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Abstract

We introduce the concept of a Misspecification Equilibrium to dynamic
macroeconomics. A Misspecification Equilibrium occurs in a stochastic pro-
cess when agents forecast optimally given that they must choose from a list of
misspecified econometric models. With appropriate restrictions on the asymp-
totic properties of the exogeneous process and on the feedback of expectations,
the Misspecification Equilibrium will exhibit Intrinsic Heterogeneity. Intrinsic
Heterogeneity is a Misspecification Equilibrium where all misspecified models
receive positive weight in the distribution of predictors across agents. Inter-
estingly, the existence of heterogeneity depends on the self-referential property
of the model. Our derivation of heterogeneous expectations as the equilibrium
outcome of a model is a departure from the previous literature which makes ad
hoc assumptions about the degree of heterogeneity.

JEL Classifications: C62; D83; D84; E30
Key Words: Cobweb model, heterogeneous beliefs, adaptive learning, ratio-

nal expectations.

1 Introduction

Despite its dominance in dynamic macroeconomic models, the Rational Expectations
Hypothesis has limitations. The most frequently cited drawback to the rational expec-
tations approach is that it assumes agents know the underlying economic structure.
In response to this criticism one popular alternative is to model agents as econome-
tricians (Evans and Honkapohja 2001). This adaptive learning approach typically

∗We are greatly indebted to Garey Ramey for early discussions. We thank Jim Bullard, Cars
Hommes, Didier Sornette, and participants at the 2002 CeNDEF Workshop on Economic Dynamics
for helpful comments.
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assumes agents have a correctly specified model with unknown parameters. Agents
then use a reasonable estimator to obtain their coefficient estimates. In many models
these beliefs converge to rational expectations.

In practice, however, econometricians often misspecify their models. Economic
forecasters who use VAR’s purposely limit the number of variables and the number
of lags because of degree of freedom problems. If agents are expected to behave like
econometricians then they can also be expected to misspecify their models. (Evans
and Honkapohja 2001) consider a model where agents underparameterize and show
existence of a Restricted Perceptions Equilibrium (RPE) in which agents form their
beliefs optimally given their misspecification.

In this paper we examine expectation formation in an environment where agents
must forecast using an underparameterized econometric model. More specifically we
confront agents with a list of misspecified econometric models, but, given this restric-
tion, assume that agents forecast optimally. Agents choose between these optimal
underparameterized models based on their relative mean success.

We investigate this framework in a linear stochastic framework, developing the
analysis in the context of the cobweb model. Because the economic model is self-
referential, in the sense that expectation formation affects the law of motion for
the endogenous variables, the optimal parameters of each misspecified econometric
model depend on the proportions of agents using the different models. We define a new
equilibrium concept, called a Misspecification Equilibrium, in which these proportions
are consistent with optimal forecasting from each econometric model. We show that
for some economic model parameters and exogenous driving variables, agents will
be distributed heterogeneously between the various predictors, even as we approach
the limiting case in which agents choose only between the best performing statistical
models. We say a Misspecification Equilibrium with such a property exhibits Intrinsic
Heterogeneity.

Heterogeneity in expectations has been considered previously in papers by (Townsend
1983) and (Haltiwanger and Waldman 1985) who assume a certain fraction of agents
are not rational. In adaptive learning models (Honkapohja and Mitra 2001) allow
agents to have different specific learning rules. Even the seminal (Bray and Savin
1986) allows for heterogeneity in priors. These papers all assume an ad hoc degree
of heterogeneity, and the heterogeneity dissappears in the limit. (Evans, Honkapohja
and Marimon 2001) allow for stochastic heterogeneity in learning rules, but again the
heterogenous expectations is only transitory.

(Brock and Hommes 1997) were the first to model heterogeneous expectations as
an endogeneous outcome.1 (Brock and Hommes 1997) examine a cobweb model where
agents choose a predictor from a set of costly alternatives. They base this choice on

1(Sethi and Franke 1995) also find heterogeneity as an outcome of evolution in a model of stochas-
tic strategic complementarities.
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the most recent realized profits of the alternatives in a cobweb model. If agents are
boundedly rational in the sense that their ‘intensity of choice’ between predictors is
finite (that is, they do not fully optimize), then there will be heterogeneity and the
degree of heterogeneity will vary in a complex manner.

Brock and Hommes illustrate these results in a particular case of rational versus
myopic beliefs. Because agents always react to recent changes in profits their predictor
choice will oscillate along with the equilibrium price. Our model is closely related
to Brock and Hommes. Like their model, we assume that the map from predictor
benefits to predictor choice resembles a multinomial logit. The multinomial logit has
proven to be an important approach to modeling economic choices.2 Additionally,
there has been an explosion of recent work in dynamic macroeconomics which uses the
multinomial logit. Extensions of the (Brock and Hommes 1997) predictor selection
dynamic appear in (Brock and deFountnouvelle 2000), (Brock and Hommes 1998,
2000), (Brock, Hommes, and Wagener 2001), (Branch 2002a, 2002b) and (Hommes
2001). (Brock and Durlauf 2001) extend the framework so agent specific choices
depend on the expected choices of others.

There are two important departures in our model. First, agents do not choose
between a costly accurate forecast and a costless inaccurate forecast; rather, they
are forced to choose between misspecified models. We will show that even if they
optimally choose between these misspecified models heterogeneity may arise. Second,
we assume agents make their choices based on unconditional mean payoffs rather
than on the most recent period’s realized payoff. This is appropriate in a stochastic
environment since otherwise agents could be misled by single period anomalies. Given
that agents base decisions on mean profits it is not at all obvious that heterogeneity
would be possible if the ‘intensity of choice’ is large. Indeed, we will show instances
of asymptotically homogeneous expectations do arise.

The main difference in our results is, unlike previous work, we derive heterogene-
ity as a possible equilibrium outcome of a self-referential model where agents must
underparameterize. We assume that agents are fully rational except that they mis-
specify by omitting at least one relevant variable or lag. We focus on the cobweb for
two reasons. First, we want to stay close to (Brock and Hommes 1997) in order to
highlight the key differences. Second, the cobweb model is the simplest self-referential
model that effectively illustrates the intuition of Intrinsic Heterogeneity.

We obtain conditions under which there is an equilibrium with agents heteroge-
neously split between the misspecified models even as the ‘intensity of choice’ becomes
arbitrarily large. The intuition for this possibility is as follows. Suppose the cobweb
price is driven by a two-dimensional vector of demand shocks. If both components of
the demand shock matter for predicting prices, and if the feedback through expecta-
tions is sufficiently large, then there will be an incentive to deviate from homogeneity.

2See, for example, (Manski and McFadden 1981).
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If all agents coordinate on the same model the negative feedback through expectations
will make the consensus model less useful for forecasting. In these instances an agent
could profit by forecasting with the alternative model. With Intrinsic Heterogeneity
the equilibrium is such that beliefs and predictor proportions drive expected profits
to be identical.

The plan for this paper is as follows. Section 2 introduces the set-up in a general
cobweb model. We show the existence of a Misspecification Equilibrium and the
conditions under which there is Intrinsic Heterogeneity. Section 3 demonstrates these
results for the special case of a process driven by a two dimensional VAR(1) shock
and agents choose between two underparameterized models. Section 4 concludes and
describes future work.

2 Model

In this section we consider a self-referential stochastic process that is driven by vector
autoregressive exogenous shocks. We assume that agents’ expectations are based on
misspecified models of the economy. Previous work has assumed, in an equilibrium,
a particular structure of agents’ misspecification. We allow the misspecification to be
endogeneous and consider equilibria that jointly determine the misspecification and
the equilibrium path.

We do this by extending the Adaptively Rational Equilibrium Dynamics (A.R.E.D.)
of Brock and Hommes (1997) to allow agents to select between underparameterized
models. Agents consider the unconditional expected payoff of the various possible
underparameterizations and select the one which returns the highest payoff. Once
they have selected a model they then form their expectations as the optimal linear
projection given their misspecification.

We first show that, for given predictor proportions, there exists a Restricted Per-
ceptions Equilibrium (RPE) in which agents’ misspecified beliefs are verified by the
actual equilibrium process. We next allow for predictor proportions to be endoge-
neously determined and show the existence of a Misspecification Equilibrium. Finally,
we state a condition under which the model exhibits Intrinsic Heterogeneity.

2.1 Set-up

We consider a cobweb model of the form

pt = −φpet + γIzt + vt (1)

where vt is white noise. Although there are several well-known economic models
that fit the form (1), we focus on the “cobweb” model in order to keep the close
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connection between our model and (Brock and Hommes 1997). zt is a vector of
observable demand disturbances, which will be further specified below.

We normally expect φ > 0 in the cobweb model, which corresponds to upward
sloping supply curves and downward sloping demand curves. Bray and Savin (1986)
showed that φ > −1 was the condition for the model to be stable under least squares
learning. In this paper we focus on the negative feedback case of φ > 0 and leave
φ < 0 for future work.3

In the cobweb model firms have a one-period production lag. We assume that
firms have quadratic costs given by FQ∗t +

1
2
G(Q∗t )

2, where Q∗t is planned output.
In addition we allow for exogeneous productivity shocks realized after production
decisions are made so that total quantity is Qt = Q

∗
t + κt. Here κt is iid with zero

mean. Firms aim to maximize expected profits.4 Thus,

max
Q∗t

Et−1πt = Et−1

}
pt (Q

∗
t + κt)− FQ∗t −

1

2
G(Q∗t )

2

]
= Q∗tEt−1pt + Et−1(ptκt)− FQ∗t −

1

2
G(Q∗t )

2

Solving this problem leads to the supply relation5

Q∗t = G
−1pet (2)

where pet = Et−1pt. Then actual supply follows Qt = G
−1pet + κt.

Demand is given by
Qt = C −Dpt + hIζt (3)

where ζt is an m × 1 vector of demand shocks that follows a zero-mean stationary
VAR(n). The ζt process is assumed independent of κt. Setting demand equal to
actual supply we have the following stochastic equilibrium price process

pt = −(DG)−1pet +D−1hIζt −D−1κt, (4)

where, for convenience, we have expressed pt and p
e
t in deviation from the mean form.

It is convenient to rewrite the model in terms of an exogenous VAR(1) process.
Defining

zIt = (ζ
I
t, ζ
I
t−1, · · · , ζ It−n+1)

3Equation (1) with −1 < φ < 0 takes the same form as a Lucas-type monetary model. In future
work we will pursue the possibility of heterogeneity in that model.

4It would be possible to extend the model to incorporate risk by assuming agents respond to
variances of profits as well as expected profits. We make the expected profits assumption to keep
the model as simple as possible.

5We have set, without loss of generality, F = 0. We are also assuming that agents treat
Et−1(ptκt) as a constant independent of the choice of Q∗t . That this is a reasonable assumption can
be verified by (4) below.
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we can write zt in its standard VAR(1) form

zt = Azt−1 + εt

for appropriately defined A and appropriately defined εt, which is exogenous white
noise. Here zt is mn× 1 and A is mn ×mn. We denote the covariance matrix of zt
as Ω = EzzI, and Ω is assumed to be positive definite. Setting

φ = (DG)−1, γI = (D−1hI, 0, . . . , 0) and vt = −D−1κt
we can rewrite (4) in the form (1).

2.2 Model Misspecification

To close the model we need to specify the determination of pet . We assume that there
areK econometric models available to form expectations and that model j = 1, . . . ,K
uses kj < mn explanatory variables. The market expectation is given by the weighted
sum of the individual expectations

pet =
K3
j=1

njp
e
j,t (5)

where pej,t = b
jIxjt−1, x

j
t = u

jzt. The kj ×m matrix uj is a selector matrix that picks
out those elements of zt used in predictor j and b

j is kj × 1. Thus, kj is the number
of elements in zt that predictor j uses. We can rewrite (5) as

pet =
K3
j=1

njb
jIujzt−1

This set-up forces agents to underparameterize the variables included in their
information set and/or the number of lags of those variables. We believe this is a
reasonable approximation of actual expectation formation. Cognitive and computing
time constraints (as well as degrees of freedom) restrict the number of variables even
the most diligent econometricians use in their models. Our form of misspecification
makes agents be (at least a little bit) parsimonious in their expectation formation.

We next specify the determination of the parameters bj. In a fully specified
econometric model, and under rational expectations, all variables zt would be included
and the coefficients used to form pet would be given by the least squares projection of pt
on zt. Here each predictor is constrained to use a subset xj of relevant variables, and
thus each predictor differs from rational expectations. However, we will insist that
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the beliefs bj are formed optimally in the sense that bj is the least squares projection
of pt on u

jzt−1. That is, bj must satisfy

Eujzt−1
D
pt − bjIujzt−1

i
= 0

Even though agents will never be “fully” accurate, they will be as accurate as possible
given the variables in their information set.

2.3 Misspecification Equilibrium

Given the belief process (5) the actual law of motion (ALM) for this economy is

pt =

^
γIA− φ

X
K3
j=1

njb
jIuj
~�

zt−1 + γIεt + vt

or
pt = ξIzt−1 + γIεt + vt, (6)

where

ξI = γIA− φ

X
K3
j=1

njb
jIuj
~
. (7)

Here n = [n1, · · · , nK ]I and b = [b1, · · · , bK ]. Given these equations and the parameter
orthogonality condition we obtain

bj =
p
ujΩuj

I
Q−1

ujΩξ. (8)

We now introduce the concept of Restricted Perceptions Equilibrium (RPE).6 An
RPE is an equilibrium process for pt such that the parameters b

j are optimal given
the misspecification. Note that, like a rational expectations equilibrium, an RPE is
self-referential in that the optimal beliefs depend on the vector of parameters ξ which
depend in turn on the vector of beliefs b. Thus, an RPE can be defined as a process
(6) such that ξ is a solution to (7) and (8) for fixed n.

Substituting (8) into (7) yields

ξI = γIA− φ
K3
j=1

njξ
IΩujI
D
ujΩujI

i−1
uj

or

ξ =

^
I + φ

K3
j=1

nju
jI DujΩujIi−1 ujΩ�−1AIγ (9)

6See (Evans and Honkapohja 2001) for a definition and examples. The concept introduced here
extends the concept of RPE to incorporate multiple misspecified models.
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For a given n an RPE exists (and is unique), provided the inverse in (9) exists.

In the Misspecification Equilibrium, which we define below, n is determined en-
dogenously. Equation (9) gives a well-defined mapping ξ = ξ(n) provided the in-
dicated inverse exists for all n in the unit simplex. We therefore assume that the
following condition holds:

Condition P: P W= 0 for all n in the unit simplex S = {n ∈ RK : ni ≥
0 and

�K
i=1 ni = 1}, where

P = det
X
I + φ

K3
j=1

nju
jI DujΩujIi−1 ujΩ~ .

Condition P is a necessary and sufficient condition for the existence of a unique RPE
for all n ∈ S.
We have the following result:

Proposition 1 For φ ≥ 0 sufficiently small, Condition P is satisfied and hence for
all n there exists a unique RPE given by (6) and (8).

All proofs are contained in the Appendix. In the next Section we demonstrate that
Condition P holds for all φ ≥ 0 in the case K = 2.

We now embed the RPE concept in an equilibrium concept in which n is en-
dogeneously determined by the mean profits of each predictor. We will call this a
Misspecification Equilibrium. Note that the profits of each predictor depend on the
parameters ξ which in turn depend on n.

In order to discuss the mapping for predictor proportions we need the profits for
predictor j, which are given by

πjt = pt
D
φDpei,t −Dvt

i− 1
2
φD
D
pei,t
i2

= [ξ(n)Izt−1 + γIεt + vt]
J
φDbjIujzt−1 −Dvt

o− 1
2
φD
D
bjIujzt−1

i2
,

where, again, we have expressed profits in deviation from mean form. Taking uncon-
ditional expectations of profits yields

Eπjt = φDbjIujΩ
w
ξ(n)− 1

2
ujIbj
W
−DEv2t .

Evaluating expected profits in an RPE (i.e. plugging in (8)) leads to

Eπj = φDξ(n)IΩujI(ujΩujI)−1ujΩ
w
ξ(n)− 1

2
ujI(ujΩujI)−1ujΩξ(n)

W
−DEv2t . (10)
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Note that Eπj is well-defined and finite for all n, provided Condition ∆ holds so that
ξ(n) is well-defined. It will be convenient to denote the function given by (10) as

F̃j(n) : S → R, for j = 1, . . . ,K,

and to define F̃ (n) : S → RK by F̃ (n) = (F̃1(n), . . . , F̃K(n))I. Note that F̃j(n) and
F̃ (n) are continuous on S provided Condition ∆ holds.

We now follow (Brock and Hommes 1997) in assuming that the predictor propor-
tions follow a multinomial logit (MNL) law of motion. Brock and Hommes consider
the cobweb model without noise where agents choose between rational and naive ex-
pectations. Agents adapt their choices based on the most recent relative predictor
success.7 This clearly would not be appropriate in the stochastic framework employed
here and we instead assume that agents base their decision on unconditional expected
relative pay-offs.8

The MNL approach leads to the following mapping, for each predictor i,

ni =
exp{αEπi}�K
j=1 exp{αEπj}

. (11)

Note that ni > 0 for α and the Eπ
j finite and

�
j nj = 1. Again, it will be convenient

to denote the map defined by (11) as

H̃α(Eπ
1, . . . , EπK) : RK → S,

and clearly H̃α is continuous. The parameter α is called the ‘intensity of choice,’ and
parameterizes one dimension of agents’ bounded rationality. For α = +∞ we have
the ‘neoclassical’ case. We will be interested in heterogeneity for the neoclassical case
of full optimization. We remark that our choice of payoff function Eπj allows us to
consider the fixed point of a map rather than the sequence of difference equations as
in Brock and Hommes.

We now define the mapping

T̃α : S → S where T̃α = H̃α ◦ F̃ .
Under Condition ∆ this map is well-defined and continuous. T̃α maps a vector of
predictor choices, n, through the belief parameter mapping ξ into a vector of expected
profits and then to a new predictor choice n. We are now in a position to present our
central equilibrium concept:

Definition A Misspecification Equilibrium (ME) is a fixed point, n∗, of T̃α.

Applying the Brouwer Fixed Point Theorem we immediately have:
7(Branch 2002) shows that many of the qualitative properties in the model without noise carry

over to a model with small demand disturbances.
8In future work we plan to consider a framework in which agents dynamically respond to recent

realizations of payoffs and in which bj is estimated recursively.
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Theorem 2 Assume Condition ∆. There exists a Misspecification Equilibrium.

In general we cannot rule out multiple equilibria. Let

Nα = {n∗|T̃α(n∗) = n∗}.
For α finite and Eπj finite, it is apparent that all components are positive for every
fixed point n∗. Thus, heterogeneity for finite α is simply a by-product of the MNL
assumption, which ensures that all predictors are used even if they differ in terms
of their performance. However, it is of interest to know if heterogeneity continues
to arise if agents are highly sensitive to relative performance, so that asymptotically
they only use predictors that are not dominated in performance. This leads to the
following concept:

Definition A model is said to exhibit Intrinsic Heterogeneity if (i) an ME exists for
all α > 0 and (ii) there exists n̄ < 1 such that n∗j ≤ n̄, j = 1, . . . ,K, for all α and all
ME n∗ ∈ Nα.

It can be shown that a model with intrinsic heterogeneity arises whenever the
following additional condition is satisfied.

Condition P: Let ei denote the K×1 coordinate vector with 1 in position i and
0 elsewhere. Condition P is said to be satisfied if for each i = 1, . . . ,K there exists
j W= i such that F̃j(ei)− F̃i(ei) > 0.

Theorem 3 Assume Condition ∆ and also Condition P. Then the model exhibits
intrinsic heterogeneity.

The next section will present a simple example to illustrate our concepts. In par-
ticular we present cases in which Condition P holds and the model exhibits Intrinsic
Heterogeneity.

3 Example: Bivariate Case

To illustrate the properties of a Misspecification Equilibrium we will simplify the
model by considering a special case in which detailed results can be obtained. In this
section we assume that zt is a two-dimensional VAR(1) zt = Azt−1 + εt, where A is
2×2 and EεtεIt = Σε. Each misspecified model will omit one explanatory variable and
thus K = 2 and kj = 1 for j = 1, 2. This is the simplest possible illustration of our
framework, and we will see that it can generate cases with Intrinsic Heterogeneity.

With bivariate demand shocks the predictors are now

pe1,t = b1u1zt−1 = b1z1,t−1
pe2,t = b2u2zt−1 = b2z2,t−1

10



Plugging these predictors into the law of motion for price and collecting terms leads
to

pt = ξ1z1,t−1 + ξ2z2,t−1 + ηt (12)}
1 + n1φ φn1ρ
φn2ρ̃ 1 + n2φ

] }
ξ1
ξ2

]
= AIγ, (13)

where

ρ =
Ez1tz2t
Ez21t

, ρ̃ =
Ez1tz2t
Ez22t

,

and ηt = γIεt + vt. From the general results of the preceding section we know that
a Misspecification Equilibrium exists for φ ≥ 0 sufficiently small. For the bivariate
case existence can be shown for all φ ≥ 0. Furthermore, we will show that this
equilibrium is unique.

3.1 Misspecification Equilibrium

If condition P is satisfied then this guarantees a unique ξ1, ξ2 for each n
I = (n1, n2),

and a unique RPE. Since n2 = 1− n1, in this section we define the key functions in
terms of n1 rather than n. Thus, in particular, if Condition ∆ holds then (13) defines
a continuous map ξ = ξ(n1).

Proposition 4 In the bivariate model, Condition P is satisfied for all φ ≥ 0. Hence
there exists a unique RPE for every n1 ∈ [0, 1].

From Theorem 2 it follows that there exists a ME. By developing the details we
can obtain additional results. The profit functions are given by

Eπ1 =
1

2
φD
D
ξ21(n1)− ξ22(n1)ρ

2
i
Ez21t + φD (ξ1(n1) + ξ2(n1)ρ) ξ2(n1)Ez1z2 −Dσ2v

Eπ2 =
1

2
φD
D
ξ22(n1)− ξ21(n1)ρ̃

2
i
Ez22t + φD (ξ2(n1) + ξ1(n1)ρ̃) ξ1(n1)Ez1z2 −Dσ2v ,

and we define
F (n1) = Eπ

1 − Eπ2.
In order to prove existence of a unique ME, we need to show that the profit difference
function F (ξ(n1)) is monotonic.

Lemma 5 In the bivariate model, the function F (n1) is monotonically decreasing for
all φ ≥ 0.
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We remark that it is possible to instead have a positive slope for the profit dif-
ference function F (n1) when φ < 0. In this case it will be possible to have multiple
equilibria. Examples with φ < 0 are the focus of future research.

The predictor proportion mapping (11) can be written

n1 =
1

2
tanh
�α
2

D
Eπ1 − Eπ2i=+ 1

2
≡ Hα(Eπ

1 − Eπ2),

where Hα : R→ [0, 1] is a strictly increasing function. Note that we use F and Hα in
place of F̃ and H̃α to emphasize that in contrast to the previous section the domain
of F and the range of Hα is now [0, 1] instead of the unit simplex S. This will simplify
some of the arguments below.

Because Condition P is satisfied for all φ ≥ 0, there exists a well defined mapping
Tα = Hα ◦F . Tα : [0, 1]→ [0, 1], which is continuous. From Lemma 5 it follows that
Tα is a continuous, decreasing function for each α. It immediately follows that there
is a unique fixed point, i.e., we have:

Theorem 6 Suppose zt is a bivariate VAR(1). If φ ≥ 0 the model has a unique
Misspecification Equilibrium.

Theorem 6 demonstrates that there is a unique equilibrium in the belief parameters
and the proportion of agents using the two misspecified models. It does not tell us
how agents are distributed between the predictors. Our main interest is in showing
that in an equilibrium with α = +∞ it is possible for there to be heterogeneity. Unlike
(Brock and Hommes 1997) who obtain heterogeneity as an automatic implication of
assuming that α is finite, we want to show that there exists cases of heterogeneity
even in the limit as α→∞. We now take up this issue.

3.2 Intrinsic Heterogeneity

The previous section established uniqueness of the misspecification equilibrium. We
now discuss more specific properties of this equilibrium.

From the equations for expected profit, it can be shown that9

F (1) ≷ 0 iff ξ21(1) ≷ ξ22(1)Q, and

F (0) ≷ 0 iff ξ21(0) ≷ ξ22(0)Q

9The Appendix contains additional details of these derivations.
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where Q =
Ez22
Ez21

> 0. Furthermore, from (13) we have

ξ21(0)

ξ22(0)
=

(1 + φ)2 (γ1a11 + γ2a21)
2

(γ1a12 + γ2a22 − φρ̃(γ1a11 + γ2a21))
2 ≡ B0

ξ21(1)

ξ22(1)
=

(γ1a11 + γ2a21 − φρ(γ1a12 + γ2a22))
2

(1 + φ)2 (γ1a12 + γ2a22)2
≡ B1

These expressions assume that the denominators of these expressions are non-zero.

There are three possible cases depending on A and Σ6:

Lemma 7 1. Condition P: F (0) > 0 and F (1) < 0. Condition P is satisfied
when B1 < Q < B0.

2. Condition P0: F (0) < 0 and F (1) < 0. Condition P0 is satisfied when Q > B0.

3. Condition P1: F (0) > 0 and F (1) > 0. Condition P1 is satisfied when Q < B1.

Below we give numerical examples of when each condition may arise.

Under Condition P0, F (1) < 0 implies that model 2 is always more profitable.
Under Condition P1, model 1 is always more profitable. In these cases we anticipate
homogeneous expectations as the ‘intensity of choice’ α→∞. However, if Condition
P obtains there is an incentive to deviate from the consensus selection. We have the
following result.

Proposition 8 Consider again the model with zt a bivariate VAR(1) and φ ≥ 0.
The unique Misspecification Equilibrium n∗1 has one of the following properties:

1. Condition P implies that as α → ∞, n∗1 → n̂1 ∈ (0, 1) where F (n̂1) = 0. That
is, n∗1 has Intrinsic Heterogeneity.

2. Condition P0 implies that as α→∞, n∗1 → 0.

3. Condition P1 implies that as α→∞, n∗1 → 1.

Proposition 8 establishes the possibility of Intrinsic Heterogeneity in a Misspec-
ification Equilibrium. We discuss the intuition further below. This result is novel
because, for high α, rationality of agents is bounded only through their model parame-
terizations. Agents fully optimize given their (misspecified) model of the economy. In
Brock and Hommes’ A.R.E.D. heterogeneity arises because there are calculation costs
and, most importantly, because a proportion of agents, with finite α, do not optimize
by ignoring profit differences. Only in a steady-state will agents be evenly distributed
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across predictors.10 In our model, agents optimize given their misspecification, all
predictors are equally “sophisticated” and costless, and Intrinsic Heterogeneity can
arise as part of a stochastic equilibrium. Most interestingly, it is the self-referential
feature of the model that generates this heterogeneity.

We argue that the assumption of underparameterization is reasonable. The adap-
tive learning literature has argued in favor of modeling agents as econometricians as
a reasonable deviation from the rational expectations assumption. But, econometri-
cians misspecify their econometric models. Computational time and limits on degrees
of freedom make it impossible for an econometrician to include all economically rel-
evant variables and lags. Imposing such restrictions on our agents we find that this
can lead to heterogeneous forecasting models.

3.3 Connection to the Rational Expectations Equilibrium

Our equilibrium differs from the Restricted Perceptions Equilibrium in (Evans and
Honkapohja 2001). There agents also underparameterize in one dimension but the
dimension is imposed by the model and all agents are homogeneous in their misspec-
ification. These expectations differ from rational expectations by ignoring relevant
information. Since all agents ignore the same information in their perceived law of
motion it is clear that in equilibrium the parameters of the model will differ from
a Rational Expectations Equilibrium (REE). In a Misspecification Equilibrium with
Intrinsic Heterogeneity each agent misspecifies but aggregate expectations are condi-
tioned on all available information. In principle, it is conceivable that a ME could
reproduce the REE. In this subsection we show that this is not the case: the pa-
rameters of the model in a ME will differ from an REE for all asymptotic properties
of zt.

Recall that the equilibrium process is

pt = −φpet + γIAzt−1 + ηt (14)

where γ is (2 × 1), A is (2 × 2) with elements aij for j = 1, 2, and ηt = γIεt + vt.
Under rational expectations

pet = Et−1pt (15)

An REE is a stochastic process pt which satisfies (14) given (15). The cobweb model
has one such solution and it is given by

pt = ξ̂1z1,t−1 + ξ̂2z2,t−1 + ηt
10This is because in (Brock and Hommes’ 1997) set-up all predictors return the same forecast in

a steady-state. So if a predictor is costless, then it will return the same steady-state net benefit as
all other costless predictors. In our model, the nature of the equilibrium forces each predictor to
return the same mean profit for large α.
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where

ξ̂1 = (1 + φ)−1 (γ1a11 + γ2a21)

ξ̂2 = (1 + φ)−1 (γ1a12 + γ2a22)

The parameters in a Misspecification Equilibrium are given by}
1 + n∗1φ φn∗1ρ

φ(1− n∗1)ρ̃ 1 + (1− n∗1)φ
] }

ξ1
ξ2

]
= AIγ, (16)

where n∗1 ∈ Nα. We saw that a non-trivial solution to (16) exists for all φ ≥ 0 and is
given by}

ξ1
ξ2

]
=
1

P
}
(1 + (1− n∗1)φ)(γ1a11 + γ2a21)− φn∗1ρ(γ1a12 + γ2a22)
(1 + n∗1φ)(γ1a12 + γ2a22)− φ(1− n∗1)ρ̃(γ1a11 + γ2a21)

]
where P = (1 + n∗1φ) (1 + (1− n∗1)φ)− φ2n∗1ρρ̃.

Clearly the REE parameters (ξ̂1, ξ̂2)
I differ from the ME parameters (ξ1, ξ2)

I. For
example, consider the case when the random variables z1,t, z2,t are uncorrelated. Then

ξ1 = (1 + n∗1φ)
−1 (γ1a11 + γ2a21)

ξ2 = (1 + (1− n∗1)φ)−1 (γ1a12 + γ2a22) .

3.4 Discussion of Intuition

The intuition behind Condition P and the existence of Intrinsic Heterogeneity is
subtle. In a cobweb model the exogeneous shocks z have both a direct and an indirect
effect on price. The direct effect is simply the γIzt term. The indirect effect depends
on the way in which agents incorporate z into their expectations. It is the interplay
between the direct and indirect effects that makes intrinsic heterogeneity possible. In
this subsection we illustrate the intuition through a simple example.

Suppose that the components z1,t, z2,t are uncorrelated. Then the RPE is given
by }

ξ1
ξ2

]
=

}
(1 + n1φ)

−1 0
0 (1 + (1− n1)φ)−1

] }
γ1a11 + γ2a21
γ1a12 + γ2a22

]
Recall that

pt = ξ1z1,t−1 + ξ2z2,t−1 + ηt

Now set φ = 0. This is the case where there is no feedback from expectations to
price. In this special case

ξ1 = (γ1a11 + γ2a21)

ξ2 = (γ1a12 + γ2a22)
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The parameters ξ1, ξ2 are completely determined by the direct effect γ
IA. Suppose

that φ > 0. The RPE parameters are now

ξ1 = (1 + n1φ)
−1 (γ1a11 + γ2a21)

ξ2 = (1 + (1− n1)φ)−1 (γ1a12 + γ2a22)

The parameters depend on the direct effect γIA and the indirect effect of expectations
parameterized by n1,φ. Note in particular that as n1 → 1 we have |ξ1(n1)| ↓ and
|ξ2(n1)| ↑. For a fixed φ the indirect effect depends on n1. As agents mass onto a
particular predictor it diminishes the effect of that variable. This is because of the
self-referential feature of the cobweb model that leads to an indirect effect on prices
opposite to the direct effect of that variable. This makes z1,t a less useful predictor
than before and the z2,t component becomes more profitable. The opposite happens
as n1 → 0 and there is a unique n1 where both predictors fare equally well in terms
of mean profits. This proportion is the limit point of Intrinsic Heterogeneity.

Condition P places conditions on the indirect and direct effects and on the relative
importance of the two exogeneous variables. In our simple example of uncorrelated
shocks Condition P is equivalent to

(γ1a11 + γ2a21)
2

(1 + φ)2 (γ1a12 + γ2a22)
2 < Q <

(1 + φ)2 (γ1a11 + γ2a21)
2

(γ1a12 + γ2a22)2

where Q =
Ez22
Ez21
. When there is no feedback (φ = 0) there does not exist a matrix

A and Σε which satisfies Condition P. Intrinsic Heterogeneity does not exist in this
instance. Because there is no indirect effect from expectations, and expectations has
no bearing on price, agents will choose that model which forecasts price best. As φ
increases the range of admissible Q increases.

3.5 Numerical Examples

We now turn to some specific numerical examples. Figure 1 illustrates the T-map for
various values of α. The upper most part of the figure are T-maps corresponding to
(starting from n1 = 0 and moving clockwise) α = 2,α = 20,α = 50,α = 100,α =
200,α = 2000. We set

A =

}
.3 .10
.10 .7

]
γI = [.7, .5], the covariance matrix for εt, the white noise component of zt is

Σε =

}
.7 .2
.2 .6

]
and φ = 2. The bottom portion of the figure is the profit difference function F (n1).
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INSERT FIGURE 1 HERE

The matrix A and parameter φ have been chosen so that Condition P holds. For
n1 = 0 we have F (0) > 0 and for n1 = 1 F (1) < 0. The proof of Proposition 8 shows
that as α→∞

Hα(x)→
 1 if x > 0
0 if x < 0
1/2 if x = 0

and clearly this will govern the behavior of Ta = Hα ◦ F . Figure 1 illustrates how
as α increases the inverse S-shape becomes more pronounced. The dashed line is
the 45-degree line and all fixed points of the T-map will interesect this line. As α
increases the fixed point declines from above .5 to about .22 which is the point at which
F (n̂1) = 0. The Misspecification Equilibrium continues to exhibit heterogeneity even
as α→∞.
Figures 2 illustrates how the heterogeneity may disappear as α→∞. Now we set

A =

}
.93 .10
.10 .2

]
so that Condition P does not hold but condition P1 does. For low values of α agents
are not fully optimizing since some agents will continue to use z2 even though it
returns a lower expected payoff. But, as α→∞ all agents behave optimally and the
proportion using z2 goes to zero.

INSERT FIGURE 2 HERE

Figure 4 shows the role φ plays in the degree of Intrinsic Heterogeneity. This
graph depicts the T-map for various increasing values of φ. Notice that as φ increases
the fixed point of the T-map moves further to the left. In this example, z1 has a
stronger influence on the price than z2. When z2 has a stronger effect, the fixed point
will move to the right.

INSERT FIGURE 3 HERE

It is important to note that in a Misspecification Equilibrium in a model with
Intrinsic Heterogeneity all predictors have the same average return as α becomes
large. When α, the ‘intensity of choice’ is finite then there can be dispersions in the
relative performance of predictors. For the case α = +∞ agents forecast optimally
given their misspecification. If agents fully optimize and predictors are costless, the
only way there will be heterogeneity is if all predictors have the same expected return.
Heterogeneity arises in the costless case of (Brock and Hommes 1997) only in the
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steady-state in which different predictors make identical forecasts. Our results arise
in a stochastic equilibrium in which different predictors produce different forecasts.
Because of the importance of both exogeneous variables and expectational feedback
both predictors will be in use. Although the forecasts are different, each predictor
has identical mean forecast performance.

4 Stability under Real-Time Learning

In this section we address whether the equilibrium is stable under real-time learning.
In a Misspecification Equilibrium agents misspecify, however, their beliefs are optimal
linear projections given their underparameterization. They choose which component
of the exogeneous process to underparameterize based on the unconditional mean.
We now substitute optimal linear projections with real-time estimates formed via
recursive least squares (RLS).11 We also assume that agents choose their model each
period based on a real-time estimate of mean profits.

Prices now depend on time-varying parameters

pt = ξ1(b
1
t−1, n1,t−1)z1,t−1 + ξ2(b

2
t−1, n1,t−1)z2,t−1 + ηt

where b1t−1, b
2
t−1 are updated by RLS

b1t = b1t−1 + t
−1R−11,t z1,t−1

D
pt − b1t−1z1,t−1

i
b2t = b2t−1 + t

−1R−12,t z2,t−1
D
pt − b2t−1z2,t−1

i
where

R1,t = R1,t−1 + t−1(z21,t−1 −R1,t−1)
R2,t = R2,t−1 + t−1(z22,t−1 −R2,t−1)

The Rj,t, j = 1, 2 are recursive estimates of the covariance matrix of the explanatory
variables zj.

Given these beliefs agents estimate the mean profits associated with each model

Êπ1,t = Êπ1,t−1 + t−1
p
π1,t − Êπ1,t−1

Q
Êπ2,t = Êπ2,t−1 + t−1

p
π2,t − Êπ2,t−1

Q
The mean profits map into predictor proportions according to the law of motion

nj,t =
exp
�
αÊπj,t

=
�2

j=1 exp
�
αÊπk,t

=
11For an overview of stability under RLS in dynamic macroeconomics see (Evans and Honkapohja

2001).
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The dynamic version of the model exhibits real-time learning in the sense that agents
adaptively update previous estimates of their belief parameters and the mean profits
from those beliefs. Agents now choose their model in each time period based on these
recursive estimates. We are interested in whether the sequence of estimates b1t , b

2
t and

predictor proportions n1,t converge to the Misspecification Equilibrium.
12 Our aim is

to use numerical illustrations to show that the equilibrium can be stable under real-
time learning. It is beyond the scope of this paper to establish analytical convergence
results for this learning rule.

We continue with a particular parameterization that generated Intrinsic Hetero-
geneity in the previous section. We set

A =

}
.3 .1
.1 .7

]
γI = [.7, .5], φ = 2, and

Σε =

}
.7 .2
.2 .6

]
We simulate the model for 100,000 time periods. We set the initial value of the
VAR equal to a realization of its white noise shock, i.e., z0 = ε0. The initial value
for n1,0 = .82 a value that was chosen to lie away from the end points and the
ME. Initial estimated mean profits are equal to the realized profits under the initial
conditions. The initial belief parameters were set to b10 = 1, b20 = 2. The initial
estimated covariance matrices R1,0, R2,0 are the identity matrices. We chose α = 100.

Figure 4 illustrates the results of the simulation. The top panel plots the simu-
lated proportion n1,t against time. The middle and bottom panels plot the simulated
belief parameters b1,t, b2,t, respectively. In each plot the solid horizontal line repre-
sents the respective variables’ values in the Misspecification Equilibrium with Intrinsic
Heterogeneity. As can be seen in each plot, there appears to be convergence to the
ME. Initially there is considerable volatility in the proportion of agents who choose
predictor 1. This volatility gradually dampens until the proportion approaches its
equilibrium value. The dampening is much quicker in belief parameters as they ap-
proach their equilibrium values in a short period of time. Similar stability results
were obtained for other parameter settings but the qualitative results were affected
by α. For larger values of α it takes longer for the predictor proportions to settle
down near the equilibrium values.

INSERT FIGURE 4 HERE

The intuition behind the stability is as follows. In our parameterization there is
a unique ME with Intrinsic Heterogeneity. The uniqueness and heterogeneity arises
12Since we conduct the analysis numerically, we are being deliberately vague in what sense these

sequences converge.
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because Condition P guarantees that under, say, z1 homogeneity agents will have an
incentive to mass on z2, and vice-versa. For large α agents mass on the predictor
that returns the highest mean profit. In our simulations the proportions of agents are
initially away from the ME. This implies that one predictor has a higher profit than
the other. In the next period agents mass onto that predictor. Because of Condition
P in the next period agents will mass onto the other predictor. As the rapid switching
occurs agents update parameter estimates, which converge quickly, and accumulate
data on relative forecast performance. As they learn about mean relative forecast
performance, the volatility in predictor selection dampens and there is convergence
towards the Misspecification Equilibrium.

In the light of (Brock and Hommes 1997) our results may seem surprising. How-
ever, in (Brock and Hommes 1997) the model is determinstic, the predictor choice
is between a costly stabilizing predictor and a costless destabilizing predictor, and
predictor fitness is the most recent period’s realized profits. The stability results in
our model are the result of agents looking at the mean relative performance of the
predictors using the whole history of profits. This seems most appropriate within
the stochastic model we examine.

5 Conclusion

This paper demonstrates how to obtain heterogeneous expectations as an equilibrium
outcome in a model with optimizing agents. Our set-up is the standard cobweb model
in which rational expectations was originally developed. We obtain our results with
a discrete choice model for predictors, when agents are constrained to choose from
a set of misspecified models. As in (Brock and Hommes 1997) the proportion of
agents using the different predictors depends on their relative performance according
to an ‘intensity of choice’ parameter. As the ‘intensity of choice’ increases agents will
select only the most successful predictors. In (Brock and Hommes 1997) heterogeneity
of expectations is a reflection of finite intensities of choice and disappears in the
neoclassical limit. One contribution of this paper is to show that heterogeneity may
remain for high intensities of choice as a result of the use of misspecified models.

Because of limits in cognition, knowledge of the economy, degrees of freedom, etc.,
we assume that agents must underparameterize by neglecting a variable or lag from
their forecasting model. The importance of misspecification is widely recognized in
applied econometrics and one that we believe should be reflected in realistic mod-
els of bounded rationality. Although we constrain agents to choose from a list of
misspecified models, at the same time we require that the parameters of each model
chosen are formed optimally in the sense that forecast errors are orthogonal to the
explanatory variables of that model.

Our major theoretical contribution is to obtain existence results for a Misspeci-
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fication Equilibrium within this framework and to obtain a suitable condition under
which heterogeneous expectations persists for high intensities of choice. When this
condition is satisfied we say the model exhibits Intrinsic Heterogeneity.

Our central finding that misspecification can lead to heterogeneous expectations
is not at all obvious. If the intensity of choice is large, a key requirement for this
possibility is that the model be self-referential, i.e., that there be feedback from
expectations to actual outcomes. Heterogeneous expectations are not a necessary
outcome when the intensity of choice is large, but do arise under a suitable joint
condition on the model and the exogeneous driving processes. We illustrate the results
in a simple bivariate model. In particular, we show that, ceteris paribus, Intrinsic
Heterogeneity arises when the parameter governing the self-referential extent of the
model is sufficiently large. This surprising feature of self-referential models has not
been noted in previous work.

In this paper we have focused on the cobweb model. In future work, we will
examine the framework in a Lucas-type monetary model. The Lucas-type model
shares a similar reduced-form as the cobweb model. However, expectations have a
positive feedback on price. The self-referential feature of these models are essential
and thus a model with positive feedback may yield distinct results from those in this
paper.

A Appendix

Proof of Proposition 1. Consider the matrix

[P] =
X
I + φ

K3
j=1

njΩIuj
I
p
ujΩuj

I
Q−1

uj

~
.

The absolute value of the indicated sum has a maximum value when considered as a
function of n ∈ S. Hence for |φ| sufficiently small [P] is strictly diagonally dominant
(see Horn and Johnson (1985), pg. 302) for all n ∈ S. Strictly diagonally dominant
matrices have non-zero determinants and hence are invertible.

Proof of Theorem 3. Suppose to the contrary that the model does not exhibit
intrinsic heterogeneity. From Theorem 2 we know that a ME exists for every α.
Since the model does not have intrinsic heterogeneity, then for all n̄ < 1 there are
infinitely many α such that n∗k > n̄ for some component k = 1, . . . ,K where n∗ ∈ Nα.
Hence there exists a sequence indexed by ŝ such that α(ŝ) → ∞ with fixed points
n∗(ŝ) satisfying n∗k(ŝ)(ŝ) → 1. It follows that for some i ∈ {1, . . . ,K} there exists a
subsequence indexed by s such that α(s) → ∞ and n∗i (s) → 1. The expected profit
functions F̃j(n) are continuous and hence for this sequence

Eπk(s)− Eπi(s)→ F̃k(ei)− F̃i(ei),
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for all k = 1, . . . ,K, where ei is the unit coordinate vector with component i equal to
one. However, condition P implies that there exists j W= i such that F̃j(ei)−F̃i(ei) > 0.
It follows from (11) that

n∗i (s) =
1

1 +
�

k W=i exp{α(s)(Eπk(s)− Eπi(s)}
.

Thus n∗i (s) → 0 as s → ∞. This contradicts n∗i (s) → 1 and hence the model must
exhibit intrinsic heterogeneity.

Proof of Proposition 4. We want to show

P = (1 + n1φ) ((1 + φ)− φn1)− φ2ρρ̃
D
n1 − n21

i
> 0

or equivalently
P = φ2 (ρρ̃− 1)n21 + φ2 (1− ρρ̃)n1 + (1 + φ)

The equation P is a quadratic concave in φ. Evaluated at the end points (n1 = 0
and n1 = 1) P > 0. The quadratic is maximized at n1 = 1/2 and returns a value
of P(1/2) = (1/2)φ2 + (1 + φ) > 0. Since P is concave and is positive at both its
extrema, we conclude that Condition P is satisfied.

Proof to Lemma 5. Define S(n1) = [P]. We can rewrite (13) as
S(n1)ξ = A

Iγ (17)

Somewhat abusing notation, it is now convenient to rewrite F (n1) as F (ξ(n1)) thus

dF

dn1
= F I(ξ(n1)

dξ

dn1
(n1)

To establish the result examine DF I dξ
dn1

Differentiating (17) leads to

Sdξ +DSξdn1 = 0

or
dξ

dn1
= −S−1DSξ (18)

One can verify that

DF (ξ) = φD

}
ξ1Ez

2
1(1− r2)

− ξ2Ez
2
2(1− r2)

]
(19)

where r2 = ρρ̃. (19 can be expressed as

DF I = ξIφD(1− r2)
w
Ez21 0
0 −Ez22

W
(20)
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Combining (18) and (20) we have

DF I
dξ

dn1
= −φD(1− r2)Ez21ξI

w
1 0
0 −Q

W
S−1DSξ

= −Ez21φ2D(1− r2)γIA
D
S−1
iIw 1 0

0 −Q
W
AIγ

= −Ez21φ2D(1− r2)γIAKAIγ

The remainder of the proof will establish K is positive definite. Observe that K is
(2× 2) and positive definiteness is equivalent to K(1, 1) > 0 and det(K) > 0.
Consider the sign of K(1, 1). The numerator of K(1, 1) (its denominator is always

positive) can be written13

num(K(1, 1)) = 1 +
D
2− r2 + 2n1(r2 − 1)

i
φ− (n1 − 1)2(r2 − 1)φ2

When n1 = 1

num(K(1, 1)) = 1 + r2φ

which is positive for all φ > −1. Furthermore, it can be verified the derivative of
num(K(1, 1)) is

d(num(K(1, 1)))

dn1
= 2φ

D
r2 − 1i (1 + φ(1− n1))

This quantity is negative for all n1 provided φ > 0. negative for all n1 provided φ > 0.
For the case φ > −1 K(1, 1) evaluated when n1 = 0 is positive and its derivative is

d(num(K(1, 1)))

dn1
= (1 + φ)(1 + (1− r2)φ) > 0

These imply that the quadratic in num(K(1, 1)) is concave and always positive for
n1 ∈ [0, 1].
The determinant is given by

det(K) =
Q2(1− r2)

(1 + φ+ (n1 − 1)n1(r2 − 1)φ2)2

which is always positive. This establishes the lemma.

13All simplifications were done in Mathematica. The programs are available from the authors
upon request.
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Further Details For Section 3.2. Using the profit functions derived above we
can find

F (1)

Ez21
= −φD{(ξ21(1)ρ̃− ξ22(1)ρ)ρ+ (1/2)(ξ

2
2(1)−

ρ̃2ξ21(1))Q− (1/2)(ξ21(1)− ρ2ξ22(1))}
F (0)

Ez22
= φD{ρ̃[ξ22(0)ρ− ξ21(0)ρ̃] + (1/2)[(ξ

2
1(0)−

ξ22(0)ρ
2)Q−1 − (ξ22(0)− ξ21(0)ρ̃

2)]}

Thus, for example,

F (1) < 0 if
J
ξ21(1)− ξ22(1)

o D
Qρ̃2 − 1i > 0.

Using Qρ̃2 = r2 < 1 it follows that

F (1) < 0 if
J
ξ21(1)− ξ22(1)

o
< 0.

Proof of Lemma 8. Take part (1), which states that Condition P implies Intrinsic
Heterogeneity. We will establish that (i) for each α, ∃n∗1(α) ∈ Nα uniquely, (ii)
∃ {α(s)}s s.t. α(s)→∞⇒ n∗1(α(s))→ n̂1 where n̂1 ∈ N∞ ≡ {n1 ∈ [0, 1] : for α →
∞ n1 = Tα(n1)} and (iii) F (n̂1) = 0.
Claim (i) that there exists a unique fixed point n∗1(α) for each α comes directly

from Theorem 6.

Claim (ii) is that there is a sequence of α’s indexed by s defined so that as
α(s)→∞ the corresponding sequence of fixed points from claim (i) n∗1(α(s))→ n̂1.
That there exists a sequence α(s)→∞ and a similarly corresponding sequence n∗1(α)
follows from claim (i) and since α ∈ R+ there are infinitely many such sequences.
Theorem 6 used Brouwer’s theorem and Lemma 5 to establish that there exists a
unique fixed point for each α. Hence there exists a limit to the sequence of fixed
points indexed by s and define it to be n∗1(α(s))→ n̂1. By construction, n̂1 ∈ N∞.
Claim (iii) is that F (n̂1) = 0. Assume n̂1 ∈ N∞, Condition P, and F (n̂1) W= 0. It

follows that F (n̂1) > 0 or F (n̂1) < 0. Recall, n1(α) = Hα(F (n1)). By definition, as
α→∞

Hα(x)→
 1 if x > 0

0 if x < 0
1/2 if x = 0

So we have n∗1(α) → n̂1 ∈ {0, 1}. But, assuming Condition P implies F (1) < 0 and
F (0) > 0. Hence, n̂1 is not an ME which contradicts our initial assumption. It must
be the case that, with Condition P, F (n̂1) = 0.
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Note now that Lemma 5 establishes n̂1 is the unique point where F (n̂1) = 0.
Thus, we conclude that Condition P implies n∗1(α)→ n̂1 where F (n̂1) = 0.

A similar argument establishes parts (2) and (3) of the proposition. Note that
Condition P1 implies F (1) > 0 and F (0) > 0 and Condition P0 has F (1) < 0 and
F (0) < 0. The monotonicity of F means that ∀n1,α F (n1(α)) W= 0 and the result
follows immediately from above.
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Figure 1:  T-map for various values of α and f =2. 
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Figure 2.  T-map for various values of α and f=2 for the case of no Intrinsic Heterogeneity and 
predictor 1 homogeneity. 
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Figure 3.  T-map for α=2000 and f=.5,1,2,5,10,20 for the case of Intrinsic Heterogeneity.  Note 
that as f increases the fixed point of the T-map. 
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Figure 4.  Real-time learning simulations. 
 

 

 

 

 

 

 

 

 

 

 

 

 


