.08(a), 0.12(b), 0.47(c), 1(d) and α = −4, w = −0.6, δ1 =
0.8, δ2 = 0.5, a1 = 0.8, a2 = 1, A1 = 0.05, β = 11, b1 = b2 = 0..

Then, under the GDP with infinite memory (5.1), the nonlinear system (2.7) is equiv-
alent to the following 5-dimensional system





pt = f(p, x, y, z, u)t−1

xt = δ1xt−1 + (1− δ1)pt−1

yt = δ2yt−1 + (1− δ2)pt−1

zt = δ1zt−1 + δ1(1− δ1)(pt − xt−1)
2

ut = δ2ut−1 + δ2(1− δ2)(pt − yt−1)
2,

(5.2)

where

f(p, x, y, z, u) = β +
α

2
[(1 + w)

x− b1

a1 + 2A1z
+ (1− w)

y − b2

a2 + 2A2z
]
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FIGURE 12. Phase plot of the nonlinear system for(L1, L2) = (2, 3),
A2 = 0.7(a), 0.79, 0.81(b) andα = −4, w = −0.6, δ1 = 0.8, δ2 =
0.5, a1 = 0.8, a2 = 1, A1 = 1, β = 11, b1 = b2 = 0..

We first obtain the following result on the local stability and bifurcation and its proof
can be found in Appendix A.5.

Proposition 5.1. The fixed equilibriumx∗ is LAS if
[
δ1β2(1− δ2) + δ2β1(1− δ1)− δ1+δ2

2

]2

+β2(1− δ2) + β1(1− δ1) < 1 + (δ1−δ2)2

4
.

(5.3)

Furthermore, the steady state becomes unstable through a Neimark-Hopf bifurcation
and the nature of the Neimark-Hopf bifurcation is determined by

ρ = δ1[1− β2(1− δ2)] + δ2[1− β1(1− δ1)]. (5.4)

In particular, whenδ1 = δ2 = δ, the steady state is stable if

β ≡ β1 + β2 <
1

1− δ
.

and the steady state becomes unstable through a Neimark-Hopf bifurcation withρ =
δ ∈ [0, 1).

It is interesting to see that the steady state become unstable through a Neimark-Hopf
bifurcation only. It may not be easy to see the effect of the decay rates on the stability
region from condition (5.3), but the condition (5.4) whenδ1 = δ2 = δ indicates that
the parameter region forβ = β1 + β2 on the local stability is enlarged asδ increases,
as shown in Figure 13(a). In addition, the parameter region on the stability becomes
unbounded asδ → 1. This general feature is still hold whenδ1 6= δ2 and this can be



FADING MEMORY LEARNING OF HETEROGENEOUS PRODUCERS 23

verified by numerical plot of the bifurcation surface, which can be indicated by Figure
for fixed δ1 = 0.5. Hence the stability region is enlarged as the decay rates increase.

δ

β

1

2

3

δ1 = δ2 = δ

L = 1

L = 3

L = 2

L = +∞

δ1
2

1

β

1

2

3

(a) (b)

FIGURE 13. (a) Stability region and bifurcation boundary for GDP
with L = ∞ andδ1 = δ2 = δ; (b) Comparison of stability regions for
L1 = L2 = L = 1, 2, 3,∞ andδ1 = δ2 = δ.

A comparison whenL1 = L2 = L andδ1 = δ2 = δ is plotted in Figure 13(b) for
L = 1, 2, 3 andL = ∞. One can see that, forδ not close to 1, the stability region
may not be enlarged asL increased forL to be both finite and infinite. However, this
is indeed the case asδ is close to 1. Therefore, loosely speaking, high decay rate with
long memory can improve the stability of the steady state price.

Numerical simulations can be used to show various price dynamics when the steady
state price becomes unstable and it is found that the price dynamics is more dependent
on the decay rates, rather than the risk aversion coefficients. For a set of parameters:
β = 11, w = 0, a1 = 0.8, a2 = 1, b1 = b2 = 0, we have the following observations.

• For both decay rates close to 1, sayδ1 = δ2 = 0.9, the steady state price
becomes unstable whenα is small, sayα = −8. Asα decreases further, prices
converge aperiodically, characterised by closed orbits in the phase plot, with
high variability. Also, for fixedα, a sufficient highδi (close to 1) can lead
an otherwise unstable price dynamics to converge to the steady state price, as
indicated by the above local stability analysis.

• For fixed α = −10, δ1 = 0.2, δ2 = 0.9 and A1 = 0.05, prices converge
to some strange attractors for a wide range ofA2 (say A2 ∈ (0.05, 2)), as
shown in Figure 14(b) forA1 = 0.05. However, when we fixedA2 = 0.05
and increaseA1 from 0.05 up to 2, it is found that prices in the phase plane
converge to strange attractors forA1 small (say,(A1 = 0.05, 0.8)), and then to
a 5-period cycle forA1 = 1.2, and then to a strange attractor forA1 = 1.5. This
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FIGURE 14. Phase plot of the nonlinear system for GDP with infinite
memory and (a)α = −20, δ1 = 0.6; (b) α = −10, δ1 = 0.2 and
A1 = A2 = 0.05, w = 0, δ1 = 0.8, δ2 = 0.5, a1 = 0.8, a2 = 1, β =
11, b1 = b2 = 0..

indicates that when agents have infinite memory, the risk aversion coefficient
has no significant influence on the price dynamics when agents have high decay
rate (and in particular, when agents have almost full memory over the whole
history of price), however such influence can be significant when agents have
a low decay rate.

• For the GDP with finite memory case discussed in the previous section, some of
the regular or strange attractors are generated through bifurcation with certain
period cycles. However, for the GDP with infinite memory, such attractor may
have no connection with such periodic-cycle-induced bifurcation, as shown in
Figure 14(a).

6. CONCLUSIONS

In this paper we have introduced a GDP learning mechanism into the traditional
cobweb model with risk averse heterogeneous agents by allowing producers to learn
both mean and variance with different geometric decay rate. For a class of nonlinear
forward-looking models with homogeneous agents, Barucci (2001, 2002) show that,
when the memory is infinite, the memory decay rate plays a stabilizing role in the sense
that increasing the decay rate of the learning process the parameters stability region of
a stationary rational expectation equilibrium becomes larger and eliminate cycles and
chaotic attractors created through flip bifurcation, but not Hopf bifurcation. We have
shown in this paper that the memory decay rate plays a similar stabilizing role and
complicated price dynamics can be created through Neimark-Hopf bifurcation, not flip
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bifurcation, when memory is infinite and agents are heterogeneous. However, when
memory is finite, we show that the decay rate of the GDP of heterogeneous producers
plays a complicated role on the pricing dynamics. When both the lag lengths are odd,
increasing of the decay rate enlarges the parameters region of the stability of the steady
state and complicated price dynamics can only be created through flip bifurcation.
However when both the lag lengths are not odd, there exists a critical value (between 0
and 1) such that, when the decay rate is below the critical value, the decay rate plays the
stabilizing role and, for the decay rate is above the critical value, the decay rate plays
a destabilizing role in the sense that the parameters stability region becomes smaller
as the decay rate increases. In addition, (quasi)periodic cycles and strange attractors
can be created through flip bifurcations when the decay rate is below the critical value
and Neimark-Hopf bifurcations when the decay rate is above the critical value. It is
also found that the source of risk is the risk itself in the sense that the behaviour of
producers in response to risk can generate market failure.

The heterogeneous GDP considered in this paper are some of the simplest learning
processes and the analysis has shown how they yield very rich dynamics in terms of
the stability, bifurcation and routes to complicated dynamics. In practice, agents revise
their expectations by adapting the decay rate in accordance to observations. How the
GDP learning affects the dynamics in general is a question left for future work.

APPENDIX

A.1. Mean and Variance of GDP with Infinite Memory. Let mt andvt be the
mean and variance of the GDP with lag lengthL, that is




mt−1 = B[pt−1 + δpt−2 + · · ·+ δL−1pt−L],
vt−1 = B[(pt−1 −mt−1)

2 + δ(pt−2 −mt−1)
2

+δ2(pt−3 −mt−1)
2 + · · ·+ δL−1(pt−L −mt−1)

2],
(A.1)

where

B =
1− δ

1− δL
for δ ∈ [0, 1) andB =

1

L
for δ = 1.

The mean processmt can be rearranged as follows:

mt = B[pt − δLpt−L] + δmt−1.

Then forδ ∈ [0, 1), asL →∞, the limiting mean process is given by

mt = (1− δ)pt + δmt−1,

which can be written as follows

mt −mt−1 = (1− δ)(pt −mt−1) (A.2)

or
mt − pt = δ(mt−1 − pt). (A.3)

For the variance process, from

vt = B[(pt −mt)
2 + δ(pt−1 −mt)

2 + · · ·+ δL−1(pt−(L−1) −mt)
2].
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we have

vt − δvt−1 = B[(pt −mt)
2

+δ[(pt−1 −mt)
2 − (pt−1 −mt−1)

2]

+δ2[(pt−2 −mt)
2 − (pt−2 −mt−1)

2]

+ · · ·
+δL−1[(pt−(L−1) −mt)

2 − (pt−(L−1) −mt−1)
2]

−δL(pt−L −mt−1)
2,

which can be rewritten as follows:

vt − δvt−1 = B(pt −mt)
2 −BδL(pt−L −mt−1)

2

+B{δ[(pt−1 −mt) + (pt−1 −mt−1)][mt−1 −mt]

+δ2[(pt−2 −mt) + (pt−2 −mt−1)][mt−1 −mt]

+ · · ·
+δL−1[(pt−(L−1) −mt) + (pt−(L−1) −mt−1)][mt−1 −mt]}

= B(pt −mt)
2 −BδL(pt−L −mt−1)

2

+(mt−1 −mt){B[δ(pt−1 −mt) + δ2(pt−2 −mt)

+ · · ·+ δL−1(pt−(L−1) −mt)]

+B[δ(pt−1 −mt−1) + δ2(pt−2 −mt−1) + · · ·+ δL−1(pt−(L−1) −mt)]}
= B(pt −mt)

2 −BδL(pt−L −mt)
2

+(mt−1 −mt)[−B(pt −mt)−BδL(pt−L −mt)]

Note that, forδ ∈ [0, 1), asL →∞,

B =
1− δ

1− δL
→ 1− δ

and, using (A.3),

pt−L −mt = δ(pt−L −mt−1) = δ2(pt−L −mt−2) = · · ·
= δL(pt−L −mt−L) → 0.

Therefore the limiting variance process is given by

vt − δvt−1 = (1− δ)(pt −mt)
2 + (mt−1 −mt)[−(1− δ)(pt −mt)]

= (1− δ)(pt −mt)[(pt −mt) + (mt −mt−1)]

= (1− δ)(pt −mt)(pt −mt−1),

that is,

vt = δvt−1 + (1− δ)(pt −mt)(pt −mt−1). (A.4)
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Based on the above argument, forδ ∈ [0, 1), the limiting process (asL → ∞) of the
mean and variance are given by




mt = δmt−1 + (1− δ)pt

vt = δvt−1 + (1− δ)(pt −mt)(pt −mt−1)
= δvt−1 + δ(1− δ)(pt −mt−1)

2.
(A.5)

A.2. Characteristic Equation of the Heterogeneous GDP Model with Finite
Memory. When the memory is finite, the heterogeneous GDP can be written as fol-
lows: {

p̄i,t =
∑Li

j=1 wijpt−j

v̄i,t =
∑Li

j=1[p̄i,t − pt−j]
2 (A.6)

in which,wij = Biδ
j−1 (i = 1, 2 andj = 1, · · · , Li). Let





x1,t = pt

x2,t = pt−1

x3,t = pt−2
...

xL,t = pt−(L−1),

whereL = max{L1, L2}. Then, (2.7) with finite memory GDP is equivalent to the
following L-dimensional difference system





x1,t+1 = f(xt)
x2,t+1 = x1,t

...
xL,t+1 = xL−1,t

(A.7)

where 



f(xt) = β + α
2
(1 + w) x̄1,t−b1

a1+2A1v̄1
+ α

2
(1− w) x̄2,t−b2

a2+2A2v̄2

xt = (x1,t, x2,t, · · · , xL,t)

x̄i,t =
∑Li

j=1 wijxj,t

v̄i,t =
∑Li

j=1 wij[x̄i,t − xj,t]
2.

At the steady statep∗, x̄1 = x̄2 = p∗ andv̄1 = v̄2 = 0. Without loss generality, it is
assumed thatL1 ≤ L2 and thenL = L2. Evaluating functionf(xt) at the steady state,
one obtain that

∂f

∂xj

=
α

2
[(1 + w)

1

a1

w1j + (1− w)
1

a2

w2j]

= −[w1jβ1 + w2jβ2]

for j = 1, · · · , L1 and

∂f

∂xj

= −w2jβ2
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for j = L1 + 1, · · · , L. Therefore the corresponding characteristic equation is given
by

Γ(λ) ≡ λL +

L1∑
j=1

[w1jβ1 + w2jβ2]λ
L−j +

L∑
j=L1+1

w2jβ2λ
L−j. (A.8)

In particular, for the GDP, it follows fromwij = Biδ
j−1, L1 ≤ L2 and (A.8) that

Γ(λ) ≡ λL +

L1∑
j=1

[
β1B1δ

j−1
i + β2B2δ

j−1
2

]
λL−j +

L∑
j=L1+1

β2B2δ
j−1
2 λL−j = 0. (A.9)

A.3. Stability and Bifurcation Analysis When L1 = L2 = L. WhenL1 = L2 = L,
one can see from (A.9) that the corresponding characteristic equation is given by

ΓL(λ) ≡ λL +
L∑

j=1

[
β1B1δ

j−1
1 + β2B2δ

j−1
2

]
λL−j = 0. (A.10)

CaseL = 1—Consider first the case whenL = 1. Then

Γ1(λ) ≡ λ + [β1 + β2] = 0.

Hence,|λ| < 1 holds if and only ifβ ≡ β1 + β2 < 1. Furthermore,λ = −1 when
β = 1. which leads to a flip bifurcation.

CaseL = 2—WhenL = 2, the characteristic equation has the form

Γ2(λ) ≡ λ2 + [β1B1 + β2B2]λ + [β1B1δ1 + β2B2δ2] = 0,

whereBi = 1/[1 + δi] (i = 1, 2). It follows from Jury’s test that|λi| < 1 if and only if

(i). Γ2(1) = 1 + β1 + β2 > 0;
(ii). Γ2(−1) = 1− [β1B1 +β2B2]+[β1B1δ1 +β2B2δ2] > 0, which can be rewritten

as

∆2 ≡ 1− δ1

1 + δ1

β1 +
1− δ2

1 + δ2

β2 = 1. (A.11)

(iii). β1B1δ1 + β2B2δ2 < 1, which can be rewritten as

∆1 ≡ δ1

1 + δ1

β1 +
δ2

1 + δ2

β2 < 1. (A.12)

Therefore,|λ1| < 1 if and only if (A.11) and (A.12) hold. Note thatΓ2(−1) = 0
implies that a flip bifurcation occurs when∆2 = 1. Also, whenλ1,2 = e±2πθi, we have
λ1λ2 = β1B1δ1+β2B2δ2 = ∆1 = 1 andλ1+λ2 = −[β1B1+β2B2] = 2 cos(2πθ) ≡ ρ,
which implies that∆1 = 1 leads to a Neimark-Hopf bifurcation. In addition, the nature
of the bifurcation is characterised by the parameterθ, which is determined by (4.2).

When the local stability region is bounded by Neimark-Hopf bifurcation, the na-
ture of the bifurcation is characterised by values ofρ which have different region for
different combination of(δ1, δ2).
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• When1/2 ≤ δ1, δ2 ≤ 1, the stability region is bounded only by the Neimark-
Hopf bifurcation boundary∆1 = 1. Then,ρ = −1/δ2 for (β1, β2) = (0, [1 +
δ2]/δ2) andρ = −1/δ1 for (β1, β2) = ([1 + δ1]/δ1, 0). Hence

ρ ≡ 2 cos(2πθ) ∈
(
− 1

min(δ1, δ2)
, − 1

max(δ1, δ2)

)
.

• When0 ≤ δ1 ≤ 1/2, 1/2 ≤ δ2 ≤ 1, the stability region is bounded by both
flip and Neimark-Hopf bifurcation boundaries. The Neimark-Hopf bifurcation
boundary corresponds to the line segment betweenA : (β1, β2) = (0, [1 +
δ2]/δ2) andB which is the interaction point between∆1 = 1 and∆2 = 1,
leading toρ = −2. Therefore,

ρ ≡ 2 cos(2πθ) ∈
(
− 2, − 1

max(δ1, δ2)

)
.

CaseL = 3—WhenL = 3, the characteristic equation has the form

Γ3(λ) ≡ λ3 + c1λ
2 + c2λ + c3 = 0,

where

c1 = [β1B1 + β2B2],

c2 = [β1B1δ1 + β2B2δ2],

c3 = [β1B1δ
2
1 + β2B2δ

2
2],

Bi = 1/[1 + δi + δ2
i ] (i = 1, 2).

It follows from Jury’s test that|λi| < 1 if and only if

(i). Γ3(1) = 1 + β1 + β2 > 0;
(ii). (−1)3Γ3(−1) > 0, which is equivalent to

∆3 ≡ 1− δ1 + δ2
1

1 + δ1 + δ2
1

β1 +
1− δ2 + δ2

2

1 + δ2 + δ2
2

β2 < 1. (A.13)

(iii). c2 + c3(c3 − c1) < 1, which is equivalent to

δ1γ1 + δ2γ2 + (δ2
1γ1 + δ2

2γ2)[(δ
2
1 − 1)γ1 + (δ2

2 − 1)γ2] < 1, (A.14)

whereγi = βi

1+δi+δ2
i
.

(iv). c2 ≡ δ1γ1 + δ2γ2 < 3.

It follows from βi > 0, δi ∈ [0, 1] andδi < 1− δi + δ2
i that condition (i) is satisfied and

condition (ii) implies conditions (iii) and (iv). Hence the only condition for the local
stability is ∆3 < 1. In addition,λ = −1 when∆3 = 1, implying that the stability
region is bounded by the flip bifurcation boundary defined by∆3 = 1.
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A.4. Stability and Bifurcation Analysis For (L1, L2) = (2, 3). ForL1 = 2, L2 = 3,
the characteristic equation is given by

Γ2,3(λ) ≡ λ3 + c1λ
2 + c2λ + c3 = 0,

where

c1 = [γ1 + γ2], c2 = γ1δ1 + γ2δ2, c3 = γ2δ
2
2,

γ1 = β1/[1 + δ1], γ2 = β2/[1 + δ2 + δ2
2].

It follows from Jury’s test that|λi| < 1 if and only if

(i). Γ2,3(1) = 1 + β1 + β2 > 0;
(ii). (−1)3Γ2,3(−1) > 0, which is equivalent to

∆7 ≡ 1− δ1

1 + δ1

β1 +
1− δ2 + δ2

2

1 + δ2 + δ2
2

β2 < 1. (A.15)

(iii). c2 + c3(c3 − c1) < 1, which is equivalent to

∆8 ≡ δ1

1 + δ1

β1+
δ2

1 + δ2 + δ2
2

β2− δ2β2

1 + δ2 + δ2
2

(
β1

1 + δ1

+
(1− δ2

2)β2

1 + δ2 + δ2
2

)
< 1. (A.16)

(iv). c2 ≡ δ1γ1 + δ2γ2 < 3.

Note thatβi > 0, δi ∈ [0, 1] andδ2 < 1 − δ2 + δ2
2, one can see that∆7 < 1 implies

condition (iv). In additionλ = −1 when∆7 = 1 is satisfied and∆7 < 1 implies
∆8 < 1 for δ2 ≤ 1/2.

A.5. Proof of Proposition 5.1.




pt = f1(p, x, y, z, u)t−1

xt = δ1xt−1 + (1− δ1)pt−1 = f2

yt = δ2yt−1 + (1− δ2)pt−1 = f3

zt = δ1zt−1 + δ1(1− δ1)(pt − xt−1)
2 = f4

ut = δ2ut−1 + δ2(1− δ2)(pt − yt−1)
2 = f5

f1 = β +
α

2
[(1 + w)

x− b1

a1 + 2A1z
+ (1− w)

y − b2

a2 + 2A2z
]

Evaluating at the unique fixed point(pt, xt, yt, zt, ut) = (p∗, p∗, p∗, 0, 0):




∂f1

∂p
= 0,

∂f1

∂x
= α

2
(1+w)

a1
= −β1,

∂f1

∂y
= α

2
(1−w)

a2
= −β2,

∂f1

∂z
= α

2
(1 + w)−2A1(p∗−b1)

a2
1

≡ ∆∗
1,

∂f1

∂u
= α

2
(1 + w)−2A2(p∗−b2)

a2
2

≡ ∆∗
2,
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and 



∂f2

∂p
= 1− δ1,

∂f2

∂x
= δ1,

∂f2

∂y
= ∂f2

∂z
= ∂f

∂u
= 0,

∂f3

∂p
= 1− δ2,

∂f3

∂y
= δ2,

∂f3

∂x
= ∂f3

∂z
= ∂f3

∂u
= 0,

∂f4

∂p
= 0 = ∂f4

∂x
= ∂f4

∂y
= 0, ∂f4

∂z
= δ1,

∂f4

∂u
= 0,

∂f5

∂u
= δ2,

∂f5

∂p
= ∂f5

∂x
= ∂f5

∂y
= ∂f5

∂z
= 0.

Hence

J =




0 −β1 −β2 ∆∗
1 ∆∗

2

1− δ1 δ1 0 0 0
1− δ2 0 δ2 0 0

0 0 0 δ1 0
0 0 0 0 δ2




.

The characteristic equation is given by

Γ(λ) ≡ |λI − J | =

∣∣∣∣∣∣∣∣∣∣

λ β1 β2 −∆∗
1 −∆∗

2

−(1− δ1) λ− δ1 0 0 0
−(1− δ2) 0 λ− δ2 0 0

0 0 0 λ− δ1 0
0 0 0 0 λ− δ2

∣∣∣∣∣∣∣∣∣∣

= (λ− δ1)(λ− δ2)

∣∣∣∣∣∣

λ β1 β2

−(1− δ1) λ− δ1 0
−(1− δ2) 0 λ− δ2

∣∣∣∣∣∣
= (λ− δ1)(λ− δ2)h(λ),

where

h(λ) =

∣∣∣∣∣∣

λ β1 β2

−(1− δ1) λ− δ1 0
−(1− δ2) 0 λ− δ2

∣∣∣∣∣∣
= λ3 + c1λ

2 + c2λ + c3





c1 = −(δ1 + δ2),
c2 = δ1δ2 + β2(1− δ2) + β1(1− δ1),
c3 = −δ1β2(1− δ2)− δ2β1(1− δ1).

Sinceδ1, δ2 ∈ (0, 1) applying Jury’s test toh(λ) = 0, one can see that|λi| < 1 if
πi > 0, where





π1 = 1 + c1 + c2 + c3,
π2 = 1− c1 + c2 − c3,
π3 = 1− c2 + c3(c1 − c3),
c2 < 3.
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Note that

π1 > 0 ⇔ (1− δ1)(1− δ2)[1 + β1 + β2] > 0

π2 > 0 ⇔ −
[
1− δ1

1 + δ
β1 +

1− δ2

1 + δ2

β2

]
< 1

π3 > 0 ⇔
[
δ1β2(1− δ2) + δ2β1(1− δ1) +

δ1 + δ2

2

]2

+β2(1− δ2) + β1(1− δ1) < 1 +
(δ1 − δ2)

2

4

andc2 < 3 is implied byπ3 > 0. Therefore, the only condition we need for the local
stability is π3 > 0. Furthermore, fromh(1) = π1, (−1)3h(−1) = π2, there is no
saddle-node and flip bifurcation and the only boundary of the stability region is given
by Neimark-Hopf bifurcation boundary, defined byπ3 = 0. Along the bifurcation
boundary, let

λ1,2 = e±2πθi, λ3 = r ∈ (−1, 1).

Then it follows from

[λ1 + λ2 + λ2] = −[ρ + r] = −[δ1 + δ2],

λ1λ2 + λ1λ3 + λ2λ3 = 1 + rρ

= δ1δ2 + β1(1− δ1) + β2(1− δ2),

λ1λ2λ3 = −r = −[δ1β2(1− δ2 + δ2β1(1− δ1)]

that
ρ = δ1[1− β2(1− δ2)] + δ2[1− β1(1− δ1)].

In particular, forδ1 = δ2 = δ, the stability condition becomes

[1− β(1− δ)][δ2β(1− δ) + (1− δ2)] > 0,

which is equivalent to

β <
1

1− δ
, where β = β1 + β2.

Along the bifurcation boundary,β(1− δ) = 1, and henceρ = δ.
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