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1 Introduction

American option contracts are a well-known derivative product within modern financial mar-
kets. Written on a range of underlying assets including stocks, futures and foreign exchange
rates, the high usage of American options has made them the focus for a broad range of
derivative pricing literature. There exists a significant amount of evidence that stocks and
foreign exchange rates are better modeled by jump-diffusion process than pure diffusion pro-
cesses, including Jarrow and Rosenfeld (1984), Ball and Torous (1985), Jorion (1988), Ahn
and Thompson (1992) and Bates (1996). While Pham (1997) and Gukhal (2001) have ex-
tended the work of Merton’s (1973) jump-diffusion model for European option prices to the
American option case, each has done so using different techniques, and neither consider how to
implement their pricing equations in a practical sense. The purpose of this paper is to firstly
extend the incomplete Fourier transform method of McKean (1965) to the case of American
call options written on assets with jump-diffusion price dynamics. Using Kim’s (1990) sim-
plifications, we are able to reconcile this method with the results of Gukhal, and provide a
method of analysis that extends very naturally from Merton’s framework. We also present an
iterative numerical method that can be used to solve the resulting integral equation system

for both the American call’s price, and also its early exercise boundary.

The seminal works of Black and Scholes (1973) and Merton (1973) provided an arbitrage-
based means for obtaining the prices of European call and put options. In their analysis, it
is assumed that the underlying asset follows a diffusion process. This model was extended
to include American options by McKean (1965), who used incomplete Fourier transforms to
solve the Black-Scholes partial differential equation (PDE), obtaining an integral equation for
the price of an American call option, as a function of the unknown early exercise boundary for
the call, as well as a corresponding implicit integral equation for the free boundary itself. Kim
(1990) provided an alternative derivation method, based on the finite exercise date approach
of Geske and Johnson (1984). Kim showed that the limit of the Geske-Johnson technique as
the number of early exercise dates tends to infinity is equivalent to the findings of McKean. In

particular, Kim considered both American calls and puts, and demonstrated how to re-express



McKean’s integral equations in a more economically intuitive form. Carr, Jarrow and Myneni
(1992) also derive more economically intuitive forms for American put option prices, including

the early exercise premium decomposition put forward by Kim and Jarrow (1991).

Merton (1976) was the first to extend the Black-Scholes model to consider European options
on assets following jump-diffusion processes. He derived the jump-diffusion equivalent of the
Black-Scholes formula for European calls where the arrival times of the jumps followed a
Poisson distribution, and the distribution for the jump sizes was unknown. He assumed that
the risk associated with the jump term could be diversified away by the holder of the call
option. As a particular case, Merton considered the case where the jumps were log-normally

distributed, resulting in a natural extension of Black and Scholes’ results.

Pham (1997) was one of the first to expand the Merton jump-diffusion model to American
options. Using probability arguments, Pham derived the integral equation for the price of
an American put under jump-diffusion, along with an integral equation for the put’s free
boundary. Unlike Merton, he does not assume that the jump risk can be diversified away.
Performing analysis on these integral equations, Pham demonstrated that value of the Amer-
ican put under jump-diffusion is greater than that of an American put under pure diffusion,
and that the increased risk from the jump term makes the option holder more sensitive to
the decision of early exercise. Mullinaci (1996) also considered the American put option un-
der jump-diffusion. Using a discrete time model, Mullinaci finds the Snell envelope for the

American put option, resulting in a numerical technique for pricing the American put.

Another exploration of American options under jump-diffusion was presented by Gukhal
(2001). By extending the Geske-Johnson limiting technique of Kim to Merton’s jump-diffusion
model, Gukhal derived the integral equations for the prices of both American calls and puts,
along with the integral equations for their free boundaries. His results were for a general
jump-size distribution, and he also provided more specific equations in the case of binomial
and log-normally distributed jump sizes. In particular, Gukhal provided a very intuitive
decomposition for the prices of American options under jump diffusion. The first two com-

ponents, namely the European value and early exercise premium, were already familiar from



Kim’s pure diffusion results. The third component introduced by the presence of jumps was
identified as an adjustment cost made by the holder of the option when the underlying as-
set jumps from the stopping region back into the continuation region. This cost is incurred

because only jumps out of the continuation region will be self-financing.

While the results of Pham and Gukhal provide extensions of various American option pricing
techniques to the jump-diffusion case, no one seems to have extended McKean’s incomplete
Fourier transform technique to the jump-diffusion case. Chiarella (2003) demonstrates how the
Fourier transform method, which is able to readily solve the Black-Scholes PDE for European
option prices, can be used to solve Merton’s partial integro-differential equation for European
option prices under jump diffusion. Kucera and Ziogas (2003) expand on McKean’s paper,
demonstrating in full how to apply the Fourier transform method to the American call option.
In this paper we use the methods of Kucera and Ziogas to extend McKean’s method to solve
for the price of an American call option under Merton’s jump-diffusion framework. The main
advantage of the Fourier transform method is that it is broadly applicable to a wide variety of
option pricing problems, and thus it provides a natural means of extending the Black-Scholes

analysis to non-European payoffs.

In the existing literature, there has been little work conducted on the implementation of the
integral equations for the price and free boundary of American options under jump-diffusions.
Expanding on the American straddle presented by Elliot, Myneni and Viswanathan (1991),
Chiarella and Ziogas (2003) derived the integral equations for an American strangle portfolio
using Fourier transforms, and solved the resulting linked integral equation system for the
strangle’s free boundaries. Here we extend on the approach of Chiarella and Ziogas by applying
a modified version of their method to solve the linked integral equation system that arises for
the American call and it’s free boundary in the case of jump-diffusion. While the focus of the
paper is not on finding optimal numerical methods for American option prices with jumps,
we are able to demonstrate that the Fourier transform technique leads to integral equation

forms that are tractable for numerical implementation.

The remainder of this paper is structured as follows. Section 2 outlines the free boundary



problem that arises from pricing an American call option under Merton’s jump-diffusion model.
Section 3 applies McKean’s incomplete Fourier transform to solve the PIDE in terms of a
transform variable. The transform is inverted in Section 4, providing McKean-style integral
equations for the American call price, and a corresponding integral equation for the call’s early
exercise boundary. Section 5 outlines the numerical solution method for solving the linked
integral equation system for both the free boundary and price of the American call, including
the transform from McKean’s equations to Kim’s equations, and reconciling our findings with
those of Gukhal. A selection of numerical results for the American call option and its early

exercise boundary are provided in Section 6, with concluding remarks presented in Section 7.

2 Problem Statement

Let C'(S,t) be the price of an American call option written on the underlying asset S at time
t, with time to expiry (T'—t), and strike price K. Let a(t) denote the early exercise boundary

at time ¢, and assume S follows the jump-diffusion process

dS = (1 — Ak)Sdt + oSdW + (Y — 1)Sdg

where

p = drift of S;
o = volatility of S;
dW = Wiener process increment (dW ~ N(0,dt));
1,  with probability Adt,
0, with probability (1 — Adt).

Let the jump size, Y, be a random variable with probability density function G(Y"). Thus the

expected jump size, k, is given by



k=EQ[y —1] = / (Y — 1)G(Y)dY.
0
Following Merton’s (1976) argument and assuming that the jump risk is fully diversifiable, it

is known that C satisfies the following partial integro-differential equation (PIDE):

aC ac 1 ,.,00? o B
St (=g = M)SGS + 502 S — 1O+ )\/0 [C(SY, 1) — C(S,D]G(Y)dY =0, (1)

in the region 0 < ¢ < T and 0 < S < a(t), where

r = risk-free rate, and

qg = continuously compounded dividend yield of S.

The PIDE (1) is subject to the following final time and boundary conditions:

C(S,T) = max(S—K,0), 0<S<oo (2)
c(0,t) = 0, t>0, (3)
Cla(t),t) = a(t)— K, t>0, (4)
aC
.00 S
J, g = 1 iz g

Condition (2) is the payoff function for the call at expiry, and condition (3) ensures that the
option is worthless if S falls to zero. The value-matching condition (4) forces the value of the
call option to be equal to its payoff on the early exercise boundary, and the smooth-pasting
condition (5) makes the call’s delta continuous at the free boundary to guarantee arbitrage-free

prices.

Our first step is to transform the PIDE to a forward-in-time equation, with constant coeffi-

cients and a “standardised” strike of 1. Let

C(S,t) = KV(x,T) (6)



with  S=Ke", and t=T—r7. (7)

Is should be noted that

C(SY,t) = KV(ln(SI’?),T)

= KV(z+InY,7)

The transformed PIDE for V is then

oV _ 1,0 oV o
=505 klg—rv+)\/0 V(e +InY,7) — V(z,n]GY)dY,

where ky =7r —q— Ak — %2 = kP — M\k. The transformed PIDE can be simplified to

oV _1 L,V oV
e hﬁ——r+AV+A/ V(e +nY,r) — V(z, )Gy, (8

in the region 0 < 7 < T, —oo < z < Inc¢(r), where ¢(1) = % The initial and boundary

conditions are

V(r,0) = max(e" —1,0), —oo << o0 (9)
Jim V(1) = 0, 720 (10)
Vine(r)r) = e(r)—1, 7>0 (a1)

lim Vo ), r>0 (12)

z—1ne(r) 8:5

For simplicity, we shall denote ¢(7) by ¢ = ¢(7) when it is clear at which time this function is

being evaluated.

Finally, to facilitate the application of integral transform methods, the z-domain shall be

extended to —oo < z < oo by expressing equation (8) as:

1 2 00
H(lnc —z) (aa—‘T/ - 502887‘2/ + klaa—‘; —(r+ AV + )\/0 V(z+InY, T)G(Y)dY) =0 (13)



where H(Inc — x) is the Heaviside step function, defined as

1,z >0,
,x =0, (14)

N [

0,z <O0.

The reason for the factor of % at the discontinuity is explained by Chiarella and Ziogas
(2003). The initial and boundary conditions remain unchanged following the introduction

of the Heaviside function.

3 Applying the Fourier Transform

To solve the problem defined by equations (8)-(12), we shall apply the Fourier transform
technique to reduce the PIDE to an OIDE whose solution is easily found. In applying the
Fourier transform technique, we make the standard assumption that the function V' and its
first two derivatives with respect to z can be treated as zero when = tends to *oc. This
assumption is always used when solving the PIDE for European call options. This is justified
by the existence and uniqueness of the solution, and the fact that the solution satisfies both

the PIDE (8) and the boundary conditions (9)-(12).

Since the z-domain is not —oc < x < 00, the Fourier transform of the PIDE can be found.

Define the Fourier transform of V; F{V(x,7)}, as
F{V(x,7)} = / eV (x, 7)dx.

Applying this Fourier transform to the PIDE (13), we have

ov o? 0*V v
]:{H(lnc— :E)E} = ?.T{H(lnc— x)w} + klf{H(lnc— x)%}

—(r+ANF{H(nc—2x)V}

+AF {H(lnc — 1) /OOO V(zr +1nY, T)G(Y)dY} .



By the definition of the Fourier transform, we have

F{H(Inc—z2)V(x,7)} = / eV (2, 7)dx
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(15)

(16)

It should be noted that F*¢ is an incomplete Fourier transform, since it is a standard Fourier

transform applied to V' (z, 7) in the domain —oo < 2 < ¢(7). We shall now apply this transform

to the PIDE (13).

Proposition 1:

The incomplete Fourier transform of the PIDE (13) with respect to x satisfies the

ordinary integro-differential equation

v o202 . .
EjL[ 277 + kiin+ (r+A) = AMA)]V = F(n,7)
where
inlnx 0-26 C’ 0-27:?7
SO ek ) K RS
A =[Gy,
0
00 ) InY+Ilne .
o) = [ e G| €V (2,7)d2]dY,
0 Ine
and
de(T)
,:
€= dr

Furthermore, the solution to this OIDE is given by

V(nr) = V(n,0)e (ki) -2am)r—

+/ (2 kit (r )~ M=) F(n, s)ds

(17)

(18)
(19)

(20)

(21)



Proof: Refer to Appendix A.

4 Inverting the Fourier Transform

Now that \7(77, 7) has been found, we are required to recover V' (z,7), the American call price

in the -7 plane. By taking the inverse (complete) Fourier transform of (21), we have

Vi) = () V0 (o

+(Fo) {/ T e (TR ) AW 5) (. s)ds}
0
— ‘/l(x: T) + ‘/2(‘/1777_)

1 1
17 [C1(S,7) + Ca(S,7)] = ?C(S, ) (22)

where —oo < < In¢(7). We must now determine the functions C1(S,7) and Cq(S, 7).

Proposition 2:
The function C1(S,T) is given by

& e M(A)" D kT 2
Cl(S, T) — CE - Z Tgn{CE [SXne :K7 T:Q77—70— ]} (23)

n=0
where
Ci(S,7) = KVi(z,7),
o0 e*/\T()\T)TL sk
Cp = %TS"{%)[SX"G MT K, r,q, T, 0%},
C]?[S,K,r,q,T,UQ] = Se’qTN[dl(S,K,r,q,T,UQ)] —Ke’”N[dQ(S,K,r,q,T,UQ)],

In 2 + 7“—q+"—2 T
dl(S7 Ki /r7 Q5Ti 02) — s ( \/_ 2) J
o\/T

dQ(S,K,T,q,T,O'2) = dl(S,K,T,q,T,UQ)—O'\/F,

N[o] = %48,

1 o
— e
vV 2T ~/—oo

10



C%)[S, K,r),q,7,0%
Xn

and e {f(Xn)}

Se™"N[dy(S, Kc(0),7,q,7,0%)] — Ke”""N[ds (S, Kc(0), 7, q, 7, 5%)],
YiYs. Y, Xo = 1,

[ [ 6006050 (K )didYa..a,,

Proof: Refer to Appendix B.1.

Next we consider the more complicated function V,(x, 7). The first step is to break the

function down into two linear components:

Vo(z, 7)

oyt { [ e i g, )
0

_ 1 /°° o—ina /T ¢ (TF RN M) B 6)dsdy
21 J—cc 0 ’

— i /°° eine /T 6_("22"2+k1in+(r+/\)—>\A(n))(T—8)
21 J—x 0

1 o0
tor /_oo

VQ(I) (1‘7 7—) +

1
?CQ(S, T).

d(s) a?in
2

c(s)

% ein In ¢(s) [026(5)
2

i

+ k1> (c(s) — 1)] dsd

oina /T 67("—227ﬁ+k11'n+(r+)\)7)\14(77))(7*5))\Q)(n, s)dsdn
0

VQ(Q)

(,7)

1
7 [0V (8.7) + 0 (5.7)]

We start by considering the function Cél)(S, 7).

Proposition 3:

The term C’él)(S, T) is given by

cVsT) = %
n=0
o0 )\TL

+Z—5

|
n=0 n.

n!

— AT )\ n N
Mgn{cg[sxne”’”, K,r,q,7,0%}

{ [ =g [5Xe Mr 9@V 0[(0 [k + 1) + )7 — ) ]

X N[dy (SXne =0 Ke(€),r,q,7 = €, 07)]

11



—Ke~ N7 — €)(r 4+ \) — n]

X N[da(SXne 00, Ke(€),r,q,7 — €,0)]] dg}, (24)

where

C’él) (S,7) = KVQ(I) (x, 7).

Proof: Refer to Appendix B.2.

O

Before proceeding further, it is worth noting that if we now combine C; (S, 7) with C’fl)(S, 7),

some of the terms will cancel, leaving us with

—AT ()\T)n

Ci(S,7) + CP(S, T) = i ¢ En {CED [SXne_M”,K, r,q,T, 02]}

n!

+ Z —€n{ /OT (1 — f)”*lane*/\k(Tfé)e*(q+m)\)(7—§) (25)
X[(Alk +1] + ) (T — &) — n]

X N[y (SXne 400, Ke(€),r,q,7 = €, o)) }
=Y Sad [ - Ke T — )+ 3) — )

XN [do(S X0 Kel€), g, 7 € 0%)]] de .

The last remaining term to be evaluated is C\* (S, 7), which is the extra term introduced by

the presence of jumps in the stochastic process for S.

Proposition 4:

The term CS(S,7) is given by

o= A" i —(r+x)(7—
P (s,m) = A% e [ - grerraro
n=0 : 0
G(Y CwY. &)J SX,, 7)dwdY 26
x[/o 0 [ 1 cer g sx. i (26)

12



0 Ke(®)
- [Tew) (WY — K)J(w,€, SXn,T)dde] dg}

1 max(cé),Ki,(g)
where

C3(S.7) = KVy?(a,7)
and

2 2
1 —[(r—q—)\ —%)(T—§)+ln5wﬁ]
J(w,&,85X,,7) = X )
(¢ ") wm/27r(7'—§)e p{ 20°(1 =€)
(27)

Proof: Refer to Appendix B.3.

Now that we have derived the function C;(S,7) and Cy(S,7), we can provide an integral

equation for the price of the American call C(S, 7).

Proposition 5:

The integral equation for the price of the American call option C(S,T) is

C(S,7) = Cp+ i g&l{ /OT(T — &)"IS X, e T = (AN (T=E)
n=0 .
X [(Alk+1] +q)(r = &) — 7]

x N {dl (SXne_/\k(T_g), Ke(&),r,q,7 — &, 02)] d§}

S A [ e IO~ g3~
n=0 """
XN [dy (SXoe M, Kel€). 10,7 — €, 0%)] de
1 e
' l/o G) [ Ol (w6 SXa, )diodY

(28)

_ /loo G(Y) Ke® )(wY - K)J(w,¢, SXn,T)dde] d§},

13



where

00 —AT )\ n
Cg = Z%%{Cﬁ[SXne_)‘kT,K,r,q,T,JQ]}

n=0
C’g[S, K,rq,rT, 02] = Se T N[d(S,K,r,q,T, 02)] — Ke ""Nldy(S, K, 1, q,T, 02)],
ms+(r—q+2)r
dl(S7 K’ T’ Q’ T’ 0-2) - K ( 2 ) b
o\T

dg(S,K,T,q,T,O‘z) = dl(S,K,T,q,T,O'Q)—O'\/F,

1 « 82
—— | eTds,
2T /,OO p
X, = Vi\V%..Y,, with X,=1,

_ —ag— )\ _i . 1 &2
and J(w,&,8X,,7) = 1 exp [(r q 202(27—)_(75) &) +In w}

wo /2w (T — &)

Proof: Equation (28) follows from substituting equations (23), (24) and (26) into equation
(22).

In equation (28), the value of the American call option is expressed as a function of the
original underlying variable S, and the new time variable 7, which is a measure of time to
maturity. It is important to note that equation (28) also depends upon the unknown early
exercise boundary, now defined as ¢(7) = a(t)/K. By requiring the expression for C(z, ) to
satisfy the boundary conditions (4) and (5), we can derive a similar integral equation for the

value of ¢(7). This integral equation is given by

K(e(r) —1) = C(Ke(r), 7). (29)

It is important to note that the integral equation (29) will depend upon the unknown call
value C(S, 1), and this dependance arises from integral terms that have been introduced by
the presence of jumps in the dynamics for S. In order to implement these integral equations
for the free boundary and call price, we must therefore use numerical techniques to solve the

linked integral equation system consisting of (28) and (29).

14



5 Numerical Implementation

To help facilitate the numerical implementation of the integral equation system formed by
(28) and (29), we shall first carry out some algebraic manipulations in an effort to achieve
the form presented by Gukhal (2001) for American call options under jump-diffusion. In the
final version of the paper we will present the full details for these manipulations, resulting in

expressions which are equivalent to Gukhal’s equation (4.3).

The primary difficulty in solving for the American call price under jump-diffusion dynamics is
caused by the dependance of equation (28), and subsequently equation (29), on the unknown
American call price C'(S, 7). To overcome this complication, we propose an iterative numerical
scheme similar to the one employed in the American strangle analysis of Chiarella and Ziogas
(2003). We begin by finding a satisfactory initial approximation for the American call option
price, denoted here by Cy(S,7). A natural starting approximation can be readily obtained
from the American call in the case of pure-diffusion. Using this initial approximation, we will
solve equation (29) numerically for our first approximation of the free boundary ¢, denoted
by ¢i(7). This free boundary is then used, along with Cy(.S, 7) to numerically solve equation
(28) for the new American call price approximation C1(S, 7). This process is then repeated
until the difference between two successive call price approximations C;(.S,7) and C;y1(S, 7),
and also two successive free boundary approximations ¢;(7) and ¢;41(7) are both within an
arbitrary tolerance level, TOL. This difference will be measured using an Ly norm applied to
C;(S, 7) iterates for a suitable range of S values, and to the free boundary iterates ¢;(7) for a

range of 7 values.

The fundamental numerical calculations, such as root-finding and numerical integration, shall
be conducted along the same lines as presented in Chiarella and Ziogas (2003). A log-normal
distribution is selected for the jump sizes Y, in accordance with a model suggested by Merton

(1976). Thus the probability density function for Y is given by

1 (InY—(y=52/2))?
GY)= ——e¢ 2572 , 30
RN 30)

15



where we set v = In(1+k), and 6% is the variance of In Y respectively. Gukhal (2001) assumes
that 7 = —¢%/2 when deriving his equation (5.1) for the American call option price. In the
final version of this paper, we will forego this assumption, and provide a more general form
of Gukhal’s results, along with a means of numerical implementation for the resulting linked

integral equation system.

6 Results

The final version of the paper will present a range of American call price profiles, along with
their corresponding early exercise boundaries. We will also compare these results to the pure-
diffusion model, so as to demonstrate the impact of jumps in the features of American call

options.

7 Conclusion

Concluding remarks will be presented in the final version of the paper, once the numerical

results have been completed.

Appendix A. Properties of the Incomplete Fourier Trans-

form

According to Kucera and Ziogas (2003), from the “pure” diffusion case (i.e. the model with

no jumps) we know that:

oV , ~
c _ 1 inlne - 1
F{G) = o neme i, 1)
0%V - R
c _ inlnes,, - — 1)) — 2 2
PG} = e inte 1)~ P (32
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oV v
d fc e — 2z Inc(, 1
a { or } or ¢ (c=1).
where ¢ = ag_(:). This leaves one term to be evaluated, namely:

F {H(lnc _ 1) /0°° V(e +nY, T)G(Y)d(y)} — /lncem /0°° V(e +1InY,7)G(Y)dY dz.

— o0

Using the change of variable z = z 4+ InY, equation (34) becomes

F {H(lnc _ 1) /°° V(e +nY, T)G(Y)d(Y)}
0
oc rlne
- / / GV (z + Y, 7)G(Y)dedY
0 —00
o© prlne+lnY |
:/ / eIy (2 )G (Y)dzdY
0 —00

00 Inc .
— / l / G (2 VGV )dz
0 —00

Iny+lne
+ etV (5 T)G(Y)dz] dy

Ine

00 . Inc .
- / e~ G(Y)dY / V(z,7)e"dz
0 —00

00 . InY+Ine |
+/ e”MY G(Y) l/ eV (z, T)dz] dy
0 I

nc

= AV (n,7) + @(n, 7),

where

Al = [~ e ey,

and

iy nY4nC s
(I)(UaT):/O e "M GE(Y) /lnc eV (2, T)dz| dY.

Hence, our PIDE is transformed into the following OIDE:

8‘7 d ne o’ inlne : ’
5 Ee"’l (c—1) = 5 (e mee —in(c—1)) — 772‘/)
+k1 ((c — 1)eftme ’mV) —(r+ NV

FAAMV (0, 7) + (0, 7)),
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which is readily simplified to

v
or

o2 .
+ l 5 + kyin 4 (r+ A) —)\A(n)] V =F(n,T1),

where
2 .

F(?’],T) — 6m]lnc [% + <% . 0-2'”7 + Iﬁ) (C— 1)] + )\(I)(T],T)

The solution to this OIDE is given by

V(n,t) = V(n, o)e—<"é" (r42)=AA(m)7

+/ 02 kv (1)) — MG)E=S) By, §)dS,

where F{V (z,0)} = V(1,0).

Appendix B. Derivation of the American Call Integral

Equations

B.1. Proof of Proposition 2

Consider the function Vj(z, 1), given by
o202 )
Vite.r) = ) {Tye (Frmmea)

To evaluate this inversion, recall the following convolution result for Fourier transforms:

o

Fm)Glnm) =7 {

—0o0

f((x =), m)g(u, Tg)du} .

If we let

P m) = ¢ (TR o) 2am)
y 11) —

b

18



then f(x,7) is given by

1o — (22 thin+(r+2)- T
fla,m) = 2_/ . ( = +krint(r+A) )\A(n)) e~
™ J—00

ST o[22 aam ] eintii
_ ¢ /°° . [ 7 /\A(n)} in[k: H]dn-
2T —00

Furthermore, let

éb2 (77: 72) = V(na O)

Hence g(x, 75) will simply be the payoff function in the continuation region, given by

g(xz, 1) = H(ln¢(r) — x) max(e” — 1,0) = H(Inc(r) — x)H (z)(e” — 1).

Thus Vi (z, ) becomes

2.2
- | —)\A(n)} T—inlkiT+z—u]

Vi) = [ lH(lnc(O)—u)H(u)(e“—l)e()\M)T [ [

dn] du.

—00 27 —00

The expression for V;(z,7) can now be further simplified:

—(A+r)7 oo oo _[Za?_ T—i TH+T—U
Vi(z,7) = ‘ o 1 lH(u)H(lnc(O) —u)(e" — 1)[ e [ ? )\A(n)} kTt ]dn] du
—(A+7)T  rIn¢(0) o _[e%?® r—inlk1T+z—u
= ¢ / [H(u)(e“ — 1)/ e [ ? /\A(n)] kit }dn] du
2'/T —00 —00
—(A+r)7 oo oo _|eZn?_ T—i TH+T—U
_ € / lH(u) (eu . 1)/ e [ 2 /\A(TI)] nlki7+ ]dn] du
2m —o0 oo
e~ AH1)T roo o0 7[”—27137)\14(77)] T—ink1T+r—u]
- H(u)(e" — 1 / 2 dn| du.
27 /m(o)[ (w)(e ) —ooe 77] ¢

Letting C1(S,7) = KVi(z, ), the problem can be re-expressed in terms of the original space

variable S as follows:

Cu(S,T) = e 07 / Y KH(u)(e" — 1)K (u, S, 7)du

—e (A1) ( )KH(U)(e“ — 1)K (u, S, 7)du.
Inc(0

19



where

]dn

oo _|2n? T—4 T+ln £y
kiu,sr)= & [* o [F ]

27 J—oo

We shall now consider further the function & (u, S, 7) From Taylor series expansions we know

that

Using this result, the expression for K (u, S, 7) becomes

. 1 oo 222 ] inlkir+in £ —u) & (AT) n
K(u,S,7) = %/ e =] " Z(n,) A(n)"dn
—oQ n=0 :
1 & ()" o[22 infhyrin £
_ L (T') / . |55 ] intirr e LA()ran.
s n—=0 n. —o0

Note that by definition

A = {[Temra)ay)
_ /Ooe’i"lnylG(}ﬁ)d}/l.../ooe’mlnY"G(Yn)dYn.
0

0

Using this definition in the expression for k(u, S, 7), we have

° noroo _|22 27’ —inlk17+In = —u
K(u,S,7) = iZ(AT) / e [_QL] nlfatin ol

n‘ —0

x {/Oo e MGV [ ei"IHY"G(Yn)dYn} dn
0 0

o _[ 27’ —i 74+1In £ —y]—inln LY,
x{/ B R Y)dn} dY,dYy...dY,

_ Ly Qrr L[ [T G006 0). GO0, T)dYiaYs. .Y,

where

2 2
/oo — [—0 S T] —i([k17+In 97”711]77

1(0,,7) dn,

20



and 6, = SY\¥5.Y,

Next consider the function I(6,,,7), which can be rewritten as

I(Hnﬂ') :/ e_p"Q—q"dn,

where

and

0
=ik + lnfn — ul.

R U T &2
/ e P gy — /_64])7
—oo P

1) = 2w@m{4u—nK kn]}

Using the result that

we have

o2r 202

Therefore the expression for K (u, S, 7) becomes

R e e e e )

where we note that

flO} = [T [0 (Y2)...G(Y)dY1dY...dYy,
and eo{(-)} = () with 6, =S.

To further simplify the expression for C;(S, 1), let

C! wTLJzH’/ KH(u)(e" — 1)K (u, S, 7)du

21



and

CP(S,7) = e 47 1::(0) KH(u)(e" — 1)K (u, S, 7)du.

Firstly, for C’{l)(S, 7), we have:

s = K m(e“—l)f(A;)"sn {exp{‘[“‘ln"’“”] }}du

2T Jo 0 2021

n=0

Using the change of variable e* = Ke*, we obtain

() R (/\T) —[z —InOn — ky7)?
Grisr) = nzz;le ! {a\/ ot /lnk K) exp l 20T dz

= Y eV %% {C’g[SXne_/\kT, K,r.q,T, 02]} ,

where

Cg[S,K,r,q,T,UQ] = Se ""N[dy(S, K,T,q,T,O'Q)] — Ke7""N[dy(S, K,T,q,T,O'Q)]
e+ (r—q+%
with  di(S, K,r,q,7,0%) = ng+(r—g 2)7,
o\/T

do(S, K,r,q,7,0%) = di(S,K,r,q,7,0%) — o\/T,

*Tdﬁ,
a1
and X, = Y¥,..Y, and Xy=1.

Nla] =

The details for this conclusion can be found in Chiarella (2003).

Next, for CF)(S’, 7) we have

_(/\-1—7")7[( 00 () )n [u _ ln —k 7—]
2 _ TR guye -y W !
Gr(S:m) oV 2rT /ln ¢(0) (u)(e ) = n! e P 20 T du

X e A (AT)" e’ 00 —u—In% — ky71)?
= n Ke'— K K du p .
nz::o n! c oV 2T /ln c((])( ¢ ) exp 2021 Y

Note that since a(T) > K, we know that In¢(0) > 0. Thus using the change of variable

22



e’ = Ke", we obtain

c?(s, 7= 5 D" { [T (e = K)ewp [_[Z —Infn - k”]?] dz} .

n! o 2T Jin[Kc(0)] 2021
Hence it is readily shown that

o0 —AT n
c(8,7) = 3 e ()"

n=0

—€n {C%)[SXne_/\kT, K,rq,r, 02]}
n!

where

C%)[S, K,r,q,7,0*] = Se " N[d(S, Kc(0),r,q,7,0%)] — Ke " Nldy(S, Kc(0),r,q,7,0%)],
. In 25—+ (r—q+2)r
with dy(S, K,r,q,7,0%) = Ke(®) ( 7) ,
o\/T
and dy(S,K,7,q.7,0%) = di(S,K,r,q,7,0°) — 0\/T.

Thus the final expression for C;(S, 7) is given by

B.2. Proof of Proposition 3

We begin this proof by examining the function VQ(I)(x, 7).

oo 7 (32 i r _ —s )
‘/—2(1)(:6’7) _ QL/ / e (—2”—+k1 N+H(r+2) /\A(n))( )e*“”"
T J—oco JO
2 / 27
—inlnc(s) g C(S) c (S) _ a=in 2 “ 1| dsd
xe [2+C(S) S k) (e(s) = 1)| dsd
— i/T e—(""'i')\)(T—S) /oo 6—022"2(T—s)—in[kl(T—s)—I—m—lnc(s)}e)\A(n)(T—s)
27 Jo —o0
alc(s) d(s) o%in
— k —1)| dsdn.
><[2 (S~ T k) (els) = 1) dsay
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By Taylor series expansion, we know that

. © A\ (1 — g)" .
=) = 52 XT3y

|
n—0 n.

and if we let

]
fils) = 0262(8) + (CC,((;)) + kl) (c(s)—1)
and fo(s) = J721.(0(5) - 1),

then we can rewrite \/2(1)(x, T) as

1 T o 2 N1 —35)"A n
‘/2(1)(£E,T) — %/0 6—(r+/\)(7—s) [/ e~ P —in[k1(T—s)+z—Inc(s)] Z (T S) (77)
- n=0

x {fi(s) — nfa(s)}dn] ds
— — 11 / e (r-l-/\)(T—s)()\[T_ S])n

27r n!
1)
% [/ e~ 2—in[k1 (T—s)+z—Inc(s {/ / / —m (InY1Y3...Yy)
—o0

><G(Yl)G(YQ)...G(Yn)ledYg...dYn}{fl(s) _ nfg(s)}dn] ds

< 11 (r+2)(
_ L 1" T S )\ _
n=0 2m n‘ / / / [T S])
" [/ PP —inlk1 (T—s)+2+In(Y1 V2. Vo)~ In o(s)] {f( ) — 77f2(5)}d77]

xdsG(Y1)G(Y2)...G(Y,)dYidYs...dY,

n!

S iﬂen {/OT e N8 (- _ g)n [/_o:o e P fi(s) — 77f2(5)}d77] ds} ;

|
= 2m n!

where ¢, is as stated in Appendix B.1, and

q= Z[:E + 111(Y1Y2...Yn) + k1(7' - 3) —In C(S)]'
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Following Kucera and Ziogas (2003) we can readily show that

OO)\" T e 9@sn) (1 — 5) [o2c(s)
V(l)(l‘,T) {/ l
? n— 0”‘ oy/27(T — s)

N (c(s) : lkl z+In(Y;...Y;) —1110(5)])] (c(s) — 1)ds},

c(s) T—35

where
(z 4+ In(Y1Y5...Y,) + k(1 — 5) — Inc(s))?
20%(1 — s)

g(x,s;n) = + (r+ M) (1 —s).

Next we return to the original space variable S by setting Cél)(S, T) = KVQ(U(I,T), with

S = Ke®. This results in

i - el [t
[E50 ( - i)

x(Kel(e) = K)de )

where

2

(In £ + In(Y1Y2...Y;,) + ki (7 = &) = Ine(€))
20%(1 =€)
[In 2 4 k(7 - €)]
202(7 —¢)

hn(S,€) +(r+A)(r=§)

+(r+AN)(r=¢

with X, as defined in Appendix B.1. Therefore Cél)(S, 7) is given by

(1) _ - &)
(s, 1) = {/ UW
X[Kc c(5)+(c'(s) 1

2 o€ 2

w(Ke(€) - K)dg}.

SXn
. In 32
T—¢

Next we will aim to simplify the expression for C{" (S, 7) using the methods of Kim (1990).
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For simplicity of notation, we define G(§) = Kc¢(§). The first step is to rewrite h, (S, ) as

2

0(SX,) ~ImG(&) + (r—q— Mk — %) (r— )]

CIC 202(r — €) +(r+AN)(r=¢
1 (nSXat (g M-)T GO+ (r-a- M- 5)¢ ?
a 2(r = ¢§) o o
+(r+ M) (1t —=¢)
_ W HEOP
= bt O e -
where
InSX,+ (r—q—Me—%)7
Yn = ’
InSX, + (r—g—Me—%)¢
and H(&) = - .

It is important to note that the derivative of H(§) with respect to £ is given by

R )

Using these results, Cél)(S, 7) becomes

(r+X)(7—€)— lyn—H(£)]?

(1) _ o T(T=&)"e i
Cy ' (S,7) = nzz:on!g"{/o 21 (1 — &)
! 2 2
5925 (5] (o)
1[ o2 ln%-l -I
“r—q-—-Z) - =4 —K)|d
3 [(T ‘ 2) e )) O] |
o A" T N (=) s
. A —(r+A)(7— B o L —
-z e ) e T o

x l%@—i—(h"(f)—l(r—q—)\k—a;)

InSX, —~InG(€) — (r—q— M — %) (r—¢)
r—¢

1

20
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_lyn—H ()

XN\ T 2(m=8)
= Z)‘_gn{/ e—(r+A)(T—§)(T_§)n67
n!

St U ()
|G (o - S (i) - )] )

Thus we arrive at the following expression for Cél)(S, T):

_ lm—H@©1?
C(l) S, _ o )\_n ) TG N (r—8) B e 2(r—¢€)
S ;::0 'g{/o o =4 27 (1 — &)
7.y yn — H(&)
<[5 -5«
e [yg(_i(&%)ﬁ
-K (r+X)(7=¢) A\
o © (1—%) pv—
/ yn — H(E)
X lH (6) - 2(7__5) ] 5} (35)

In order to simplify equation (35), we must derive two results. For the first result, we have

7 — )= N8 T O ey e — H(E]

r=4) ¢ 2n(1 — &) lQ THE) 2(r = ¢) ]

(1 — £)ne=r NG9 G(&) lU(T — & +2H'()(T— &) —yn + H(f)]
VT =¢ 2(r =)

1 - HEO+o-0]® ,2
2

e =9 e T (T=8+a(yn—H(E))
V2T

_ ng—(rH)(T—€)+in S (r—g-Mh—02) (-4 G (r—g) L - lnHOreC=oF
T — e ) 2 2 e 2(r—¢)
(T =9 N
o(r =+ H'(©(r =& — 5yn + %H(f)]
(T =OVT=¢

1  _n—HEO+o-91?
e 2(r—%)

y l%(yn —HE +o(r =) — (H'(© +0)(r = 6))]

_lyn—H(E+o (x>
2(r—8)

F (Yo — H(&) +0(7 =€) = (H'(&) + 0)v7 = 5]

— g sxe w0 Dy (1o HO Lol 28)), (36)



For the second result, consider

(r — g)ne—(r—l—/\)(T—f) e_[yg(_ﬁ(g] [Hl(g) [Yn H(é‘)]]
V27 (T — &) 2(1—¢)
_ o 1 e [2H'(E)T — & — yn + H(E)
= (1—&"e (r+)(T=8) ___ o~ a0 ]
V2 | 209V -9
2 [H'(VT =& = 5(yn — H(E)—
. o 1 _m-HOR 2 —¢
= (1 —§&)" (r+N (T8 _—_ o~ e ]
2 (VT =¢)°
2_ —H' — Yy, — H L
(et 5)\/1_6_[y7§(_71i(g€))] VT (f‘f‘ 2(?2)2 (£)) 71
2m T —
— - d Yn — H(f)
— (7 — £\ (N (=8 £
= (- greeoiro gy (1 H0) (37

Using equations (36) and (37) in equation (35), C’él)(S, 7) becomes

o ( Z _gn{ _ / (7 — )G X e T8 =@+ (T=)
_ 0
0 (Yo —H(E) +0(r—¢)
“oe™ ( ¢ ) “
_ a Yn — H(g)
_ e () Yo — H(E)
& [ . (%N( M )dg. (38)

By applying integration by, we can evaluate equation (38) as follows::

s - S2 (s [ﬁ_ane—mqw-gw (=t s oo 0)

_ / Jr e (ARNT—6) o= (N

XAk +1]+¢)(r = &) —n] N <yn
+K{ [(T _£)re N (yn ~ H(f))]T

CH(E) 4 o(r— ©)
V=t )df

it
_/ ) leINT=O (1 — ) (r + \) — 1]
x N (yn_T\/i(;)) dg}}
_ i )‘_nen{SX o= o=@+ N7 n 7 <yn - H\}()F) 4 m)
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[ 8Xe MO NE -~ U(AE +1)+ )7 — ) — )
o n—H<5>+a(T—5>>d§

V=
_Ke—(r—l—)\)TTnN (yﬂ _\/I_Z(O)>
- ), K —grteree [(7—5)(r+A)—n}N(7y" ;i?) d}
_ — A" —/\kT —(g+N)T 1 lnS)(((v)Ts_'_(r_q_)\k_'_%z)T
= nz% sn{SXe ot TN( e
lnSX"+(r—q—)\k—|—”—2)
i —(r+X\)71,.n G(0) 2
Ke Tt N( 0\/7_— )
! ~M(T—8) = (g 2) (7 gy
—i—/o SXpe a
SX"—I— — M+ < )(T—f)
X[(A[k+ 1]+ q) (1 — &) —n]N d¢
7—5
— [ Ke IO g+ ) -
. (1115)(@) +( mg—’)( g)) i)
o T—§
i e )\T()\T) e {C%) [SXHG_MW,K, g 02]}
n=0

+n2::0 agn{ /OT(T — &)t [SXnef)\k(Tfﬁ)e (g+M)(7 [()\[k +1+q)(r—&) —n]
XN [d1 (SXne_/\k(T_f), Ke(€),r,q, 7 =&, 02)]
_Ke—(7"+>\)(7'—§)[(7- _ 5)(7. + )\) _ n]

N [d2 (SXne’)‘k(T*@,Kc(g),r,q,T — 5,02)” df},

which is the final result stated in Proposition 3.

B.3. Proof of Proposition 4

The term V2(2) (x,7) is given by

‘7 7’ in+(r T—8 .
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where we recall that

) ] InY+Ine(s) .
D(n,s) = /0 e—mlnYG(Y) l/lnc(s) eV (z, s)dz] dy.

We begin by changing the order of integration within VQ(Q) (x,7):

V(1) = A / / (22 +hrintr+2)-2A®) ) (=& in
T

inny InY+Ine(§) |
x / MG [ V(e €)dedY dedy
Inc(¢

_ / / cr 202 fkyint(r+A)— /\A(n))(T—f)_WC
o

InYe(¢) |
X / =Y G (y) / o V(Y ddn
0 Ine(€

— / 1 / % M) (T=8) g= T (r=E)=in(k1 (7=E)+) = (r+N) (T—8)
0 2T J-

o) ) InYe(§) .
X / =Y G () / o OV Oz dnd
0 Ine(é
2.2

- )\/T e—(r+/\)(7—§)i /°° AMAM(T=E) o= T (1= —in(k1 (T—€)+2)
0 2 J-

o ) 11’1YC(§) .
X / =Y G (y) / o V(=Y dndg
0 Ine(€

Note that according to Taylor series expansions for e” we have

o) = 5 X

- !
n=0 n.

and note also that by the definition of the Fourier transform, we have

InYe(€) . |
eV d: = [T HnYo(©) - 9H( ~Ine(©)V (= e d:

= VAOYAO) (p ¢),

Using these results, we can rewrite V2(2) (x,7) as follows:

+1 %)
VO = 3o / _ gyme N 5)21 / o~ TR -8 —in(kr (7-€)+2)
T J

x/ /°° eIV (VL) L G(Y,)dYS . d Y
0 0
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x [T e Gy )OO (. £)dy dye
0

= S X [r—eretoieo [“am

n=0
2 2

1 /oo o~ T3 (1=8)—in(k1 (1—€)+a+In Xn V) 7e(€),Y c(€) (n, §)d?7de§} .

X_
27 —00

Consider the two innermost integrals, I(x, 7,Y,§), defined as

I(x,T, Y,f) = % 1 e~ T2 (T=8)—in(k1(r—&)+a+In Y In Xy)
Ine(€) ) ny
X/ em(:v—l—n )V(SC + lnY,f)dSCdn,
Inc(é)—InY

where the integral with respect to x has been derived using the change of variable 2 = x+InY.

To evaluate I, we shall express it as an inverse Fourier transform:

I(z,7,Y,6) = 1 /oo pin o= T (r—€)—in(k1 (7—€)+1n X,)

21 )

Inc(€)—InYy
X / ¢V (¢ + In Y, €)dwdy
Ine(€)

— _j-‘l{e"—ZL(TOz‘n(kl(fg)ﬂnxn)/lnc(@IHY

eV (z +1nY, f)da:} .(39)
In c(£)
Since we know that 0 < Y < oc, we must now consider two separate cases to evaluate the
inverse Fourier transform in equation (39). The first case to consider is when 0 < Y < 1,

which means we can rewrite equation (39) as

2772

I(z,7,Y,§) = —F! {e—"T(T—é)—m(kl(T—g)+1nxn)

X /oo H(ne(&) —InY —z)H(x — Ine())e™V(z +InY, §)dm}

— 0o

To evaluate this inversion, we again refer to the standard convolution result for Fourier trans-

forms (see Section B.1). Let

2,2

F(n, 51) — o~ T2 (18 —in(k1(T—&)+In Xy)
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Therefore, f(z,£) is given as

1 oo o2 4
f(iE,&) = %/ e T o= & (T—§)—1ﬂ(k1(7—§)+lan)dn
—Oo0
= i/oo efp":)*q"dn
21 J—x

where p = ”2(2_5) and ¢ = i(ki (1 — &) +In Xy + ). Hence we have

f(x:é‘l) = % geg
1 27 ox _[kl(T—f)—l—lan—l—x]Q
ARG p{ 20%(r —§) }
_ ;exp{—[lﬁﬁ_g) +lan+z]2}‘
oy/2n(T = &) 20%(1 — &)

For the second part of the convolution, let
Gz, &) = /_ O:o H(ne() — Y — 2)H(z — Ine(€))e™V(z + nY, £)da.
Therefore g(z, &) is simply
9(x,&)=H(nc(§) —InY —2)H(z — Inc(§))V(z + InY,§).
Combining f and g, the inverse Fourier transform I becomes

I(z,7.Y.§) =

_/00 1 exp{_[lﬁ(T—f)+(I—u)+lan]2}
=00 g4/2m (1 — &) 20%(1 = ¢§)
xH(Inc(§) —InY —u)H(u—Inc(§))V(u+1nY,E)du
_/OO 1 exp{_[kl(T—S)—I—(I—u)]an]2}
—o0 g4 /27 (T — &) 20%(1 =€)
xH(Inc(§) —InY —u)H(u—Inc(€))V(u+1nY,E)du

B ne(©)-InY V(y+InY,§) o] [ki(7 — &) + (z — u) In X, )? :
— TAET s p{ T }d .(40)

In c(£) oy/2n(T — &)
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In the second case, we have 1 <Y < oo, which means we can now rewrite equation (39) as

2.2

I(:E, 7,Y, 6) = .’F_l{e_o = (7=&)—in(k1(7—£)+1In Xy,)

x /°° H(ne(€) — 2)H(z — lne€) + nY)e™V(z + I, g)dz}.

— 00

Following the same method as used in the first case, we find that

I(z,7,Y,§) =

00 1 [ki(T — &) + (x — u) + In X,
/wwﬁe’“’{‘ 22 (r —¢) }

xH(lne(€) —u)H(u—Ine(€) +InY)V(u+1InY,&)du
_ /lnc(s) V(u+InY, ) exp {_ (ki (T — &) + (z — u) + In X,]?
(

Inc(¢)—InY) O—\/m 20.2(7_ _ 6) }du(41)

Since results (40) and (41) depend entirely upon the relevant value of Y, we can integrate

piecewise over the Y-domain, and thereby express VQ(Q) (xz,7) as

‘/—2(2)(%7) _ i —En {/T — &) rHNE=E) /OO GY)I(x,T,Y, f)def}
%

’ "*r+)\ Inc(§)—InY u . )

Al elfan [T s

><e><p{—[k1(7_5)+(~”E—u)+lan]2
202 (1 — &)

o me©  V(u+InY,e)
G(Y —_——
+/1 ( )/lnc(é)lnY 0'1/271'(7'—6)

X exp {— ka7 = 5)2;(("; __?) 10 X[ } dudY] dg}.

} dudY

Setting C’§2)(S, T) = KV, (x,7), we have

o) BN (N e | [ me@-nY C(Ke"Y,§)
022 (S T) = )\Z 8n{/ T 5) e (r+2)(1-¢) |:/0 G(Y) /lnc(g) O_\/m

X exp {_[kl(T -+ (xr—u)+InX,]?

20%(1 =€)
_/°° G(Y) /“””(5) C(Ke"Y,¢)

} dudY




X exp {— k(7 = 5);;2((5”7 __?) 10 X" } dudY] dg}.

Finally, we shall introduce some additional notation and a change of variable to simplify the

expression for 052)(5, 7). Letting w = Ke",we have

— A" i —(r T—
c(s.r) = A% Se{ [[(r - gre e
n=0 """

1 ¥ OWwY,¢)
)0 e o rr—0)

SX,
X exp {_ [kl(T2_J§()T+_h§I)T]2 } édde

o [ e

X exp {— [k1(72—02§()7+_h;)%]2 } idde] df}

Next, we consider carefully the domains for the integrals with respect to w. For the first

integral, the domain for wY is
YKc(é) <wY < Ke(€).

Thus wY lies in the continuation region, and the value of C(wY,¢) is unknown.

For the second integral, the domain for wY is
Ke(é) < wY < YKc(§).
Thus wY lies in the stopping region, and therefore the value of C'(wY;¢) is known to be
C(wY,§) =wY — K, where w> g
Thus 052)(5, 7) can be written more simply as

C’éz)(S ) = =) Z )\—sn{/ (1 — &)~ N8
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1 Y
x l /0 G(Y) /K o @Y. 0J(0.6 SXo, T)dudy

Y

_ / TG / MO Y - K) (w6, SX T)dde] dg}
1 Ke(€) Ay n; 5

where

1 [k1(1 — &) +1n —SXn]Q}
J SAX,,—“ = X — w
& ) wo /21 (T — &) ‘ p{ 20%(1 =€)
and k4 = r—q—)\k—%Q.
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