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Abstract

A pervasive literature documents the potential downfall for cointe-
gration methodology when the underlying relationships are long memory
variables. In particular, cointegration procedures such as those proposed
by Johansen (1988) and Engle and Granger (1987) can fail in at least three
ways. First, one may fail to find cointegration when it in fact exists. Sec-
ond, one may fail to find the correct cointegrating relationship. Third,
cointegration tests may find an equilibrium relationship when none exists.
To our knowledge, no existing study considers each of these potential fail-
ures using a common methodology. In this paper, we use Monte Carlo
methodology to tie together the existing literature by considering all three
cases in one study. We are able to show that the problems are severely ex-
acerbated should the individual variables or equilibrium relationships be
distributed as long memory processes. We further extend the literature
by considering a new class of long memory models that allows for periodic
movement in the autocorrelation function of data, namely the GARMA
model. We are able to show that cointegration methodology suffers from
many of the same concerns under this framework, albeit less problems
exist when estimating cointegrating vectors. The GARMA model allows
cyclical long memory, and it shown that the introduction of this type of
model has important implications for long memory models unavailable
with existing models. In particular, we extend the analysis of Baillie
and Bollerslev (1994) to show that a collection of nominal exchange rates
are individually I(1) but share a long memory component that dissipates
at a cyclical rate. Johansen cointegration fails to find a connection and
fractional cointegration produces connection that is not non-stationary.
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1 Introduction

An important strain of modern empirical macroeconomics is the question of
whether or not important economic variables are bound together by an equi-
librium relationship. The methodology of detecting equilibrium relationships
in macroeconomics was fundamentally changed with the seminal work of Engle
and Granger (1987). The detection of unit roots in time series data has led
to an abundance of studies using the techniques of cointegration. According
to the definition of Engle and Granger, two variables that are integrated of
order d are cointegrated if there exists a strictly positive value b such that a
linear combination of these variables are integrated of order d-b. Generally
speaking, cointegration seeks to find linear combinations of variables that re-
duce the variance of the individual series. In the vast majority of cases, it is
assumed that d=b=1, and the researcher attempts to determine if linear com-
binations of infinite variance unit root processes create a finite variance series.
The two most commonly employed procedures for detecting cointegration are
the univariate regression techniques of Engle and Granger (1987) and the full
system’s approach of Johansen (1988) and Johansen and Juselius (1990). These
procedures are generally employed under the assumption that d=b=1.
Recent research has questioned the assumption that economic data satisfy

the property that d=b=1. A proliferation of research has suggested that many
economic variables and their equilibrium relationships exhibit characteristics
that are more consistent with long memory. A long memory process has the
characteristic that the correlation of a variable with itself over time decays very
slowly; in other words, the autocorrelation function of a long memory process
typically decays at a hyperbolic rate. In particular, a long memory process is
one in which the autocovariances of the process are not absolutely summable.
Alternatively, the notion of long memory can be expressed in the frequency do-
main by noting that the spectrum of a long memory process is unbounded for
some frequency between 0 and π. Granger and Joyeux (1980) and Hosking
(1981) popularized the notion of long memory with their paper on fractional
processes (ARFIMA processes). A long memory ARFIMA process must be dif-
ferenced d times, where d can take on non-integer values, to achieve a stationary
ARMA process. The long memory ARFIMA process also has the property that
its spectrum in unbounded at the origin. The notion of fractional integration
has proven to be quite important in modelling macroeconomic data and their re-
lationships. In particular researchers have used fractional models to study inter-
est rates (Barkoulas, Baum, and Oguz (2001), Baum and Barkoulas (2002), and
Dueker and Startz(1998)), aggregate output (Diebold and Rudebusch (1989)
and Sowell (1992)), inflation (Baillie, Chung, and Tieslau (1996)), unemploy-
ment (Diebold and Rudebusch (1989)), monetary aggregates (Barkoulas, Baum,
and Caglayan (1999) and Bae and Jensen (1999)), and exchange rate dynamics
(Cheung and Lai (1993), Cheung (1993), Baillie and Bollerslev (1994), Diebold,
Husted, and Rush (1991)). An alternative long memory model is the k-factor
GARMA model, which was first studied by Woodward et. al. (1998) and
more recently by Smallwood and Beaumont (2002). The k-frequency GARMA
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model generalizes the fractional model by allowing asymmetric periodic decay
in the autocorrelation function of data. Arteche and Robinson (2000) suggest
that the GARMA model may be quite important for studying variables with
highly dependent seasonal characteristics, and it is likely a better alternative
than seasonal differencing. Baum, Barkoulas, and Oguz (2001) suggest that
the equilibrium relationship between international interest rates has properties
that are more consistent with a GARMA model as compared to a fractional
one. Baillie and Bollerslev reach the same conclusion when analyzing equilib-
rium relationships between nominal exchange rates. The GARMA model has
been used to successfully model inflation rates (Chung (1996 b) and Arteche and
Robinson (2000)), real interest rates (Smallwood and Norrbin (2002)), the error
correction mechanism for interest rates (Ramachandran and Beaumont(2001)),
and financial aggregates (Smallwood and Beaumont (2002)).
Given the abundance of research in the area of long memory, one may nat-

urally challenge the usefulness of existing cointegration tests if the underlying
variables and/or the equilibrium relationships among variables, are long mem-
ory. Cheung and Lai (1993) have demonstrated through limited Monte Carlo
analysis that the Engle-Granger procedure has low power if the underlying equi-
librium relationship among I(1) variables is distributed as a fractional process.
Andersson and Gredenhoff (1999) show the Johansen procedure yields an ex-
tremely biased estimate of the components of a fractional error correction mech-
anism when the equilibrium relationship is distributed as a fractional process.
Elliott (1998) demonstrates analytically that the Wald test associated with the
null hypothesis that the cointegrating vector takes on a certain form does not
have the typical chi square distribution if at least one variable in the system has
a first order autoregressive coefficient that is marginally less than one. On the
other hand, Gonzalo and Lee (1998; 2000) demonstrate analytically that the Jo-
hansen procedure is flawed for detecting cointegration among certain unrelated
fractional processes. In particular, they show that under certain models, the
Johansen test statistic for the null of no cointegration diverges as the sample
size grows. In this vein, it is clear that cointegration tests can fail in three
basic ways. First, cointegration tests may fail to find cointegration when the
variables and particularly equilibrium relationships are long memory. Second,
even when cointegration is correctly found, the research of Andersson and Gre-
denhoff suggests that inference regarding a particular cointegrating vector can
be influenced by the presence of long memory components. Finally, the work
of Gonzalo and Lee suggests that it is possible to find equilibrium relationships
when in fact none exist.
In this paper we use Monte Carlo analysis to demonstrate the potential fail-

ure of existing cointegration tests. In particular, and unlike previous research,
we consider each of the ways in which cointegration tests can fail using a common
methodology. We also consider the use of Johansen’s likelihood ratio test in re-
gards to inference about a particular cointegrating vector. Finally, we consider
the properties of inference for cointegration tests under a more general notion of
long memory; in particular, we introduce the GARMA model and present the
small sample properties of existing cointegration tests. Finally, to demonstrate
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that the GARMA model is more than a theoretical curiosity, we present several
examples of existing economic data that likely have properties that are quite
well described by the GARMA model. We find that cointegration tests can fail
when the underlying process and/or equilibrium relationships are long memory.
This failure can result in any of the three scenarios described above. When in-
terest lies in a particular cointegrating vector, we show that cointegration tests
very rarely find cointegration with the correct cointegrating vector. Further,
we demonstrate that Gonzalo and Lee’s notion of spurious cointegration applies
to GARMA processes as well. In addition, we show that the GARMA model
fits several variables quite well including the nominal euro-dollar exchange rate,
and the equilibrium relationship among a group of nominal exchange rates.
The rest of the paper is organized as follows. In section 2, we present

the k-frequency GARMA model and its special cases, the GARMA model and
the ARFIMA model. We demonstrate that existing economic data is quite
well described by the GARMA model. In section 3, we present the Monte
Carlo results for all three cases described above. We concentrate on those
processes that most likely result in failure of cointegration tests and unit root
tests. Section 4 presents concluding remarks and ideas for future research.

2 Long Memory Processes

There are several classes of long memory processes considered here. We are
particularly interested in analyzing fractional and k-frequency GARMA models.
The best way to introduce the properties of k-frequency GARMA models is to
show how they generalize ARIMA, ARFIMA and ARMA models. Consider first
the process

φ(L)(1− L)d(xt − µ) = θ(L) εt. (1)

where φ (L) and θ (L) are polynomials in the lag operator L such that φ (z) = 0
and θ (z) = 0 have roots outside the unit circle and {εt} is a white noise distur-
bance sequence. The model reduces to an ARMA model when the differencing
parameter d = 0 and to an ARIMA process when d = 1. ARFIMA models
are stationary for d < 1

2 and mean-reverting for d < 1 so when
1
2 < d < 1 we

get the interesting result that the process is nonstationary yet mean-reverting.
Granger and Joyeux (1980) show that the autocorrelations, ρk, for an ARFIMA
process for large k and d < 1

2 are given by the following approximation

ρk '
Γ(1− d)
Γ(d)

k2d−1, (2)

from which the monotonic, hyperbolic decay of the autocorrelation function can
be seen. Further, it is well known that the spectrum behaves like ω−2d as ω → 0.
In particular, the spectrum is unbounded at the origin. In contrast, for ARIMA
processes, the spectrum behaves like ω−2, while the theoretical autocorrelations
are 1 at all time horizons (Granger and Joyeux (1980)).
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Long memory models differ from ARMA models in several important re-
spects. As seen above, for the classes of ARFIMA and ARIMA models, the
spectrum is unbounded at the origin. The spectral density function for sta-
tionary ARMA models is bounded at all frequencies. Further long memory
processes, as described above, have the characteristic that their autocovariances
are not absolutely summable (c.f. McLeod and Hippel (1978)). On the other
hand, stationary ARMA processes have autocorrelations that decay at a ge-
ometric rate to zero. Because of these properties, and given the fact that
ARFIMA models can often capture the statistical properties of a variable in a
more parsimonious manner than ARMA models, ARFIMA models have been
successfully used in many disciplines as referred to above. The success of
ARFIMA processes in modelling economic and financial time series has been
very well documented (c.f. Baillie (1996)), and therefore, we will not consider
estimation of these models in this section.
The k-frequency GARMA model generalizes the ARFIMA model, by allow-

ing for periodic or quasi-periodic movement in the data. The multiple frequency
GARMA model is defined as follows.

φ(L)
kY
i=1

¡
1− 2ηiL+ L2

¢di
(Xt − µ) = θ(L) εt (3)

where the parameters ηi provide information concerning the periodic movement
in the data, and again all roots to φ(z) = 0 and θ(z) = 0 lie outside the unit
circle. If there exists a single value ηj = 1, then the model has a fractional
component as described above. This model was initially proposed by Gray et.
al. (1989). Recently, Artche and Robinson (2000) consider a semiparametric
approach to estimating the above model, while Smallwood and Beaumont (2002)
calculate the statistical properties of the time domain quasi maximum likelihood
estimator. In this paper, we place particular interest on the case where k=1.
The single frequency GARMA model, or more simply the GARMA model, has
been studied extensively by Chung (1996 a and b) and Ramachandran and
Beaumont (2001).
For a single frequency GARMA model, when η = 1, the model reduces to an

ARFIMA(p, 2d, q) model, and when η = 1 and d = 1
2 , the process is an ARIMA

model. Finally, when d = 0 we get a stationary ARMA model. The GARMA
model is stationary when |η| < 1 and d < 1

2 or when |η| = 1 and d < 1
4 (see

Gray et. al., 1989). The model exhibits long memory when d > 0 and is anti-
persistent when d < 0. Note that the polynomial (1− 2ηz + z2) = 0 has a pair
of complex conjugate roots with length one. Chung (1996 b) calculates the
spectral density function and shows that for d>0, the spectral density function
has a pole at υ = cos−1(η), which ranges from 0 to π. Further, Chung shows
that for large k, the autocorrelation function ρk for a GARMA(0,0) model with
|η| < 1 and 0 < d < 1

2 can be approximated as

ρk ≈ K∗ cos(k υ) k2d−1 (4)

where K∗ does not depend upon k. This expression makes clear the hyperboli-
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cally damped sinusoidal pattern of the autocorrelation function of a stationary
GARMA model with |η| < 1. Note that the autocorrelation function will decay
symmetrically about zero in this case.
The GARMA model may prove to be an important long memory model in

that it relaxes several aspects of the ARFIMA model. First, it is clear that the
GARMAmodel allows for more diversity in the covariance structure of a variable
witnessed both through the autocorrelation function and the spectral density
function. Further, the GARMAmodel is stationary for a large class of processes.
For example, let xt and yt be stochastic sequences defined as (1-L)

2∗.4xt = ε1t
and (1-2*.9995L+L2).4xt = ε2t, where ε1t and ε2t are unrelated martingale
difference sequences.1 These models are nearly identical from a parametric
standpoint. In fact, the second model has a cycle of over 196 periods. However,
by relaxing the assumption that η = 1, the second model is in fact covariance
stationary, while the first is non-stationary. One of the primary objectives of
this paper is to analyze how the relaxation of this assumption affects inference
as related to the standard cointegration tests the modern econometrician has at
their disposal.
As already alluded to, the GARMA model and its generalization, the k-

frequency GARMAmodel, has already been used to successfully model inflation,
the real interest rate, financial aggregates, and equilibrium among international
interest rates. However, the GARMA model is a relatively new tool, and as
such, has not been as widely applied as the ARFIMA model. In the following
subsection, we demonstrate that the GARMA model can be used to successfully
model the nominal euro dollar exchange rate and the equilibrium relationship
among several nominal interest rates as studied in Baillie and Bollerslev (1994).

2.1 Empirical Applications of the GARMA Model

In this subsection, we analyze several important macroeconomic series and show
that the GARMA model captures the statistical properties of these variables.
In particular, we are able to show that the GARMA model captures important
cyclical components of the daily euro-dollar exchange rate, and the model also
captures important periodic movement in the equilibrium relationship between
seven nominal exchange rates. In addition, for each of these scenarios, we
show that the ARFIMA model is inappropriate and can result in particularly
misleading conclusions. For example, and as alluded to below, we demonstrate
that when an ARFIMA model is fit to the equilibrium relationship between the
nominal exchange rates described below, the result is a non-stationary process
with an estimated value of d equal to approximately .92. In contrast, the
estimated GARMA model is significantly stationary, and further, we are able
to reject the null hypothesis that the underlying process is distributed as an
ARFIMA process when the GARMA alternative is considered.

1The first model has been written as such to highlight the fact that when η = 1 for a
GARMA model, the result is an ARFIMA model where the differencing parameter, d, is
multiplied by 2.
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The data for the nominal euro exchange rate are taken from the Federal
Reserve Board. The data are daily noon buying rates in New York, and the
sample runs from December 1, 2000 to August 2, 2002. We therefore have a
moderately large sample consisting of 419 observations. To estimate the model
we use a constrained sum of squares that exploits the varying convergence rates
of the parameters of the GARMA model. Technical details can be found in
Smallwood and Norrbin (2002), and we thus omit most of the details. The
standard errors are calculated using the distributions found in Chung (1996 b).
It should also be noted that the asymptotic distribution of η is non-standard, and
the convergence rate is T or T 2, depending on whether or not η is less than one.
We further note that under the assumption of normality in the residuals, there
are at least two ways to determine if the underlying process is “significantly”
GARMA. Recall that if η = 1, the model reduces to an ARFIMA model, and
for better results, such a model should be estimated. First, one can test this
restriction by looking at the asymptotic confidence intervals associated with η.2

If the value of unity lies outside the 95% confidence interval for the estimated
value of η, then one can reject the null hypothesis that η = 1. Conversely, one
can obtain the sum of squared errors from a restricted model (the ARFIMA
model) and compare them to the sum of squared errors from an unrestricted
(the GARMA model). Under normality of the residuals, the standard Wald
test can be constructed.
Before we consider estimation of a GARMA model, first consider the first

300 autocorrelations of the log of the nominal euro-dollar exchange rate, which
are depicted in figure 1. The figure also depicts the 95% confidence intervals
associated with the autocorrelations, which appear above and below the as-
sociated autocorrelations. The most glaring aspect of the figure is the clear
cyclical correlation structure. Casual visual inspection of the figure indicates
the existence of a cycle lasting between 170 to 200 days. The results of GARMA
estimation, which are reported in table 1, confirm these results.3 The estimated
value of η is equal to .99947. This corresponds to a cycle of about 193.40 peri-
ods. As seen in table 1, the results indicate that the 95% confidence interval of
η does not contain the value 1.4 Further, the p-value associated with the null
hypothesis that the underlying process was generated from an ARFIMA model
versus the alternative of a GARMA model is .0197. We should further note
that the estimated value of d (.4759) is within two standard deviations of .5
(the boundary for non-stationary processes). Together these results allow us to
conclude that the GARMA model provides a superior in-sample fit relative to

2Chung (1996 a) shows that the asymptotic distribution of η converges at either rate T
or rate T2 to various quotients of integrals of Brownian motion processes. Chung reports
simulated asymptotic confidence intervals both for the case |η| < 1, and |η| = 1.

3We considered various criteria for selection of p and q (the number of autoregressive
and moving average components). In all cases, the various information criteria, including
the Schwarz Bayesian Information Criterian and the Akaike Information Criterian, selected
p=q=0.

4We have reported the 95% confidence interval associated with the hypothesis that |η| = 1.
The 95% confidence interval associated with the hypothesis that |η| < 1 is [.9990,.9999], and
hence does not contain the value of unity either.
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Figure 1:

the ARFIMA model. The estimated value of d is within stationary ranges, but
application of the appropriate standard errors indicates that a non-stationary
GARMA model may also be appropriate.5

As a second application, we consider the equilibrium relationship among the
same nominal exchange rates studied by Baillie and Bollerslev (1994). In their
paper, they point out that the nominal exchange rates of Canada, Germany,
France, Italy, Switzerland, Japan, and the United Kingdom vis-a-vis the U.S.
dollar appear to have unit roots, although a linear combination found through
OLS appears to be distributed as a long memory variable with integration order
significantly less than 1. Although compelling, Baillie and Bollerslev are forced
to admit that their findings come with some caution, since the equilibrium
relationship, although mean-reverting, is itself non-stationary. Further, the
authors note that there appears to be a strong cyclical relationship among the
exchange rates that may well be described by a GARMA model. Given the
dearth of the literature at the time, the authors do not consider estimation of
this model.
We use the same exchange rates considered by Baillie and Bollerslev, al-

though we update their sample. The data come from the St Louis Federal
Reserve Board (FRED) and are daily buying rates at noon in New York. The
sample extends from January 2, 1990 to December 31, 1998. This gives us a
total of 2,264 observations. Figure 2 depicts the first 500 autocorrelations of
the German DM. The figure displays the linear decay typical of a unit root

5To further validate these results, we applied the following linear filter to the log of the
nominal eurodollar exchange rate:
(1-2∗.99947L+ L2).2.
Note, in this case, differencing the data is inappropriate, since the value of η 6= 1. The

results are nearly identical to the ones reported in table 1.
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Figure 2:

process. The remaining exchange rates produce similar pictures; these figures
are omitted for reasons of space.
Unit root tests were run on each of the exchange rates described above. In

particular, we consider both an Augmented Dickey Fuller (ADF) test (1979) and
a Kwiatkowski-Phillips-Schmidt-Shin (KPSS, 1992) test. The null hypothesis
of the ADF test is a unit root, while the KPSS has a stationary null. In every
case, we fail to reject the null hypothesis for the ADF test, while we reject the
null for the KPSS test. As further evidence, we fit a GARMA (0,0) model to
each of the exchange rates, and in no case could we reject the null hypothesis
that η = 1 and d = .5. Thus, the individual exchange rates may well be
described as unit root processes. As a benchmark for cointegration, we also
ran the Johansen cointegration test. The results were quite robust, and we
were never able to reject the null hypothesis of 0 cointegrating relationships.
For example, when an intercept was included in the cointegrating relationship,
the trace statistic associated with the null of 0 cointegrating relationships was
92.33, while the maximum eigenvalue statistic achieved a value of 43.33. The
5% critical values are 124.24 and 45.28 respectively, and hence our failure to
reject.
Baillie and Bollerslev conjecture that Johansen’s procedure is unable to

capture equilibrium relationships should the cointegrating relationship be dis-
tributed as a long memory process. They run OLS, using the German DM as
a dependent variable.6 We consider the same methodology, and regress the log

6Cheung and Lai (1993) are among the first to show that if the errors from such a cointe-
grating regression are distributed as long memory fractional processes, the regression results
in parameters that are indeed consistent. However, the limiting distribution is not standard,
and the convergence rate depends on the unknown differencing parameter. Marinucci and
Robinson (2001) show that if the errors in such a cointegrating regression are distributed
as fractional processes, then frequency based regression analysis also results in consistent
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Figure 3:

of the DM on a constant and the log of the remaining six exchange rates. The
first 500 autocorrelations of the residuals from such a regression are depicted in
figure 3. These autocorrelations stand in stark contrast to the autocorrelations
depicted in figure 2 and suggest that the equilibrium relationship may best be
defined by a GARMA model. The estimation results for the residual series
are depicted in table 2. The results are quite strong and clearly suggest that
the GARMA model fits the data well. In particular, the estimated value of η
(.99957), while close to 1, is significantly less than 1. Furthermore, the p-value
associated with the null of an ARFIMA process is .000011, clearly indicating
that the null of an ARFIMA process can be rejected in favor a GARMA model.
In addition, the estimated value of η corresponds to a cycle of roughly 214.13
days. This is consistent with the autocorrelations of figure 3. Finally, we
point out that the estimated value of d (.4554) is significantly less than 1

2 . The
evidence here clearly suggests that the 7 nominal exchange rates are individu-
ally non-stationary, but that at least one linear relationship exists such that the
cointegrating error is stationary. This stands in contrast to both the Johansen
cointegration test as described above, where no cointegration could be found,
and the results of ARFIMA estimation. An ARFIMA model applied to the
residuals resulted in an estimated value of d that is equal to .92. Thus, the
evidence from fractional cointegration techniques would yield results suggesting
that the equilibrium relationship is non-stationary. The implications of this
result are quite disparate from the results found from GARMA estimation.

estimates albeit to a non-standard distribution. To our knowledge, no research has been
conducted in the case where the residuals are distributed as GARMA processes.
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3 Monte Carlo Results

A pervasive literature dealing with the potential for long memory among vari-
ables with equilibrium relationships has emerged in the past decade. The vast
majority of this literature has dealt with ARFIMA processes. As alluded to in
section 2, there are interesting economic processes that appear to be better de-
fined by models that accommodate periodic or quasi-periodic movement. The
results of section 2 and the existing literature also suggest that many variables
under question are distributed as near I(1) processes. However, anecdotal ev-
idence, such as the example related to nominal exchange rates above, suggests
that treating these variables and or their equilibrium relationships as strictly
I(1) or I(0) variables can lead to the incorrect conclusion regarding equilibrium
relationships. Furthermore, as suggested by Anderrson and Gredenhoff (1999),
misspecification of the underlying equilibrium relationship can affect inference
regarding the parameters of an error correction model.
In this section, we more fully consider the implications of misspecification

on cointegration tests using extensive Monte Carlo analysis. We are primarily
concerned with three cases. First, as evidenced above, it is plausible that a vec-
tor of I(1) variables has an equilibrium relationship that is defined as either and
ARFIMA or GARMA process. Second, the strong GARMA affects and the po-
tential for non-stationarity in the euro-dollar nominal exchange rate bring into
question the use of cointegration techniques. It should be noted that for small
samples, Ramachandran and Beaumont (2001) document the low power of the
Dickey-Fuller procedure for near unit root GARMA processes. Thus the second
case involves detecting equilibrium relationships among various long memory
processes, which can be described as near unit root processes. The final case
involves the use of cointegration techniques among long memory variables when
no equilibrium relationship exists. Our findings suggest that cointegration tech-
niques can often lead to misleading results supporting the anecdotal evidence
often cited in the long memory literature regarding cointegration. These results
also apply to many GARMA processes, where the relaxation of the assumption
η = 1, can have important consequences as documented above.

3.1 I(1) Variables with Long Memory Equilibrium Rela-
tionships

In the section, we review the problems that occur with cointegration testing
when two I(1) variables share an equilibrium relationship that is itself a long
memory process. We will place particular emphasis on the region in which
cointegration tests fail. We are also interested in extending the analysis of An-
dersson and Gredenhoff (1999) to evaluate how inference regarding a particular
cointegrating vector is affected when the equilibrium relationship is distributed
as a long memory variable. Theoretically, the Johansen cointegration test at-
tempts to find maximum canonical correlations between the residuals of certain
VAR equations. Let yt denote an n×1 vector of strictly I(1) variables, ut the
residuals from ∆yt regressed on (p − 1) lags of itself and potentially a con-
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stant/trend, and let vt denote the residuals from yt−1 regressed on (p− 1) lags
of ∆yt and perhaps a constant/trend. The canonical correlations are formed
from the eigenvalues of the following matrix:

Σ̂−1vv Σ̂vuΣ̂
−1
uuΣ̂uv, (5)

where Σ̂vv denotes the variance covariance matrix of vt, with similar notation
for the remaining variance covariance matrices. If there exists r<n eigenvalues
from the above matrix that are “large” in magnitude, then this signifies the
existence of a reduced rank regression, which can represented in vector form as
follows:

∆yt = δ +

p−1X
j=1

Φj∆yt−j + βα0yt−1 + et, (6)

where β and α are n×r matrices with rank strictly equal to r. In this case, α is
said to the matrix of cointegrating vectors, and β denotes a matrix of coefficients
describing the speed of reversion to equilibrium. The above equation is known
as the error correction representation of a cointegrated system.
Often, researchers are interested in a particular form for α. For example, in

the purchasing power parity literature, researchers have sought a cointegrating
vector of [1 -1 1]0 between the nominal domestic price of a foreign currency, the
domestic price level, and the foreign price level. The form of the cointegrating
vector has also been important in studying foreign market efficiency (c.f. Nor-
rbin and Reffett (1996) and Zivot (2001)), the Fisher hypothesis (c.f. Lewis and
Evans (1995)), and real interest rate parity (c.f. Goodwin and Grennes (1994))
along with numerous other applications. One perceived advantage of the Jo-
hansen procedure is the ability to implement tests regarding the cointegrating
vector. In particular, for the case n=2 and r=1, suppose that one wishes to
test the hypothesis that the cointegrating vector α = D. Then from above, the
matrices Σ̂vv, Σ̂uv, and Σ̂vu are replaced with the following elements:

Σ̃vv = D0Σ̂vvD (7)

Σ̃uv = Σ̂uvD, Σ̃vu = Σ̃
0
uv.

Canonical correlations are constructed with the new elements in precisely the
same way described above. From these values, one can construct a likelihood
ratio test that the true cointegrating vector is given by D. Given that the test
involves only stationary values, the distribution of the test statistic is χ2(1) (see
Hamilton, 1994 for details).
The Engle-Granger (1987) methodology, on the other hand, is based on

the fact that linear combinations of n I(1) variables are I(0) if and only if
cointegration exists. Engle and Granger show that if indeed such a linear
combination exists, the cointegrating relationship can be estimated consistently
using ordinary least squares (OLS). A unit root test can then be applied to the
residuals to determine if cointegration indeed exists. Further, Hamilton (p 603,
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1994) suggests using either a standard t or F-statistic to test hypothesis about
the true value of a cointegrating vector if the residuals from the unit process in
a triangular representation are unrelated to the residuals from the cointegrating
relationship.
For this experiment, we generated sample sizes of 100, 200, and 500 ob-

servations. In each case two unit root processes, xt and yt were generated
such that xt-yt produced a series that was distributed as a long memory pro-
cess.7 For each simulated series, we perform 5000 replications. Our goal is
to demonstrate that even when an equilibrium relationship is correctly found
among related variables, both the Engle-Granger and Johansen procedure fail
to isolate the correct equilibrium vector. As documented above, the vector of
interest is [1 − 1]0. For the Johansen procedure,8 we consider up to 4 lags in
the VAR equation in levels, while for the Engle-Granger procedure, we use the
augmented Dickey Fuller statistic and consider up to 4 lags for the ADF equa-
tion in difference form.9 To be conservative, we report the findings associated
with the number of lags that yield the most favorable results for the individual
tests. In this section, for example, we select the number of lags that minimizes
a general failure. A general failure occurs, in this section, when we either fail
to reject the null of no cointegration or we reject the null that the cointegrating
vector is [1− 1]0.
Table 3 presents the results for an equilibrium process defined as an ARFIMA

process, while table 4 presents the results associated with GARMA residuals.
For the sake of brevity, we report only the results for 200 observations. In
general, the rejection rates in table 3 for the Johansen procedure are quite
comparable to those reported in Andersson and Gredenhoff. In particular, when

7Following Cheung and Lai (1993), Andersson and Gredenhoff (1999), and Marinucci and
Robinson(2001), we generated an equilibrium relationship from the following bivariate system:
xt + 2yt = e1t
xt − yt = e2t,
where e1t is defined as a unit root process, and e2t is distributed as the long memory process

in question. To generate e2t with mean zero, we generate the autocovariances for either an
ARFIMA process (see Sowell (1992)) or the autocovariances for a GARMA process (see Chung
(1996 a). We then generate a T × 1 (T=100, 200, or 500) vector, εt of normal variates. Let
C denote the Cholesky factorization of the autocoviances. Then,
e2t = C εt.
Previous researchers have generated long memory data by expanding the infinite order

polynomials in L described in equations 1 and 3, and then truncating the polynomial for
the desired sample size. We considered both approaches, and determined that our approach
is superior in that it produces long memory data that more closely reflects the statistical
properties of the desired series. In addition, Woodward et. al. (1998) criticize the use of
truncation methods for GARMA models, suggesting that the Gegenbauer polynomials are
poorly approximated in finite samples. To generate non-stationary data, we generate a series
that is borderline non-stationary using the procedure described above, and then apply a linear
filter based on the appropriate Maclaurin series. We find this procedure provides better results
than the simple truncation method.

8There was very little disparity between the results using the trace statistic and the max-
imum eigenvalue statistic. In this section, we report the results for the maximum eigenvalue
statistic. Results for the trace statistic are available upon request.

9The critical values for the Engle Granger test were calculated using simulations of length
50,000.
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d < .6, the rejection rates are manageable. The Engle-Granger test results
in slightly higher rejection rates throughout. Further, it should be pointed
out that the rejection rates are small only for equilibrium relationships that
are themselves non-stationary. However, when one considers the use of a log
likelihood ratio statistic or t-statistic for particular cointegrating relationships,
the results are no longer acceptable. In particular, for d = .4, one is able
to reject the correct cointegrating relationship 53.68% and 78.76% of the time
using the LR test statistic and t-statistic respectively. This results in a general
failure of 55.06% and 78.76% respectively. As expected, the results are worse as
d→ 1. In addition the biases associated with the cointegrating vector worsen as
d→ 1, for both the Engle-Granger procedure and the Johansen procedure. In
particular, when estimating the cointegrating vector, α = [1,α2]0, the mean bias
from the Johansen procedure for α2 is 2.8008 for d=.9, while the Engle-Granger
procedure results in a mean bias of -0.7428.
In table 4, the results are slightly different than those of table 3. In partic-

ular, when the equilibrium relationship among two I(1) variables is distributed
as a GARMA(0,0) process, cointegration is rejected too often even for station-
ary processes. In addition, there is no discernible pattern about the nature
of the bias in the cointegrating vector using the Johansen procedure, although
the median bias tends to positive. In addition, the mean and median bias
are smaller than their counterparts in table 4. It is rather surprising to note
that for η < .996, the power of the Johansen procedure generally increases as d
approaches .5. For η > .996, the Johansen procedure performs poorly as d ap-
proaches .5. For all of the results, the Johansen procedure and Engle-Granger
procedure perform poorly as η approaches 1. For example, if the equilibrium
relationship is defined as a GARMA(0,0) model with η = .9995 and d=.45 (a
stationary process), the Johansen procedure fails to find cointegration with the
correct cointegrating vector with probability 0.9948, while the Engle-Granger
procedure fails with probability 0.9952. Unlike the system’s approach to coin-
tegration, the Engle-Granger procedure results in a discernible mean bias which
is negative and grows with both η and d. Finally, we should point out that
the results do improve for a sample size of 500, although the rejection rates
are considerably large when η > .996. In addition, inference regarding the
cointegrating vector can actually worsen for the Engle-Granger procedure.

3.2 Long Memory Variables with Long Memory Relation-
ships

In this section, we consider equilibrium relationships among non-stationary long
memory variables. The equilibrium relationships are themselves long memory,
and hence these results encompass the widely studied concept of fractional coin-
tegration. We are mainly interested in studying cointegration tests for variables
that are best defined as near unit root processes, processes that would typically
escape the scrutiny of a unit root test. We again employ a cointegrating vector
of [1,−1]0. We consider a system based on 100, 200, and 500 observations and
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again base our results on 5,000 simulations.10 The results for ARFIMA models
are reported in table 5. In the top row of each section of table 5, we report
the value of d for the original series in levels. The second column records the
value of d for the equilibrium residuals. We also consider equilibrium residuals
that are distributed as an AR(1) processes. For this example, we choose a
value of φ = 0.70. The results suggest that both the Johansen trace statistic
and the Engle-Granger ADF statistic have remarkable power in detecting an
equilibrium relationship among these series. For many simulations, the test
statistics reject the false null with probability 1. However, if interest lies in a
particular cointegrating relationship, the results of table 5 indicate that cointe-
gration tests can lead to quite dubious conclusions. For example, when d = .5
and the equilibrium relationship is defined as a stationary AR(1) process, the
Engle-Granger procedure results in a rejection of the proper cointegrating vec-
tor 43.96% of the time. In fact, the use of either method results in a general
failure that typically exceeds 50%. The exception to the rule occurs when the
Johansen trace statistic and accompanying likelihood ratio statistic are applied
to processes having an equilibrium relationship defined as an AR(1) process.
The associated results for the GARMAmodel are presented in tables 6 and 7.

Table 6 reports the cointegration results for the Johansen trace statistic, while
table 7 yields results for the Engle-Granger procedure. In both tables, the value
of η in the parent series is allowed to range from .995 to .999, while d is equal
to either .50 or .55. The equilibrium residual has the same value of η as the
parent series, while d is allowed to range from 0 to 0.40. When d = 0, the result
is again an AR(1) model with an autoregressive coefficient equal to 0.70. The
results indicate that the power to detect an equilibrium relationship decreases
as d and η increase. When the equilibrium relationship is indeed defined as an
AR(1) process, the results are quite favorable and suggests that the Johansen
trace statistic results in little size distortion. The results are poorest when the
equilibrium residuals are GARMA variables with a value of d=0.40. Here the
absolute value of the mean bias of the cointegrating relationship are generally
highest, and both high rejection rates and a large general failure result. For
example, when the parent series and residual series are distributed as GARMA
processes with η/d pairs given by (0.999,0.50) and (0.999,0.40) respectively, the
rejection rate of the null of no equilibrium relationship is 0.6370, while we reject
the null that the cointegrating relationship is equal to [1,−1]0 with probability
0.2940. This results in a general failure of 0.6072. The results associated with
the Engle-Granger test, which are reported in table 7, are significantly worse.
Here, we generally observe a negative bias associated with the second element of
the cointegrating vector, and we frequently reject the null of no cointegration.
Again, the results are worse as d and η increase. For example, for the same
case described above, the Engle-Granger procedure results in a general failure
95.30% of the time.

10We follow Marinucci and Robinson(2001) and first generate a non-stationary series xt.
We then generate a stationary series εt. The series yt is then generated as, yt = xt − εt.

15



3.3 Spurious Cointegration

We have already documented the poor performance of cointegration tests when
variables share an equilibrium relationship that is defined as a long memory
variable. Gonzalo and Lee (1998, 2000) consider cointegration tests among
certain unrelated fractional processes and show that the likelihood ratio test
statistic associated with the Johansen trace and eigenvalue statistic diverges to
+∞ as the sample size grows. In particular, when two unrelated fractional
processes are distributed as I(d) process with d > 1.5, the authors demonstrate
that the largest eigenvalue does not go to zero as the sample size grows. In
addition, they show that for 1 < d < 1.5, the true convergence rate associated
with the largest eigenvalue is less than the sample size (T ) resulting in a test
statistic that is too large when multiplied by T. Further, the authors show that
the nominal size of the Johansen tests is large for unrelated non-stationary, mean
reverting ARFIMA processes. They demonstrate these results in small samples
and show that the frequency of rejecting the true null of no cointegration among
unrelated ARFIMA processes in too large. In this section, we extend the results
of Gonzalo and Lee to include GARMA processes. In addition, we consider
several sample sizes, although here, we report only the findings for T = 200.
We use the same method described above to generate unrelated long memory

processes. Obviously, no equilibrium relationship exists, and hence we do not
report statistics associated with inference about the true cointegrating vector.
The results for unrelated ARFIMA processes are reported in table 8; the results
for the GARMA processes are reported in table 9.11 Our findings in table 8 are
quite comparable to those reported in Gonzalo and Lee, although we document
a slightly lower rejection rate for the Johansen test. In particular, we find that
the rejection rates are consistently higher than the theoretical size of 0.05. For
example, when two variables are distributed as unrelated fractional processes
with d = .5, the rejection rates of the Johansen test and Engle Granger test
are 0.5584 and 0.6702 respectively. It is not unsuspected that the rejection
rates are higher for small d. In every case, as documented by Gonzalo and
Lee, the rejection rates increase as the sample size increases. The common
sense explanation that is demonstrated theoretically by Gonzalo and Lee is
that the cointegration tests described here are based on the assumption that
the underlying variables are distributed as I(1) variables. If the underlying
variables are near unit root processes, the results indicate that a larger sample
size allows these tests to distinguish cointegrating residuals from I(1) processes.
It is also interesting to note that the best results occurred for a large number
of lags. This is again consistent with the findings of Gonzalo and Lee (1998).
The results of table 9 are again considerably worse than the results of table

8. This is not surprising, since the processes represented in table 9 are generally

11The results using the Johansen procedure for table 8 are associated with the Johansen
eigenvalue statistic, while the results of table 9 are based on the trace statistic. These
selections are made to coincide with the most favorable results for the cointegration tests (in
this case the test that yields the lowest rejection rates).
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stationary. Similar to table 8, the results generally improve as d grows, although
when η > .996, the Johansen procedure worsens as d grows, while the rejection
rates fall as η increases for a fixed value of d. We document a similar finding
for η. It is important to note, however, that the rejection rates are typically
unacceptable. This is especially true for the Johansen procedure, where even
when η = .9995 and d = .50, the resulting rejection rate is .4374. These two
unrelated GARMA processes are arbitrarily close to unit root processes. We
should point out that the Engle-Granger procedure outperforms the Johansen
procedure in every case documented in table 9. These results are similar to
those found in Gonzalo and Lee for unrelated fractional processes. Again, these
results do not improve asymptotically, as the rejection rates increase throughout
as we increase the sample size from 200 to 500.

4 Conclusion

In this paper, we aim to document the poor performance of existing cointe-
gration tests when the variables and equilibrium errors are distributed as long
memory processes. Although existing studies have considered the performance
of cointegration tests in this environment, we are unaware of any study that doc-
uments more than one problem with these tests in a single study. In addition,
we are unaware of any study that documents the performance of cointegration
tests among a more general class of long memory models than the ARFIMA
model. To this end, we use Monte Carlo analysis to document the perfor-
mance of cointegration tests when the underlying variables and or equilibrium
relationships are distributed as GARMA processes. The GARMA process may
be an important extension to the ARFIMA model and seems to capture the
statistical properties of several important macroeconomic variables better than
the ARFIMA model. In particular, we are able to show that the GARMA
model captures the properties of the euro-dollar nominal exchange rate quite
well. In addition, the equilibrium relationship among several important nomi-
nal exchange rates appears to be well defined by a GARMA model.
The main conclusion from this paper, simply put, is that if the underlying

variables or equilibrium errors are distributed as long memory processes, then
existing cointegration tests fail far too often. This failure results in one of
three ways as documented in section 3. First, the rejection rates of the null
of no cointegration are too low when an equilibrium relationship exists, but
the equilibrium errors are distributed as long memory processes. This is true
whether the original variables are I(1) processes or are themselves long memory
processes. Secondly, one too frequently rejects the correct cointegrating vector
under the same scenarios using conventional techniques associated with the
Johansen and Engle-Granger tests. If interest lies in detecting a particular
cointegrating relationship, these two cases suggest that existing cointegration
techniques may not be very useful. Finally, cointegration tests often detect
cointegration among unrelated long memory variables. This is especially true
for stationary GARMA processes that are near unit roots.
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Given the poor performance of the widely applied Johansen and Engle-
Granger procedures, research needs to be applied to new techniques. A promis-
ing research area has emerged in the area of fractional cointegration (c.f. Dueker
and Startz (1998), Marinucci and Robinson(2001), and Robinson and Yajima
(2002)). These techniques could likely be extended to GARMA processes. If
interest lies in detecting a particular cointegrating vector, then a natural method
is too individually estimate the parameters of the original processes. These es-
timates can then be compared to the estimates from the relationship one has
in mind. This suggests at least two avenues for future research. A semi-
parametric frequency based cointegration test could be developed for GARMA
processes along the lines of the estimator proposed for fractional processes by
Marinucci and Robinson. Finally, one could compare the results of direct esti-
mation of long memory processes and proposed equilibrium relationships with
the techniques described in this paper.
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Table 1: Estimation of Nominal Euro Rate
η d η̂ Lower CI η̂ Upper CI µ

Estimates 0.99947 0.4759 0.99918 0.99952 -.1040

Std Errors [0.0194] [0.0084]

OBS 419

Max CSS Value 1651.36

SSE 0.01851

Table 2: Estimation of Equilibrium Relationship
η d η̂ Lower CI η̂ Upper CI µ

Estimates 0.99957 0.4554 0.999560 0.999571 1.02e−12

Std. Errors [0.0084] [0.0008]

OBS 2264

Max. CSS Value 12010.383

SSE 0.0065

Table 3: Power of Johansen Cointegration Tests. I(1) Processes with Long
Memory Fractional Equilibrium Errors. Sample Size Equal to 200
d .40 .50 .60 .70 .80 .90 1.00
Johansen Test
Rej. Rate of Null 0.9850 0.8766 0.6000 0.2872 0.1128 0.0572 0.0536

Rej. Rate α0= [1,−1] 0.5368 0.5738 0.5596 0.5012 0.4254 0.3782 0.3560

General Failure 0.5506 0.6620 0.8136 0.9262 0.9792 0.9876 0.0536

Mean Bias α0 -0.0052 -0.0173 -0.1391 0.4216 0.8746 2.8008 N/A

Median Bias α0 -0.0019 -0.0019 -0.0007 0.0261 0.1499 0.6422 N/A

# of Lags in VAR 1 1 1 1 1 1 1

Engle-Granger
.40 .50 .60 .70 .80 .90 1.00

Rej. Rate of Null 0.9996 0.9790 0.8628 0.6052 0.2794 0.1146 0.0494

Rej. Rate α0= [1,−1] 0.7876 0.8632 0.9094 0.9322 0.9406 0.9588 0.9988

General Failure 0.7876 0.8674 0.9264 0.9642 0.9854 0.9974 0.0494

Mean Bias α0 -0.0113 -0.0162 -0.0318 -0.0846 -0.2375 -0.7428 N/A

Median Bias α0 -0.0065 -0.0107 -0.0249 -0.0688 -0.2388 -0.7108 N/A

# of Lags 0 0 0 0 0 0 0
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Table 4: Power of Cointegration Tests. I(1) Processes with Long Memory
GARMA Equilibrium Errors. Sample Size Equal to 200
Johansen Test d/η .990 .992 .994 .996 .998 .9995
Rej. Rate of Null .40 0.5854 0.3548 0.2254 0.1680 0.1172 0.0904

Rej. Rate α0 = [1,−1] .40 0.0086 0.0120 0.0142 0.0242 0.0482 0.1198

General Failure .40 0.4228 0.6562 0.7852 0.8448 0.9066 0.9506

Mean Bias α0 .40 -0.0095 0.0144 0.9412 -0.0180 0.0237 0.0808

Median Bias α0 .40 -0.0012 0.0003 0.0020 0.0010 0.0001 0.0112

# of Lags in VAR .40 4 4 1 1 1 1

.990 .992 .994 .996 .998 .9995
Rej. Rate of Null .45 0.7798 0.5074 0.2336 0.0740 0.0400 0.0514

Rej. Rate α0 = [1,−1] .45 0.0056 0.0072 0.0110 0.0208 0.0648 0.1608

General Failure .45 0.2254 0.4984 0.7746 0.9372 0.9780 0.9896

Mean Bias α0 .45 -0.0028 -0.0115 -0.0251 0.4960 -0.2025 -1.6575

Median Bias α0 .45 0.0007 0.0000 0.0004 0.0033 0.0193 0.0874

# of Lags .45 4 4 4 4 1 1

.990 .992 .994 .996 .998 .9995
Rej. Rate of Null .50 0.8962 0.7426 0.4606 0.1618 0.0364 0.0684

Rej. Rate α0 = [1,−1] .50 0.0040 0.0050 0.0070 0.0160 0.0440 0.2076

General Failure .50 0.1076 0.2614 0.5450 0.8458 0.9802 0.9948

Mean Bias α0 .50 -0.0088 -0.0157 -0.0221 0.0287 0.1814 0.9793

Median Bias α0 .50 0.0002 0.0000 0.0005 0.0038 0.0171 0.3358

# of Lags 4 4 4 4 4 1

Engle-Granger
d/η .990 .992 .994 .996 .998 .9995

Rej. Rate of Null .40 0.9286 0.7682 0.5502 0.4624 0.3444 0.2460

Rej. Rate α0 = [1,−1] .40 0.5028 0.5126 0.5430 0.5738 0.6326 0.7400

General Failure .40 0.5376 0.6178 0.7498 0.8080 0.8842 0.9528

Mean Bias α0 .40 -0.0563 -0.0581 -0.0637 -0.0707 -0.0816 -0.1078

Median Bias α0 .40 -0.0243 -0.0241 -0.0270 -0.0304 -0.0368 -0.0528

# of Lags in ADF eq. .40 4 4 0 0 0 0

.990 .992 .994 .996 .998 .9995
Rej. Rate of Null .45 0.9580 0.8352 0.4902 0.1284 0.0586 0.0408

Rej. Rate α0 = [1,−1] .45 0.5918 0.5994 0.6296 0.6490 0.6972 0.7852

General Failure .45 0.6056 0.6536 0.8062 0.9538 0.9856 0.9952

Mean Bias α0 .45 -0.1299 -0.1364 -0.1423 -0.1678 -0.2067 -0.2955

Median Bias α0 .45 -0.0530 -0.0572 -0.0646 -0.0723 -0.0926 -0.1495

# of Lags .45 4 4 4 4 0 0

.990 .992 .994 .996 .998 .9995
Rej. Rate of Null .50 0.9622 0.8830 0.6466 0.2136 0.0204 0.0138

Rej. Rate α0 = [1,−1] .50 0.6870 0.6966 0.7098 0.7442 0.7780 0.8394

General Failure .50 0.6946 0.7220 0.7930 0.9440 0.9954 0.9988

Mean Bias α0 .50 -0.2329 -0.2461 -0.2605 -0.3075 -0.3826 -0.5687

Median Bias α0 .50 0.1025 -0.1099 -0.1229 -0.1478 -0.1976 -0.3434

# of Lags 4 4 4 4 4 0
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Table 5: Rejection Rates of False Null of No Equilibrium Relationship among
ARFIMA processes. 200 OBS
Johansen Test d orig .90 .80 .70 .60 .50

d resid
Rej. Rate of Null .40 0.9986 0.9986 0.9972 0.9952 0.9988

Rej. Rate α0 = [1,−1] .40 0.8402 0.8162 0.8136 0.8144 0.8318

General Failure .40 0.8410 0.8172 0.8148 0.8174 0.8330

Mean Bias α0 .40 0.0032 0.0170 -0.0513 -0.0296 -0.1286

Median Bias α0 .40 0.0013 -0.0017 -0.0099 -0.0284 -0.0734

# of Lags in VAR .40 4 4 4 4 4

.90 .80 .70 .60 .50
Rej. Rate of Null .20 0.9992 0.9998 0.9994 0.9996 0.9996

Rej. Rate α0 = [1,−1] .20 0.8748 0.7910 0.7324 0.6936 0.6818

General Failure .20 0.8754 0.7912 0.7330 0.6940 0.6822

Mean Bias α0 .20 0.0017 0.0010 -0.0008 -0.0062 -0.0048

Median Bias α0 .20 0.0015 0.0015 0.0008 -0.0017 -0.0084

# of Lags .20 4 4 4 4 4

.90 .80 .70 .60 .50
Rej. Rate of Null AR 1 0.9998 0.9996 0.9996 1.0000 1.0000

Rej. Rate α0 = [1,−1] AR 1 0.0590 0.0566 0.0590 0.0674 0.0996

General Failure AR 1 0.0592 0.0570 0.0594 0.0674 0.0996

Mean Bias α0 AR 1 0.0002 -0.0002 -0.0034 -0.0401 0.0090

Median Bias α0 AR 1 0.0000 0.0000 -0.0001 -0.0002 0.0015

# of Lags AR 1 1 1 1 1 1

Engle Granger d orig .90 .80 .70 .60 .50
d resid

Rej. Rate of Null .40 1.0000 1.0000 1.0000 1.0000 1.0000

Rej. Rate α0 = [1,−1] .40 0.8416 0.8446 0.8488 0.8536 0.5838

General Failure .40 0.8416 0.8466 0.8488 0.8536 0.8538

Mean Bias α0 .40 0.0400 0.0176 0.0383 0.0852 0.1970

Median Bias α0 .40 0.0045 0.0103 0.0222 0.0482 0.1007

# of Lags in ADF Eq .40 0 0 0 0 0

.90 .80 .70 .60 .50
Rej. Rate of Null .20 1.0000 1.0000 1.0000 1.0000 1.0000

Rej. Rate α0 = [1,−1] .20 0.4566 0.4606 0.4664 0.4770 0.4896

General Failure .20 0.4566 0.4606 0.4664 0.4770 0.0390

Mean Bias α0 .20 0.0008 0.0023 0.0063 0.0162 0.1011

Median Bias α0 .20 0.0004 0.0009 0.0026 0.0070 0.0184

# of Lags .20 0 0 0 0 0

.90 .80 .70 .60 .50
Rej. Rate of Null AR 1 1.0000 1.0000 1.0000 1.0000 1.0000

Rej. Rate α0 = [1,−1] AR 1 0.4396 0.4804 0.5560 0.6800 0.8278

General Failure AR 1 0.4396 0.4804 0.5560 0.6800 0.8278

Mean Bias α0 AR 1 -0.0063 -0.0159 —0.0380 -0.0846 -0.1717

Median Bias α0 AR 1 -0.0008 -0.0025 0.0089 -0.0311 -0.1085

# of Lags AR 1 0 0 0 0 0
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Table 6: Power of Johansen Cointegration Tests. GARMA Processes with Long
Memory GARMA Equilibrium Errors. 200 OBS
Johansen Test d resid .40 .30 .20 .10 AR 1

η/d orig.
Rej. Rate of Null .995/.55 0.9756 0.9996 1.0000 1.0000 1.0000

Rej. Rate α0 = [1,−1] .995/.55 0.3800 0.2804 0.2088 0.1346 0.0692

General Failure .995/.55 0.4038 0.2808 0.2088 0.1346 0.0692

Mean Bias α0 .995/.55 -0.0181 0.0123 -0.0028 -0.0005 -0.0020

Median Bias α0 .995/.55 -0.0258 -0.0059 -0.0013 -0.0003 -0.0003

# of Lags in VAR .995/.55 1 1 1 1 1

.40 .30 .20 .10 AR 1
Rej. Rate of Null .997/.55 0.9070 0.9956 0.9998 1.0000 1.0000

Rej. Rate α0 = [1,−1] .997/.55 0.3418 0.2988 0.2334 0.1302 0.0492

General Failure .997/.55 0.4282 0.3032 0.2336 0.1302 0.0492

Mean Bias α0 .997/.55 0.0548 -0.0100 0.0021 -0.0008 0.0004

Median Bias α0 .997/.55 -0.0260 -0.0072 -0.0021 -0.0007 -0.0001

# of Lags .997/.55 1 1 2 2 1

.40 .30 .20 .10 AR 1
Rej. Rate of Null .999/.55 0.5358 0.8914 0.9916 1.0000 0.9998

Rej. Rate α0 = [1,−1] .999/.55 0.1358 0.0460 0.0484 0.0548 0.0590

General Failure .999/.55 0.5952 0.1546 0.0568 0.0548 0.0592

Mean Bias α0 .999/.55 0.0311 0.0014 0.0008 0.0005 -0.0002

Median Bias α0 .999/.55 0.0042 0.0015 0.0008 0.0004 0.0000

# of Lags 4 1 3 4 2

Johansen Test d resid .40 .30 .20 .10 AR 1
η/d orig.

Rej. Rate of Null .995/.50 0.9512 0.9988 1.0000 1.0000 1.0000

Rej. Rate α0 = [1,−1] .995/.50 0.3570 0.2828 0.1902 0.1200 0.0456

General Failure .995/.50 0.4036 0.2840 0.1902 0.1200 0.0456

Mean Bias α0 .995/.50 -0.4339 -0.0247 -0.0046 -0.0003 -0.0012

Median Bias α0 .995/.50 -0.0596 -0.0113 -0.0022 -0.0005 -0.0006

# of Lags in VAR .995/.50 1 1 2 2 1

.40 .30 .20 .10 AR 1
Rej. Rate of Null .997/.50 0.8982 0.9840 0.9998 1.0000 1.0000

Rej. Rate α0 = [1,−1] .997/.50 0.3134 0.2394 0.1994 0.1194 0.0486

General Failure .997/.50 0.4084 0.2550 0.1996 0.1194 0.0486

Mean Bias α0 .997/.50 0.1444 -0.0088 -0.0032 0.0001 -0.0005

Median Bias α0 .997/.50 -0.0304 -0.0106 -0.0033 -0.0011 -0.0002

# of Lags .997/.50 2 2 2 3 2

.40 .30 .20 .10 AR 1
Rej. Rate of Null .999/.50 0.6370 0.7922 0.9688 1.0000 1.0000

Rej. Rate α0 = [1,−1] .999/.50 0.2940 0.2394 0.1924 0.1316 0.0622

General Failure .999/.50 0.6072 0.4356 0.2252 0.1316 0.0622

Mean Bias α0 .999/.50 -0.1753 0.0185 0.0029 0.0011 -0.0004

Median Bias α0 .999/.50 0.0621 0.0127 0.0036 0.0011 0.0000

# of Lags 4 4 4 4 1
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Table 7: Power of Engle Granger Cointegration Tests. GARMA Processes with
Long Memory GARMA Equilibrium Errors. 200 OBS
Engle-Granger d resid .40 .30 .20 .10 AR 1

η/d orig.
Rej. Rate of Null .995/.55 0.7394 0.9996 1.0000 1.0000 1.0000

Rej. Rate α0 = [1,−1] .995/.55 0.8358 0.7218 0.5722 0.3410 0.4462

General Failure .995/.55 0.8934 0.7220 0.5722 0.3410 0.4462

Mean Bias α0 .995/.55 0.0123 -0.0034 -0.0046 -0.0044 -0.0081

Median Bias α0 .995/.55 0.0227 0.0017 -0.0014 -0.0018 -0.0036

# of Lags in VAR .995/.55 0 0 0 0 0

.40 .30 .20 .10 AR 1
Rej. Rate of Null .997/.55 0.5986 0.9992 1.0000 1.0000 1.0000

Rej. Rate α0 = [1,−1] .997/.55 0.8288 0.7370 0.5846 0.3256 0.4466

General Failure .997/.55 0.9118 0.7372 0.5846 0.3256 0.4466

Mean Bias α0 .997/.55 0.0056 -0.0017 -0.0029 -0.0031 -0.0066

Median Bias α0 .997/.55 0.0150 0.0030 -0.0001 -0.0010 -0.0031

# of Lags .997/.55 0 0 0 0 0

.40 .30 .20 .10 AR 1
Rej. Rate of Null .999/.55 0.5168 0.9988 1.0000 1.0000 1.0000

Rej. Rate α0 = [1,−1] .999/.55 0.6350 0.5314 0.4344 0.2834 0.4488

General Failure .999/.55 0.8064 0.5322 0.4344 0.2834 0.4488

Mean Bias α0 .999/.55 -0.0256 -0.0093 -0.0050 -0.0037 -0.0057

Median Bias α0 .999/.55 -0.0143 -0.0050 -0.0026 -0.0018 -0.0027

# of Lags 0 0 0 0 0

Engle Granger d resid .40 .30 .20 .10 AR 1
η/d orig.

Rej. Rate of Null .995/.50 0.7234 0.9992 1.0000 1.0000 1.0000

Rej. Rate α0 = [1,−1] .995/.50 0.8298 0.7224 0.5884 0.3856 0.4976

General Failure .995/.50 0.8908 0.7230 0.5884 0.3856 0.4976

Mean Bias α0 .995/.50 0.0068 -0.0104 -0.0104 -0.0095 -0.0171

Median Bias α0 .995/.50 0.0251 -0.0009 -0.0041 -0.0043 -0.0086

# of Lags in VAR .995/.50 0 0 0 0 0

.40 .30 .20 .10 AR 1
Rej. Rate of Null .997/.50 0.5748 0.9988 1.0000 1.0000 1.0000

Rej. Rate α0 = [1,−1] .997/.50 0.8074 0.7368 0.5898 0.3658 0.4888

General Failure .997/.50 0.9092 0.7368 0.5898 0.3658 0.4888

Mean Bias α0 .997/.50 -0.0077 -0.0085 -0.0076 -0.0072 -0.0142

Median Bias α0 .997/.50 0.0078 0.0000 -0.0023 -0.0030 -0.0071

# of Lags .997/.50 0 0 0 0 0

.40 .30 .20 .10 AR 1
Rej. Rate of Null .999/.50 0.4930 0.9950 1.0000 1.0000 1.0000

Rej. Rate α0 = [1,−1] .999/.50 0.8976 0.7962 0.6526 0.4164 0.4734

General Failure .999/.50 0.9530 0.7972 0.6526 0.4164 0.4734

Mean Bias α0 .999/.50 -0.0804 -0.0244 -0.0104 -0.0065 -0.0096

Median Bias α0 .999/.50 -0.0721 -0.0190 -0.0066 -0.0035 -0.0045

# of Lags 0 0 0 0 0
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Table 8: Rejection Rates of True Null Hypothesis of No Cointegration among
unrelated Fractional Processes
d .40 .50 .60 .70 .80 .90 1.00
Johansen Test
Rej. Rate of Null 0.9780 0.5584 0.2806 0.1392 0.0742 0.0746 0.0516

# of Lags in VAR 4 4 4 4 4 2 1

Engle-Granger
.40 .50 .60 .70 .80 .90 1.00

Rej. Rate of Null 0.8058 0.6702 0.5208 0.3334 0.1892 0.1050 0.0494

# of Lags in ADF 4 4 4 4 4 4 4

Table 9: Rejection Rate of True Null of No Cointegration Among Unrelated
GARMA Processes. Sample Size Equal to 200
Johansen Test d/η .990 .992 .994 .996 .998 .9995
Rej. Rate of True Null .40 0.8816 0.8134 0.7216 0.5404 0.3726 0.2046
# of Lags in VAR .40 4 3 2 4 4 4

.990 .992 .994 .996 .998 .9995
Rej. Rate of True Null .45 0.8362 0.7908 0.7126 0.6204 0.4820 0.3660
# of Lags .45 1 2 2 3 4 4

.990 .992 .994 .996 .998 .9995
Rej. Rate of True Null .50 .7994 0.7668 0.7178 0.6292 .5082 0.4374
# of Lags 1 1 1 2 4 4

Engle-Granger
d/η .990 .992 .994 .996 .998 .9995

Rej. Rate of False Null .40 0.7492 0.6318 0.5056 0.3338 0.1942 0.1184
# of Lags in ADF eq. .40 1 2 2 4 4 4

.990 .992 .994 .996 .998 .9995
Rej. Rate of False Null .45 0.4106 0.3304 0.2646 0.1714 0.0880 0.0462
# of Lags .45 1 1 1 2 4 4

.990 .992 .994 .996 .998 .9995
Rej. Rate of False Null .50 0.1482 0.1068 0.0916 0.0528 0.0372 0.0262
# of Lags .50 1 0 0 0 0 2
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