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Abstract. [Blume and Easley (1992)] show that if agents have the same
savings rule, an expected discounted logarithmic utility maximizer with
correct beliefs will dominate. If no agent adopts this rule, then agents
with incorrect beliefs, but equally averse to risk as logarithmic utility
maximizers, may eventually hold more wealth than the agent with correct
beliefs. In other words, a trader with correct beliefs can be driven out of
the market by traders with incorrect beliefs.

However, [Sandroni (2000)] shows that, among agents who have the same
intertemporal discount factor and who choose savings endogenously, the
most prosperous will be those making accurate predictions. Agents with
inaccurate predictions will be driven out of the market regardless of their
preferences.

By using the extended agent-based artificial stock market, we simulate
the evolution of portfolio behavior, and investigate the characteristics of
the long-run surviving population of investors.

Our agent-based simulation results are largely consistent with [Blume
and Easley (1992)], and we conclude that preference is the key factor
determining agents’ survivability.

1 Motivation

A long-standing theory in economics is that agents who do not predict as ac-
curately as others are driven out of the market, and it underlies the efficient-
markets hypothesis and the use of rational expectations equilibrium as a solution
concept because it implies that asset prices will eventually reflect the beliefs of
agents making accurate predictions.

The recent literature casts serious doubt on the theory that agents with
incorrect beliefs will be driven out of the market by those with correct beliefs.
[Blume and Easley (1992)] is an example.

[Blume and Easley (1992)] first showed that the only portfolio rule that can
survive in the long run is the one which maximizes the expected growth rate
of wealth share accumulation. Based on the Kelly criterion ([Kelly (1956)]), this
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type of behavior is equivalent to that of maximizing a logarithmic utility func-
tion. In other words, the fittest investor should behave as if he were endowed with
a logarithmic utility function. The rule is also called the maximizing expected
logarithm utility rule, or, briefly, the MEL rule. Blume and Easley showed that if
there exists an investor who uses the MEL rule in the market, then other rational
investors will not survive. If no agent adopts this rule, then agents with incorrect
beliefs, but as equally averse to risk as the logarithmic utility maximizer, may
eventually hold more wealth than the agent with correct beliefs. So, even though
an investor has perfect foresight, he may not survive simply because his utility
function is not logarithmic.

Blume and Easley’s finding is surprising because few economic studies have
ever regarded the preference as a primary force in determining an agent’s surviv-
ability, and have downplayed the role of beliefs. They obliquely controvert the
efficient-markets hypothesis.

The Blume-Easley result was questioned by [Sandroni (2000)]. He considered
the portfolio rule to be only a part of the investment decision, which is not com-
plete if savings are left out (exogenously fixed). He developed a more general
framework in which both savings and the portfolio rule were derived from maxi-
mizing expected discounted utility, and showed that the most prosperous will be
those who make accurate predictions. Agents with inaccurate predictions will be
driven out of the market, and therefore convergence to rational expectations is
obtained. The surviving agents may have diverse preference over risk. In other
words, the utility function does not play a role in determining survivability.

However, despite the title of the article, the approach taken by [Blume and
Easley (1992)] is not really evolutionary in the sense that finite-time survival
pressure is not put on investors ([Farmer and Lo (1999)], [Tesfatsion (2001)]).
Instead, their results are built upon the asymptotic analysis in probability. This
approach is mathematically rigorous, but has severe restrictions. The results
derived from the asymptotic analysis may fail to predict what would actually
happen in an evolutionary process. Recent studies, such as [Lettau (1997)], and
[LeBaron (2001)], have shown that the market dynamics can behave nontriv-
ially differently and are path-dependent when finite-time survival pressure is
placed on agents. Second, the role of learning and adaptation in this debate
is largely neglected in [Blume and Easley (1992)] and [Sandroni (2000)].1 Intro-
ducing learning and adaptation into Sandroni’s model may make the resultant
stochastic process so complex that few analytical results can be obtained.

Furthermore, both [Blume and Easley (1992)] and [Sandroni (2000)] are an-
alytical papers with various technical conditions that are hard to verify in the
real world. For example, [Blume and Easley (1992)] supported the Kelly crite-
rion, which states that a fit rule should maximize the expected growth rate of
wealth and that the rule of an expected logarithmic utility maximizer is one

1 In their Section 6 “Adaptive Behavior,” Blume and Easley did extend their analysis
to a few types of adaptive behavior. However, that was done with the assumption
that all investors are endowed with logarithmic utility functions, and hence they are
not very helpful.
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simple class of this kind of rule. However, the Kelly criterion is obtained under
specific assumptions about the price process which would be hard to verify in
an equilibrium model where the price process is endogenously determined. Fur-
thermore, Sandroni’s analysis assumes that all utility functions satisfy the Inada
condition. Unfortunately, this assumption excludes some interesting preferences
frequently employed in financial economics.

These limitations render the empirical parts of the papers empty:

– First, does risk attitude (risk preference) matter?
– Second, does forecasting accuracy matter?
– Third, would wealth distribution tend to degenerate to certain groups of

people or remain randomly distributed?
– Fourth, what happens in the case of other familiar types of traders, such as

CAPM traders?

The purpose of our paper is to use a computational model, or more pre-
cisely, the agent-based computational model, to verify what has been said on
this subject. Agent-based modeling places great emphasis on the cognitive lim-
its of traders and their associated learning processes. It allows us a real-time
(and finite time, not time in the limit) evaluation of the prophecies made above.
The path-dependence issue, usually due to the learning and search process, is
encapsulated into this model. Therefore, we believe that a useful contribution to
the debate can come from the adoption of agent-based computational modeling
([Arthur et. al. (1997)], [LeBaron (2000)]). Agent-based computational modeling
of financial markets allows us to extend Sandroni’s model to a market consisting
of boundedly-rational heterogeneous investors (heterogeneous in both beliefs and
preferences). Being described as “...a truly new frontier whose exploration has
just begun” by [Farmer and Lo (1999)], the agent-based artificial stock market
is far from its fully-fedged state. To date, all studies have concentrated on the
single-asset version of it. The multi-asset version is still not available. Therefore,
this study, to the best of our knowledge, may be the first attempt to make such
progress in this direction.

2 The Model

Consider a complete securities market. Time is discrete and indexed by t =
0, 1, 2, ... There are M states of the world indexed by m = 1, 2, ..., M , one of which
will occur at each date. States follow a stochastic process, which is characterized
by the first-order Markov process or iid process. Asset m ∈ {1, 2, ...M} pays
wm > 0 when state m ∈ {1, 2, ...M} occurs, and 0 otherwise. At each date t,
there is only one unit of each asset available, so that the total wealth in the
economy at date t will be Wt = wm, if state m occurs. The wealth will be
distributed among the investors proportionately according to their owned share
of asset m. The distribution received by each investor can be used to consume
and re-invest. We assume that there is aggregate uncertainty so that wm �= wv

, for m �= v. Let ρm,t be the market price of asset m at date t.
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There is a finite number of traders with heterogeneous preferences in this
economy, indexed by i ∈ {1, 2, ...I}. Each trader i has J beliefs over M states
at each date t, with the beliefs being denoted by {Bi

j,t}J
j=1, and he will choose

the best at each date t. Every ∆ periods, each agent will update his belief set
via a High Level GA. According to his best belief j, the investor i will determine
his optimal saving rate δi,∗

j,t and portfolio weights αi,∗
j,t = (αi,∗

j,1,t, α
i,∗
j,2,t, ..., α

i,∗
j,M,t)

by maximizing his lifetime expected discounted utility via a Low Level GA. We
denote investor i’s wealth at time t by W i

t . Given his saving rate δi,∗
j,t , the agent

will, therefore, invest a total of δi,∗
j,t ·W i

t−1 in the M assets at time t. Furthermore,
if we let qi

m,t be agent i’s demand for (shares of) asset m at time t, then

qi
m,t =

αi,∗
j,m,t · δi,∗

j,t · W i
t−1

ρm,t
, m = 1, 2, ..., M (1)

To be more precise regarding the terminology, we shall refer to αi,∗
j,t as trader

i’s optimal portfolio rule (under belief j at date t) and the pair {δi,∗
j,t , α

i,∗
j,t} as

trader i’s optimal investment rule. We shall now omit the notation j as long
as the effect of the belief on investment is clear from the context.

In equilibrium, prices must be such that markets clear, i.e. total demand
equals total supply:

I∑
i=1

αi,∗
m,t · δi,∗

t · W i
t−1

ρm,t
= 1, m = 1, 2, ..., M (2)

Therefore, the market equilibrium price of asset m will be determined by

ρm,t =
I∑

i=1

αi,∗
m,t · δi,∗

t · W i
t−1, (3)

and agents’ shares of assets will be determined accordingly by Equation (1). The
actual state at date t will realize, and the wealth will be distributed among the
investors proportionately according to their owned share of asset m if state m
occurs. Therefore, agent i’s wealth at date t will be determined by W i

t = qi
m,t·wm.
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3 Research Strategies and their Implementation

In this research project, we shall first extend the current single-asset artificial
stock market to its multiple-asset version in which we can simulate the evolu-
tion of portfolio behavior. The analytical models upon which our artificial stock
market is built are those of [Blume and Easley (1992)] and [Sandroni (2000)].
In a way, this research project can be regarded as an agent-based version of
[Sandroni (2000)].

3.1 Agents’ Cognition

Like all agent-based computational economic models, we shall first start with
a description of a typical agent, including his cognition and adaptive behavior.
Let us first start with the problem presented to our agents. Agents in our model
behave like a normal investor who tries to maximize his lifetime discounted ex-
pected utility by appropriately choosing his investment strategy. The investment
strategy is mainly composed of two parts, namely, saving and portfolio.

At each point in time, say t, the investor i observes a time series (history)
of the realization of the states, namely, St−1 ≡ {ms}t−1

s=0 (ms ∈ {1, 2, ..., M}).
Based on this realization St−1, he makes his decisions on a sequence of investment
strategies:

{{δi
t+r}∞r=0, {αi

t+r}∞r=0},
where δi

t is the saving rate at time t, and αi
t is the portfolio comprising the

M assets. Given investor i’s temporal utility function ui, it is hoped that this
sequence of investment strategies is rational in the sense that his lifetime dis-
counted expected utility can be maximized (see Equation 4). Mathematically,
the optimization problem can be stated as follows:

max
{{δi

t+r
}∞

r=0,{αi
t+r

}∞
r=0}

E{
∞∑

r=0

(βi)rui(ci
t+r) | St−1} (4)

subject to

ci
t+r +

M∑
m=1

αi,∗
m,t+r · δi,∗

t+r · W i
t+r−1 ≤ W i

t+r−1 ∀r ≥ 0, (5)

M∑
m=1

αi
m,t+r = 1, αi

m,t+r ≥ 0 ∀r ≥ 0. (6)

The ci
t is the consumption of investor i at time t, which satisfies Equation

(7).
ci
t+r = (1 − δi

t+r)W
i
t+r−1 (7)

Constraint (5) is simply the borrowing constraint: agents in our model cannot
invest by borrowing.
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Solving Equation (4) requires that investors have no cognitive limit. For ex-
ample, they have perfect foresight so that the future prices of asset m, {ρm,t+r}∞r=0

are known to them. In addition, they can correctly infer from the past realiza-
tion St−1 the stochastic process which generated {mt}. Unfortunately, none of
these can be satisfied in the real situation. Moreover, in markets composed of
complex heterogeneous agents, the rational expectations equilibria may not even
be computable ([Spear (1989)], [Tay and Linn (2001)]). This provides room for
other approaches, such as adaptive computing.

Over the last few years, the genetic algorithm has been the most active tool
in adaptive computing. In agent-based computational economics, it is mainly
used to deal with either the cognitive limit of optimizing, or the cognitive limit
of forecasting. Very few studies use the GA to conduct multi-level evolution,
and this research project purports to be a pioneering attempt in this direction:
we use the genetic algorithm to evolve agents’ investment strategies and beliefs
simultaneously. The two-level evolution proceeds as follows:

– At a fixed time horizon, investors update (evolve) their beliefs of the states
coming in the future.

– They then evolve their investment strategies based on their beliefs.

The two-level evolution allows agents to solve a boundedly-rational version
of the optimization problem (4). First, the cognitive limit of investors and the
resultant adaptive behavior free them from an infinite-horizon stochastic opti-
mization problem, as in Equation (4). Instead, due to their limited perception
of the future, the problem effectively posed to them is the following:

max
{{δt+h}H−1

h=0 ,{αt+h}H−1
h=0 }

E{
H−1∑
h=0

(βi)hui(ci
t+h) | Bi

t} (8)

Here, we replace the infinite-horizon perception with a finite-horizon percep-
tion of length H , and the filtration (σ-algebra) induced by St−1 with Bi

t, where
Bi

t is investor i’s belief at date t. In a simple case where mt is independent (but
not necessarily stationary), and this is known to the investor, then Bi

t can be
just the subject probability function, i.e.

Bi
t = (bi

1,t, ...b
i
M,t), (9)

where bi
m,t is investor i’s subjective probability of the occurrence of the state m

in any of the next H periods. The expectation of ui(ci
t+h), for all h, will then

be taken with respect to the probability function (9). In a more general setting,
Bi

t can be a high-order Markov process. With this replacement, we assume that
investors have only a vague perception of the future, but will continuously adapt
when approaching it. As we shall see in the second level of evolution, Bi

t is
adaptive.

Furthermore, we assume that investors will continuously adapt their invest-
ment strategies according to the sliding window shown in Figure 1. At each point
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Fig. 1. A Sliding-Window Perception of the Investors

in time, the investor has a perception of a time horizon of length H . All his in-
vestment strategies are evaluated within this reference period. He then makes
his decision based on what he considers to be the best strategy. While the plan
comes out and covers the next H periods, only the first period, {δi,∗

t , αi,∗
t }, will be

actually implemented. The next period, {δi,∗
t+1, α

i,∗
t+1}, may not be implemented

because it may no longer be the best plan when the investor receives the new
information and revises his beliefs.

With this sliding-window adaptation scheme, one can have two further sim-
plifications of the optimization problem (4) – (6). The first one is that the future
price of the asset m, ρm,t+h remains unchanged for each experimentation hori-
zon, namely, at time t,

ρi
m,t+h = ρm,t−1, ∀ h ∈ {0, H − 1}, (10)

where ρi
m,t+h is i’s subjective perception of the h-step-ahead price of asset m.

Second, the investment strategies to be evaluated are also time-invariant under
each experimentation horizon, i,e.

δi
t = δi

t+1 = δi
t+2 = ...δi

t+H−1, (11)

αi
t = αi

t+1 = αi
t+2 = ...αi

t+H−1. (12)

With these two simplifications, we replace the original optimization problem,
(4) – (6), that is presented to the infinitely-smart investor, with a modified
version which is suitable for a boundedly-rational investor.

max
{{δi

t},{αi
t}}

E{
H−1∑
h=0

(βi)hui(ci
t+h) | Bi

t} (13)

subject to

ci
t+h +

M∑
m=1

αi,∗
m,t+h · δi,∗

t+h · W i
t+h−1 ≤ W i

t+h−1, ∀ h ∈ {0, H − 1}, (14)
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M∑
m=1

αi
m,t = 1, αi

m,t > 0, ∀m, (15)

ci
t+h = (1 − δi

t)W
i
t+h−1, ∀ h ∈ {0, H − 1}. (16)

3.2 Evolution at the Low Level: Investment Strategies

Coding and Initialization A solution for the finite-horizon stochastic op-
timization problem, (13) – (16), for all well-behaved utility functions, can be
effectively and automatically solved with the genetic algorithm. The implemen-
tation of the genetic algorithm starts with a representation (coding) of solutions.
Here, we employ the real coding (the direct coding). The saving rate (δi

t) and
the portfolio (αi

t) will not be coded as bit strings, but as real-valued numbers:

{δi
t | αi

1,t, α
i
2,t, ..., α

i
M,t} (17)

To solve (13), an initial population of investment strategies with population
size N is first generated for each investor i,

GEN i
t,0 ≡ {δi

t,n(0), αi
t,n(0)}N

n=1.

The number inside the parentheses refers to the generation number in the GA
cycle. Population GEN i

t,0 is generated as follows:

– δi
t,n(0) is randomly generated from the uniform distribution U(0, 1).

– To generate a portfolio αi
t,n(0), a set of numbers

(Q1, Q2, ..., QM )

are randomly generated from U(0, 1). Then, to make sure that their sum is
equal to 1, they are rescaled as follows:

(
Q1∑M

q=1 Qq

,
Q2∑M

q=1 Qq

, ...,
QM∑M
q=1 Qq

) (18)

Fitness Evaluation: Eval { GEN i
t,g } Corresponding to (13), the fitness

measure f is simply the H-horizon discounted expected utility:

ft(n, g) ≡ f(δi
t,n(g), αi

t,n(g)) ≡ E{
H−1∑
h=0

(βi)hui(ci
t+h) | Bi

t}, (19)

where ft(n, g) refers to the fitness of the nth investment strategy in the pop-
ulation GEN i

t,g (i.e. the gth generation of the GA cycle). The Monte Carlo
simulation technique is used to evaluate the fitness (19). The way to do so is
to simulate a large number, say L, of H-horizon histories of the states based on
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investor i’s belief, Bi
t. For each simulated history l (l ∈ [1, L]), we can obtain a

realization of (19), i.e.

H−1∑
h=0

(βi)hui(ci
t+h | l), l = 1, 2, ...L.

Then, estimating ft(n, g) involves taking the sample average,

f̂t(n, g) =
∑L

l=1

∑H−1
h=0 (βi)hU i(ci

t+h | l)
L

. (20)

Genetic Operation: GEN i
t,g → GEN i

t,g+1 Once the procedure Eval {
GEN i

t,g } is completed, all investment strategies are associated with a fitness
which is the output of (20).

Eval : {δi
t,n(g), αi

t,n(g)}N
n=1 → {ft(n, g)}N

n=1 (21)

Based on their fitness, we shall revise and renew these investment strategies
based on investor i’s belief Bi

t. This revision and renewal procedure involves the
use of four standard genetic operators, namely, selection, crossover, mutation
and election.

Selection: The tournament selection with tournament size 4 is employed. For
each selection, four investment strategies are randomly selected from GEN i

t,g.
Of these, the best two will be chosen as the parents (mating pool). We denote
them by

Ix ≡ {δi
t,x(g), αi

t,x(g)},
and

Iy ≡ {δi
t,y(g), αi

t,y(g)},
where x, y ∈ [1, N ].

Crossover: With probability one (crossover rate =1), the two parents cho-
sen above will generate an offspring by taking a weighted average of the two
investment strategies, and the weights will be determined by the relative fitness
of the two strategies.

Iz ≡ (δi
t,z(g), αi

t,z(g)) (22)

=
ft(x, g)

ft(x, g) + ft(y, g)
(δi

t,x(g), αi
t,x(g)) +

ft(y, g)
ft(x, g) + ft(y, g)

(δi
t,y(g), αi

t,y(g))

Mutation: The offspring Iz will then have a small probability (mutation
rate) to mutate. If mutation happens, it will proceed as follows. For the saving
rate, a number randomly selected from the U [0, 1] will be used to replace δi

t,z(g).
For the portfolio, a set of numbers,

ε ≡ (ε1, ε2, ..., εM ),
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randomly generated from U(0, 1), will be added to αi
t,z(g) component by com-

ponent. Then the rescaling technique described in (18) will be applied. We call
the resultant strategy Iz′ .

Election: The use of the election operator guarantees that the new invest-
ment strategy is expected to perform better than the ones it replaced. In election,
we shall use (20) to evaluate the potential fitness of Iz′ , and compare it with the
fitness of the two parents, Ix and Iy. Then, only the one with the highest fitness
will be retained for the next generation, GEN i

t,g+1.

Initialization: randomly
generate population

g = 0

Fitness Evolution  Loop

n = 1

Selection

Election

Crossover

Mutation

n = N?

No

Yes

No

Yes

n = n + 1

g = G?g = g + 1

Output

 

N
n

i
nt

i
nt 1,, )}0(),0({ =αδ

N
n

i
nt

i
nt GG 1,, )}(),({ =αδ

Fig. 2. Flowchart of the Low-Level GA
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Loops Once a new investment strategy is generated, a loop (Figure 2) leads
us back to selection, which is then followed by crossover, mutation and election
and then the next new investment strategy is generated. The loop will continue
until all N strategies of GEN i

t,g+1 are generated. GEN i
t,g+1 will be evaluated

based on the Eval procedure, and based on the evaluation, genetic operators will
be applied to GEN i

t,g+1 to generate GEN i
t,g+2. This loop will also be repeated

over and over again until a termination criterion is met, e.g., when g reaches a
prespecified number G.

When the renewal and revision process is over, the investor will select the
best strategy from the last population of investment strategies, say, GEN i

t,G.

(δi,∗
t , αi,∗

t ) = arg max
GENi

t,G

{ft(n, G)}N
n=1 (23)

Except for the CAPM believers, the procedure described above, as summa-
rized in Figure 3, will be applied to all investors to generate their optimal in-
vestment decisions. The behavior of CAPM believers will be discussed later.

3.3 Evolution at the High Level: Beliefs

At the low level of evolution, the investor revises and renews his investment
strategies with respect to a specific belief selected from a population of be-
liefs {Bi

j,t}J
j=1. In other words, at each point in time, the investor may have

more than one model of uncertainty in the world. The idea that each agent can
simultaneously have several different models of the world, which are compet-
ing with each other in a co-evolving process, is a distinguishing feature of the
population learning models ([Holland and Miller (1991)], [Arthur et. al. (1997)],
[Vriend (2000)]). Of course, these models are not equally promising, and the
investor tends to base his decision (investment strategies) on one of the most
promising ones. However, as times goes on, his beliefs of the world will be revised
and renewed in light of the newly incoming information. In this section, we shall
describe how genetic algorithms can be applied to modeling the beliefs updating
process.

Coding and Initialization In the Blume-Easley-Sandroni model, each in-
vestor’s perception of the uncertainty (finite-state stochastic process) of the
market can be characterized by two elements: first, the dependence structure
(k), and, second, the sample size (d). Based on this characterization, the in-
vestor believes that the market over the last d days follows a kth-order Markov
process. According to this belief, he would use {mt−s}v+d+1

s=v+1 to estimate the
Markov transition matrix where the notation v will be introduced later. As a
result, each belief can be represented by a binary string, of length τ1 + τ2,

a1a2...aτ1︸ ︷︷ ︸
τ1bits

aτ1+1aτ1+2...aτ1+τ2︸ ︷︷ ︸
τ2bits

, ai ∈ {0, 1}, ∀1 ≤ i ≤ τ1 + τ2
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Population of saving
and portfolio with
population size N

n = 1

Input the nth strategy

l = 1

Input the lth history

Calculate
l = L? Yes

Yes

No

No

l = l + 1

Calculate

n = N?

Genetic Operators
Loop

n = n + 1

Output

 

N
n

i
nt

i
nt gg 1,, )}(),({ =αδ

( ) ( )lcU i
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i
H

h

hi
+

−

=
∑

1

0

β

N
nt gnf 1)},({ =

( )ntnt
i

ntEU ,,, ,αδ

Fig. 3. The Flowchart of the Investment Optimization

that has the following interpretation: the states follow a Markov process of the
order

k = (
τ1∑

i=1

2τ1−iai) (24)

over the last

d = (
τ1+τ2∑

i=τ1+1

2τ1+τ2−iai) + c (25)

days in what we have referred to as the training period which will be specified
later, where c is the minimum number of observations required for the estimation.
In our current model, we simplify and limit the dependent structure (k) to 0 or 1
, that is, we only assume the stochastic process to be iid or Markov. Therefore,
we assume that c = 10 and τ1 = 1, τ2 = 9 throughout the paper.
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At the initial date (t = 0), all investors are endowed with a population of
J beliefs (J bits), which are randomly generated. Out of these J beliefs, the
investor will randomly choose one on which his investment decision is based.
Then every ∆ days, this population of belief will be reviewed and revised based
on the fitness function.

Belief Updating Scheme Agents in our model behave like machine-learning
agents. They are assumed to know the risk of over-fitting, and hence use validated
data to perform the model selection. One way of ensuring that our agents behave
so is to set the fitness function as the fitting error in the validation set, rather
than the training set. Therefore, we design the belief updating scheme as in
Figure 4.

 

Validation 
period 

Training 
period 

t= 

Fitness evaluation 
Selection 
Crossover 
Mutation 
Election 
Choose the best from the 
new generation. 

t =  +1 t=2  ∆∆ ∆

Fitness evaluation 
Selection 
Crossover 
Mutation 
Election 
Choose the best from the 
new generation. 

Fitness evaluation 
Choose the best. 

∆

Introduce High- 
Level GA every  

period  

Fig. 4. The Belief Updating Scheme

As we can see from this figure, at each time t agents retain the most recent
v days as the validation period. They use the data before the validation period,
that is, the data of the training period, to estimate the parameters of each belief.
Then a fitness measure for the probability function is the likelihood,

Li
j,t = L({mt−s}v

s=1 | Bi
j,t), (26)

where {mt−s}v
s=1 is the state history over the last v days. Equation (26) is the

likelihood of the observations {mt−s}v
s=1 in the validation period under the belief

Bi
j,t. Every ∆ period, after they finish the evaluation of each belief’s fitness, they

apply the genetic operation to update their belief set, and the belief with the
highest fitness will be chosen. Even in the period that the genetic operation is
not applied, they evaluate the fitness of beliefs in their current belief set using
the newest data and choose the best from it.
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Genetic Operation Once the procedure Eval {Bi
j,t}J

j=1 is completed, all be-
liefs are associated with a fitness which is the output of (26).

Eval :{Bi
j,t}J

j=1 → {Li
j,t}J

j=1 (27)

Based on this fitness evaluation, we will revise and renew investor i’s beliefs
by using the following four genetic operators: selection, crossover, mutation and
election.

Selection: A tournament selection with tournament size 4 is adopted. The
best two beliefs will be chosen as the parents (mating pool).

Crossover: With probability one (crossoverrate = 1), the two parents
chosen above will generate an offspring by the uniform crossover. With this
crossover, each bit position of the offspring will be taken randomly either from
the father or the mother with a one-half chance for each. For an illustration, let
us consider the pair of parents to be Bi

x,t = 0010101010 and Bi
y,t = 0111110010.

Then, an offspring, Bi
z, can be

Bi
z = 0011100010 → (kz , dz) = (0, 240).

Mutation: There is a small probability (mutation rate) by which each bit of
Bi

z may encounter a change. For example, the mutation which changes the first
bit from “0” to “1”, and the fifth bit from “1” to “0” will result in a new string:

Bi
z′ = 0011000010 → (kz′ , dz′) = (0, 208).

Election: Finally, Bi
z′ will also be evaluated by the observations {mt−s}v

s=1,
and the likelihood will be figured out. We will then compare the likelihood from
Bi

z′ with the likelihood from the parent models, and the best one will be passed
to the next generation, {Bi

j,t}J
j=1.

Loops Once a belief is generated, a loop in (Figure 5) will lead us back to
selection, which is then followed by crossover, mutation and election before the
next belief is generated. The loop will continue until all J beliefs of {Bi

j,t}J
j=1

are generated. One of the beliefs, Bi,∗
j,t , will be chosen based on the likelihood

criteria,
Bi,∗

t = argmax
j

L({mt−s}v
s=1 | Bi

j,t), (28)

The belief set will remain unchanged for the next ∆ periods, when another loop
of revision and renewal process is conducted, and Bi,∗

t+∆ is brought about.
Except for the CAPM believers, the procedure will be applied to all investors

so that they update their beliefs.

3.4 The Behavior of CAPM believers

The agent-based artificial stock market can be used to directly test the surviv-
ability of different portfolio rules. To achieve this goal, we introduce the CAPM
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Fig. 5. Flowchart of the High-Level GA

believers, who use a prespecified formula (a portfolio rule) to determine their
portfolios, and the portfolio behavior is time-invariant and not affected during
the course of evolution.

The CAPM believers are investors who believe in the CAPM (type CAPM)
and use it as a rule of thumb. They first work out the composition of the market
and the risk-free portfolios. Then, according to their degree of risk aversion, they
choose their preferred combination between the two. We index CAPM traders
by means of κ; at date t, investor κ randomly chooses γκ

t ∈ [0, 1] from U(0,1)
and invests in asset m a portion α

CAPM(k)
m,t of his savings such that:

α
CAPM(k)
m,t = γkαF

m,t + (1 − γk)αM
m,t (29)
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where αF
m,t ≡ ˆρm,t/wm,t∑

v
ˆρv,t/wv,t

and αM
m,t ≡ ˆρm,t∑

v
ˆρv,t

. For simplicity, we assume that

they have static expectations, i.e. ˆρm,t = ρm,t−1 and ˆρv,t = ρv,t−1.
As to their formula for savings rates, we design that in order to reflect the

spirit of the formula for the CAPM portfolio as

δ
CAPM(k)
t = γkδF

t + (1 − γk)δM
t (30)

where δF
t ≡ 0 and δM

m,t ≡
∑I

i=1 WSi
t−2 · δi

t−1.

3.5 Summary

Figure 6 is a summary of the agent-based artificial stock market.
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Fig. 6. A Summary of the Agent-Based Artificial Stock Markets
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4 Simulation Results

4.1 Parameter Setup

The simulations we conducted share common values for the following parameters.
There are 40 agents in the market, including 5 CAPM believers and 35 agents
with 7 different types of utility functions. Therefore, I = 40. The 35 agents
include 7 types of preference and one type includes 5 agents. The last type of
utility function is generated from a utility generation program which generates
5 sets of parameters (a0, a1, a2, a3, a4, a5, a6) to make the 5 utility functions
u(c) = a0 + a1 · c + a2 · c2 + a3 · c3 + a4 · c4 + a5 · c5 + a6 · c6 all satisfy the criteria
that u

′
> 0 and u” < 0. The first 6 types of utility function are 1

β1
log(α1 + β1c),√

c, α3 + β3c, α4
β4

exp(β4c), 1
(γ5+1)β5

(α5 + β5c)γ5+1, c− α6
2 c2, respectively, where

αi, βi, γi, i = 1, 3, 4...6, are parameters, and c is the consumption amount.2 These
6 types of agents will be called type 1, type 2...type 6 agents, respectively. The
number of beliefs in each agent’s belief set, J , is set to be 100. There are only 5
assets available in the market, and the dividends of assets 1, 2, 3, 4, 5 are 5, 4,
3, 2, 1, respectively. The number of investment rule that each agent can choose
from, N , is 100. At each point of time, the investor has a perception of a time
horizon with length H = 25. Agents simulate 5 H-horizon histories of the states
based on their belief in order to evaluate the fitness of their investment rules;
that is, L = 5. The number of generations that the Low-Level GA runs in one
period, G, is set to be 50. The γ values exogenously given to 5 CAPM believers
are 0.1, 0.2, 0.3, 0.4 and 0.5, respectively. The crossover rate is set to be 1 while
the mutation rate is set to be 0.03.

We conducted 4 series of simulations as follows:

Table 1.

Parameters of utility function    Randomly generated  Exogenously given 

 Agents share equal lengths of validation period Series1:     100 times Series2:     100 times 

 Agents set different lengths of validation period Series3:      20 times Series4:      20 times 

 In series 1 and 3, the parameters are randomly generated from 1 to 100. In series 2
and 4, we set the parameters : (α1 = 0, β1 = 1, β3 > 0, α4 > 0, β4 < 0, α5 > 0, β5 >
0, γ5 < 0, α6 < 1

5
).

4.2 Main Results

Two main results are obtained. The first result is concerned with the beliefs.
One phenomenon is that, through the calculation of the Kolmogorov-Smirnov

2 Also see Chi-fu Huang and Robert H. Litzenberger (1988), pp.27-33



18 Shu-Heng Chen et al.

statistics, we find that agents’ beliefs get closer to the true process in simulations
assuming that agents have longer validation periods. Table 2, which follows,
exhibits all agents’ averages of the Kolmogorov-Smirnov statistics3 representing
each agent’s accuracy of lifetime average belief under iid as the true model, and
Table 3 exhibits the Markov process as the true model.

Table 2.

  v=200 v=100 v=50 v=30 v=15 

1st simulation 0.08003069 0.061986 0.172932 0.304092 0.374112 

2nd simulation 0.02486834 0.044006 0.165943 0.218958 0.297478 

3rd simulation 0.06862377 0.09044 0.259228 0.311999 0.392694 

4th simulation 0.05511849 0.06775 0.218943 0.294641 0.411535 

5th simulation 0.03167815 0.018754 0.20938 0.340222 0.427986 

6th simulation 0.05522913 0.056192 0.110966 0.174268 0.38312

7th simulation 0.07634258 0.059773 0.10703 0.0707 0.084455 

8th simulation 0.07749052 0.047162 0.270188 0.357431 0.421027 

9th simulation 0.05525984 0.089279 0.227164 0.300819 0.331442 

10th simulation 0.04741502 0.058663 0.162812 0.227908 0.261784 

Average 0.05720565 0.0594 0.190458 0.260104 0.338563 

 

We may notice that, if the length of the validation is set to be longer, the
accuracy of agents’ beliefs will be enhanced.

Another phenomenon is that, regardless of whether the true model is iid
or first-order Markov process, in different simulations with the same setting of
parameters, each agent’s belief regarding the dependence structure, k, may be 0
or 1, and it will switch over time.

The second result is concerned with the survivors. In our results for the
series 1 simulations, except for the CAPM believers with low γ, the survivors
are always type 2 agents. In our results for the series 2 simulations, by setting
α1 = 0, β1 = 1, except for the CAPM believers with low γ, the survivors are
always type 1 and 2 agents. Therefore, we find that the utility function does
play an important role in survivability. To enlarge the difference in terms of the
accuracy of lifetime beliefs between agents in order to ensure that the belief is
not as important as the preference, in series 3 and 4, we give the agents of the
same type different lengths of validation, say 150, 100, 70, 50, and 30, and each
type of agents share these levels of length. We find that the survivors are always
type 2 agents with longer lengths of validation in series 3, and type 1 and 2
agents with longer lengths of validation in series 4. Hence, we conclude that the

3 The Kolmogorov-Smirnov statistics calculate the largest difference in terms of the
cdf between the belief and the true model.
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Table 3.

  v=200 v=100 v=50 v=30 v=15 

1st simulation 0.213899 0.208188 0.418389 0.506973 0.547073 

2nd simulation 0.09156 0.099372 0.243963 0.313968 0.397163 

3rd simulation 0.219324 0.210142 0.441415 0.558714 0.603704 

4th simulation 0.036714 0.093825 0.193324 0.250146 0.325806 

5th simulation 0.055175 0.084149 0.239975 0.348091 0.413207 

6th simulation 0.147828 0.194238 0.377143 0.346744 0.399653 

7th simulation 0.087423 0.132142 0.279255 0.316447 0.32759 

8th simulation 0.118235 0.117335 0.225133 0.270151 0.335338 

9th simulation 0.203246 0.196702 0.24599 0.243723 0.310246 

10th simulation 0.05436 0.075059 0.179239 0.241425 0.282946 

Average 0.122776 0.141115 0.284383 0.339638 0.394272 

 

preference plays a more important role in survivability while the accuracy of
beliefs still matters.

5 Discussions

5.1 Discussions about the beliefs

The first phenomenon is easy to understand for, when the validation period is
longer, the state pattern of the validation period will be closer to the true model
arising from the larger sample. This leads agents to choose to observe a longer
period for the training data, i.e. a larger d, because the training data are also
generated from the true model.

As to the second phenomenon, in this belief scheme, agents will try to find
the (k, d) whose probability function summarized from the training data can fit
the state pattern of validation period best. However, the data in the validation
period are finite, and their pattern is impossible to perfectly match the true
process. In further discussions which follow below, we shall discuss the reason
why agents sometimes choose to believe that k = 1, i.e. that the Markov process
under iid is the true model, and the reason why agents sometimes choose to
believe that k = 0 under the assumption that the Markov model is the true
model.

Under iid being the true model We first discuss the reason why agents
may choose to believe that k = 1 under iid as the true model. Let us take one
simulation with v=200 as an example. At time t=100, a typical belief with a
markov transition matrix is shown as Table 4.

Furthermore, the true iid process is (0.21037, 0.20731, 0.10366, 0.18903,
0.28963). As we can see, each row of this belief is similar to the true model.
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Table 4.

 

 t              t+1 1 2 3 4 5 K-S statistics

1 0.25 0.19318 0.07955 0.18182 0.29545 0.03963

2 0.2 0.25 0.13 0.23 0.19 0.09963

3 0.16071 0.19643 0.125 0.21429 0.30357 0.06054

4 0.19101 0.24719 0.13483 0.19101 0.23596 0.05367

5 0.15447 0.20325 0.13821 0.17074 0.33333 0.05996

It is impossible for the state pattern in the validation period to be exactly the
same as the true one unless the length of the validation period is infinite. There-
fore, agents may use the Markov table to approximate the true table. In addition,
by deviating the probabilities of each row vector from the true iid probability
vector, the Markov table may fit the pattern of the validation period even better.

Under Markov being the true model If the true model follows a Markov
process, agents may choose to believe that state occurrence follows the iid pro-
cess. This is not surprising because they are trying to fit the stationary distribu-
tion of the true Markov model. To examine this, let us take some simulation with
its length of validation being 100 as an example. The stationary distribution of
the true Markov table is (0.12513, 0.31706, 0.08811, 0.19841, 0.27233). Further-
more, the number of occurrence times for each state in the 100 periods is (7, 38,
9, 20, 26), respectively. As we can see above, the frequency of occurrence of each
state is similar to the stationary distribution of the true Markov model. Now
let us take a belief with k=0 as an example. Its corresponding probability func-
tion summarized from the training data at that time point is (0.11944, 0.28238,
0.07742, 0.24413, 0.27812). In addition, it is similar to the stationary distribu-
tion of the true Markov model. Therefore, we can infer that the reason why this
agent tries this iid vector is that he is trying to fit the stationary distribution of
the true Markov model.

Therefore, the survival pressure derived from the finite sample does not nec-
essarily guarantee the convergence of the belief to the true model. However, this
answer is not atypical. In fact, it is similar to what [Lettau (1997)] and many
others found.

5.2 Discussions about the survivors

As we described, in series 1 simulations, type 2 agents and CAPM believers
with low γ exhibit the strongest survivability; in series 2 simulations, type 1
and 2 agents and CAPM believers with low γ exhibit the strongest survivability.
Therefore, we shall now discuss the survival factors of type 1 and 2 agents and
CAPM believers with low γ, respectively.

The survival factor of type 2 agents The reason for their strong survivabil-
ity is nothing to do with their beliefs. This is because it is impossible for certain
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agents’ average lifetime beliefs to always be the most accurate in several different
simulations. In other words, the reason why agents with the squared-root (c) util-
ity always survive is not likely to be that their lifetime beliefs always happen to
be the most accurate. In fact, we take some typical simulation of series 1 in which
type 2 agents are the only survivors except for CAPM believers as an example.
We compute the average cdf for each agent’s lifetime beliefs, and compute the
largest distance when compared with the true distribution, the Kolmogorov-
Smirnov statistics. Then we average the Kolmogorov-Smirnov statistics of 5
agents with the same utility, to obtain the Kolmogorov-Smirnov statistics of
7 utility types which are: (0.01866, 0.01925, 0.01905, 0.01867, 0.01941, 0.01818,
0.01888). Obviously, the Kolmogorov-Smirnov statistics for type 2 agents, 0.01925,
is not the smallest one. That is, their lifetime belief is not the most accurate one.
However, they survive in this simulation.

Therefore, the only possible reason is that the investment rule derived from
maximizing the expected discounted square-root (c) utility function carries some
characteristics that support their survival. The investment rule includes two
parts, one being the portfolio rule and another is the saving rate. From several
examples we find that the portfolio rule of agents with the squared-root (c) utility
is not better then that of others. Taking the same case above as an example, we
first compute each agent’s lifetime average portfolio, (AP i

1 , AP i
2 , AP i

3, AP i
4 , AP i

5).
Then we compute the expected payoff: EP i = AP i

1 ∗ Ew1 + AP i
2 ∗ Ew2 + . . . +

AP i
5 ∗ Ew5 for each agent i’s lifetime average portfolio, where Ewm, ∀m = 1...5

is the probability of a state m occurrence times the dividend of asset m. Then
we average the EP value of 5 agents with the same utility, and we obtain the av-
eraged EP for 7 utility types: (0.611386, 0.609724, 0.615229, 0.609119, 0.647657,
0.645967, 0.603597). As we can see, the average EP of agents with the squared-
root (c) utility, 0.609724, is not the highest one. Therefore, the portfolio rule for
agents with the squared-root (c) utility is not the best in this case. However,
they indeed survive.

This forces us to notice the characteristics of saving rates that agents choose.
Furthermore, an obvious characteristic has been observed to support the argu-
ment that the saving rate plays a much more important role than the portfolio in
determining the survival of agents. The obvious characteristic is that the saving
rate chosen by agents with square-root (c) utility is most stable for life. Unlike
other agents, they never choose a saving rate that is too low in their life. We
believe that this is the main reason for their survival.

Let us take 10 typical simulations of series 1 (5 simulations are conducted
under the true model being iid, and 5 under the markov process. All of them
are simulated under a length of validation period of 100) in which agents with
square-root(c) utility survive with some CAPM believers as an example. For
each example, we average the maximum, higher quantile point, medium, lower
quantile point and minimum of their saving rates over the 100 periods for 5
agents with the same utilty. Then, we average the values in 10 simulations,
and obtain Table 5 in which each column shows the values of each utility type,
respectively.
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Table 5.

min 0.0027 0.20773 0.0019 0.0011 0.0026 0.05245 0.0016

Q1 0.2935 0.42391 0.23788 0.2387 0.4979 0.11594 0.49093

medium 0.575 0.61456 0.91318 0.44552 0.92016 0.72471 0.57388

Q3 0.72688 0.90163 0.95569 0.84291 0.95553 0.94941 0.88032

max 0.96668 0.96034 0.95968 0.96156 0.9685 0.96157 0.96918

mean 0.246825 0.391177 0.406327 0.248742 0.439013 0.297095 0.286658

 

As we can see, the mean of the saving rates of agents with the squared-root
(c) utility, 0.39118, is not the highest. However, they never choose an extremely
low saving rate. Figure 7 is the corresponding Box-Whisker plot. The horizontal
axis represents the different utility types, and the vertical axis represents the
levels of saving rates.
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Fig. 7. Box-Whisker plot of saving rates

Now let us observe and discuss these points in more detail. We notice that
every time when the asset prices for the last period are particularly high on
average, the agents’ saving rates decrease for this period. This is because they
use the prices of the last period as expected prices to estimate the return from
the investing their J rules as described in Section 3.1; therefore, when the prices
of the last period are on average high, they predict that the investing will bring
a low return and, therefore, they will tend to choose the investment rule with a
low saving rate.

Although all agents lower their saving rates, type 2 agents react mildly com-
pared to others. Take a typical simulation as an example. In this simulation, the
average prices of periods 10, 12, 18 and 20 are particularly high, and the saving
rates of agents, excluding type 2 agents, for periods 11, 13, 19 and 21 decrease
dramatically. Table 6 shows the saving rates for different types of agents in the
first 25 periods.
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Table 6.

  type 1 type 2 type 3 type 4 type 5 type 6 type 7 

period 1 0.794 0.919 0.959 0.8405 0.953 0.4023 0.9566 

period 2 0.267 0.3036 0.006 0.006 0.55 0.32 0.049 

period 3 0.828 0.9522 0.954 0.869 0.961 0.3225 0.952 

period 4 0.8519 0.679 0.917 0.944 0.961 0.8256 0.9578 

period 5 0.8519 0.679 0.9327 0.944 0.96 0.8226 0.9578 

period 6 0.017 0.463 0.0347 0.015 0.96 0.2964 0.067 

period 7 0.8957 0.855 0.958 0.9457 0.96 0.7101 0.959 

period 8 0.051 0.396 0.0142 0.1509 0.6511 0.024 0.013 

period 9 0.937 0.8614 0.9626 0.949 0.9638 0.956 0.9503 

period 10 0.8097 0.5839 0.7807 0.5977 0.9638 0.6641 0.889 

period 11 0.005 0.4423 0.006 0.001 0.004 0.003 0.0729 

period 12 0.917 0.6024 0.8795 0.8768 0.9562 0.872 0.6662 

period 13 0.001 0.2109 0.001 0.003 0.007 0.001 0.001 

period 14 0.8869 0.9556 0.956 0.8906 0.951 0.052 0.9567 

period 15 0.1179 0.3861 0.007 0.01 0.004 0.153 0.0355 

period 16 0.9532 0.9104 0.951 0.949 0.9482 0.956 0.951 

period 17 0.9566 0.926 0.957 0.9561 0.9605 0.956 0.959 

period 18 0.9566 0.926 0.9552 0.9561 0.9605 0.956 0.958 

period 19 0.006 0.241 0.003 0.001 0.007 0.002 0.006 

period 20 0.943 0.9422 0.9653 0.9418 0.9591 0.957 0.956 

period 21 0.009 0.2209 0.073 0.008 0.1601 0.059 0.036 

period 22 0.963 0.9535 0.959 0.9601 0.954 0.96 0.9375 

period 23 0.9184 0.6517 0.9345 0.905 0.9235 0.9444 0.907 

period 24 0.037 0.3027 0.07 0.453 0.002 0.001 0.619 

period 25 0.9564 0.9486 0.95 0.9643 0.9592 0.959 0.9548 

 

We also observe that, when the period that an agent chooses an extremely low
saving rate, his wealth decreases terribly. Furthermore, after this kind of event
happens several times, he is driven out of the market. Therefore, we conclude
that the stablility of saving rates is the most important factor in terms of the
survival of agents with square-root (c) utility functions.

The survival factor of type 1 agents In series 2 simulations in which we
set α1 = 0, β1 = 1, we found that type 1 agents show strong survivability, too.
We observed their saving rates, and found that, over the 100 periods, the saving
rates became nearly fixed at their discount rate, the β value, along the time
path.

[Blume and Easley (1992)] provide the analytical solution for the investment
rule maximizing expected discounted utility in Theorem 5.1 that states “Suppose
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trader i’s objective function is Ei[
∑∞

t=1 log(ci
t)]. If beliefs over states at date t

are qi
t and the value above is finite for any investment rule, then the optimal

investment rule is the simple rule δi
t = βi, αi

t = qi
t at each date.”

Our Low-Level GA does the optimality job quite well. Take some type 1 agent
in a simulation as an example. His lifetime average investment rule (δ̄i, ᾱi

1, ᾱ
i
2, ᾱ

i
3, ᾱ

i
4,

ᾱi
5)=(0.5897, 0.0589, 0.1847, 0.3006, 0.2484, 0.2074) approximates the theo-

retically optimal rule (β, q̄i
1, q̄

i
2, q̄

i
3, q̄

i
4, q̄

i
5)=(0.59, 0.0476, 0.1898, 0.3002, 0.2502,

0.2107).
Similarly, we could find some examples in which they survive while their

portfolio rule and the accuracy of their lifetime beliefs are not the best among
agents. Again, the stablility of the saving rates is the key factor in their survival.

The reason for type 1 and type 2 agents choosing stable saving rates
From the Euler equation, the basic condition for choosing consumption over time
is known: r = β − [u”(c)·c

u′(c) ]( ċ
c ).

where r is the rate of return on investment.
Because the coefficient of RRA (Relative Risk Aversion) is defined as −[u”(c)·c

u′(c) ],
the Euler equation described above can be rewritten as follows:

r = β + RRA · ( ċ

c
) (31)

From Equation (31), we know that when r decreases, if someone’s coefficient of
RRA approaches zero, his ċ

c must drop dramatically. This will drive agents with
the coefficients of RRA approaching zero to choose an extremely low saving rate
when the rate of return on investment clearly decreases.

Table 7 summarizes the coefficient of RRA for each type of agent in series 1
and 2.

Obviously, in series 1, the only agents with constant RRA are type 2 agents
(RRA=0.5). This CRRA characteristics free them from the crisis of zero RRA
approaching and then win them a stable saving rate path. The reason for the sta-
ble saving rate path of type 1 agents in series 4 is similar. Their utility functions
are CRRA (RRA=1), too.

The survival factor of CAPM believers with low γ values CAPM be-
lievers do not have to guess the true distribution, but instead follow the formula
described earlier.

Notice that the market portfolio part (and the corresponding part in the
savings rule) reflects the weighted average of other agents’ investment rules (in
this period if they have perfect foresight). In particular, it assigns a larger weight
to the dominant agents’ portfolio. If his γ value is 0, then the CAPM believer
behaves just as a dominant agents’ imitator. Hence, the market portfolio part is
the superior position of their rules.

We further analyze the reason why being endowed with a high γ value is
not good for survival as follows. In the risk-free portfolio part, the original idea
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Table 7.
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The reason why some types of agents’ RRA approaches zero is that the wealth on
average is quite small, not to mention the consumption. When c approaches zero,
those RRA values also approach zero.

of dividing the asset price by its dividend is that the risk of the asset with a
higher dividend is always higher, so investing assets with high dividends are not
suggested from the risk-free point of view. However, in our economy, the worst
return from investing in any asset is just zero. This risk-free portfolio part makes
CAPM believers invest less in assets that give higher dividends than the optimal
portfolio. Hence, we think that the risk-free portfolio part is an inferior factor
for CAPM believers to survive in our economy.

Besides, agents in the economy are assumed to be boundedly-rational. We
further assume that they have static expectations, i.e. ˆρm,t = ρm,t−1. Therefore,
what CAPM believers mimic is other agents’ portfolios in the previous period.
However, this only misleads CAPM believers in one kind of situation. Let us
explain this step by step.

There are two factors that determine non-formula agents’ portfolios. One is
the assets’ dividends, but they are time-invariant. Another is the belief regarding
the probability that each asset will give a dividend, and the belief is time-variant.

When the true model follows the iid process, the probability that each state
will occur will never change from the beginning to the end. If agents believe that
the true model follows the iid process, they will try to fit the same model in
each period. Therefore, it does not make much difference if the CAPM believers
mimic non-formula agents’ beliefs in the last or current period. Even if they be-
lieve that true model follows a Markov process, each row in their Markov table
approximates the same time-invariant true iid probability vector. Therefore, the
CAPM believers’ mimicking the non-formula traders’ beliefs in different periods
is the same as mimicking similar probability functions in different rows. There-
fore, when the iid is the true model, the effect of boundedly-rational CAPM
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believers mimicking other agents’ investment rules in the last period is similar
to the effect where perfect foresight is assumed.

When the true model follows the Markov process, if other agents’ beliefs are
trying to fit the stationary distribution of the true model, the effect of boundedly-
rational CAPM believers mimicking other agents’ last-period portfolios is the
same as the effect where perfect foresight is assumed, because the stationary
distribution will also never change from beginning to the end. However, if agents
believe that the Markov process is the true model, boundedly-rational CAPM
believers will be misled. Take two of our simulations for a comparison. We assume
that the true model follows the Markov process, that the lenghth of the validation
period is 100, and that non-formula agents’ saving rates are equal to 0.59 in both
cases. The γ values assigned to each set of CAPM believers are 0.1, 0.2, 0.3, 0.4,
0.5 in both cases. The only difference is that, in the first case, most of the time
agents believe that the true model follows the iid process and, in the second
case, the markov process. The CAPM believer with the γ value =0.1 survives
in both cases. However, the agent with γ value=0.2 can only survive in the first
case. Therefore, we believe that CAPM believers are more or less misled in the
second situation, and hence, only the CAPM believers with the lowest γ value
can survive. This finding tends to support our hypothesis.

6 Conclusion

Our agent-based simulation results are largely consistent with [Blume and Easley
(1992)]. First, we also find that rational log-utility traders survive in series 2
simulations.4 Secondly, rational CRRA agents with moderately high RRA coef-
ficients such as type 2 agents also survive. In fact, we also try u(c) = cα2 , and
we explore several levels of parameter α2 values. We find that when α2 increases
(meaning that the agent’s coefficient of RRA decreases), his survivability de-
creases. Thirdly, forecasting accuracy does not guarantee survival. The example
mentioned in Section 5.2 shows that, despite their lowest lifetime Kolmogorov-
Smirnov statistics, 0.01818, the type 6 agents are driven out in that simulation.
Furthermore, to enlarge the differences in the accuracy of lifetime beliefs among
agents, in series 3 and 4, we set that the same types of agents have different
lengths of validation, say 150, 100, 70, 50 and 30, and that each type of agents
shares these levels of length. We find that the survivors are always type 2 agents
with lengths of validation equal to 150 and 100 (70 also survive sometimes) in
series 3, and type 1 and 2 agents with length of validation equal to 150 and 100
(70 also survive sometimes) in series 4. The survivability of other types of agents
with a length of validation equal to 150 is worse than that of type 2 agents with
a length of validation equal to 70 in series 3. Hence, we conclude that preference
plays a more important role in survivability, although accuracy of belief does
still matter.

4 The type 1 agents in series 1 have a different coefficient of RRA from that of the log
utility function discussed in [Blume and Easley (1992)].
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However, in using the agent-based model, we also find something which was
not shown in [Blume and Easley (1992)]. First, there are other types of traders
that may survive in the market as well, e.g., the CAPM traders. Secondly, the
reason why CRRA traders can survive in the market is because of their implied
stable saving behavior. This may help us understand locked-up saving contracts,
such as the national annuity program. Finally, if we assume that agents have the
same discount factor, the result of [Blume and Easley (1992)] remains robust
even if saving rates are determined endogeously. Furthermore, their savings rule
also exhibits superiority in determining survival.

References

[Arthur et. al. (1997)] Arthur, W.B., Holland, J., LeBaron, B., Palmer, R. and Tayler,
P. (1997), “Asset Pricing under Endogenous Expectations in an Artificial Stock
Market,” In: Arthur, W.B., Durlauf, S. and Lane, D. (Eds.), The Economy as an
Evolving Complex System II, Addison-Wesley, Reading, MA, pp. 15–44.

[Blume and Easley (1992)] Blume, E. and E. Easley (1992), “Evolution and Market
Behavior,” Journal of Economic Theory, Vol. 58, pp. 9-40.

[Cacho and Simmons (1999)] Cacho O., and P. Simmons (1999), “A Genetic Algorithm
Approach to Farm Investment,” Australian Journal of Agricultural and Resource
Economics, Vol. 43, No. 3, pp. 305–322.

[Chen and Yeh (2001)] Chen S.-H., and C.-H. Yeh (2001), “Evolving Traders and the
Business School with Genetic Programming: A New Architecture of the Agent-
based Artificial Stock Market,” Journal of Economic Dynamics and Control, Vol.
25, pp. 363–393.

[Chen and Yeh (2002)] Chen S.-H., and C.-H. Yeh (2002), “On the Emergent Proper-
ties of Artificial Stock Markets: The Efficient Markets Hypothesis and the Rational
Expectations Hypothesis,” Journal of Economic Behavior and Organization, forth-
coming.

[De Long et al. (1991)] De Long, J., A. Shleifer, L. Summers, and R. Waldman (1991),
“The Survival of Noise Traders,” Journal of Business, Vol. 64, pp. 1-19.

[Farmer and Lo (1999)] Farmer, J.D. and Lo, A.W. (1999), “Frontiers of Finance: Evo-
lution and Efficient Markets,” Proceedings of the National Academy of Sciences,
Vol. 96, pp. 9991–9992.

[Kelly (1956)] Kelly, J. L. (1956), “A New Interpretation of Information Rate,” Bell
System Technical Journal, Vol. 35, pp. 917-926.

[Holland and Miller (1991)] Holland, J., and J. Miller (1991), “Artificial Adaptive
Agents in Economic Theory,” American Economic Review, Vol. 81, No. 2, pp.
365–370.

[Jagannathan and Wang (1996)] Jagannathan, R. and Z. Wang (1996), “The Condi-
tional CAPM and the Cross-Sections of Expected Returns,” Journal of Finance,
Vol. 51, pp. 3-53.

[LeBaron et al. (1999)] LeBaron B., W. B. Arthur, and R. Palmer (1999), “Time Series
Properties of an Artificial Stock Market,” Journal of Economic Dynamics and
Control, Vol. 23, pp. 1487–1516.

[LeBaron (2000)] LeBaron, B. (2000), “Agent Based Computational Finance: Sug-
gested Reading and Early Research,” Journal of Economic Dynamics and Control
Vol. 24, pp. 679–702.



28 Shu-Heng Chen et al.

[LeBaron (2001)] LeBaron, B. (2001), “Evolution and Time Horizons in an Agent
Based Stock Market,” Macroeconomic Dynamics, forthcoming.

[Lettau (1997)] Lettau, M. (1997), “Explaining the Facts with Adaptive Agents: the
Case of Mutual Fund Flows,” Journal of Economic Dynamics and Control, Vol.
21, No. 7, pp. 1117–1147.

[Merton and Samuelson (1974)] Merton, R. C. and P. A. Samuelson (1974), “Fallacy of
the Log-Normal Approximation to Optimal Portfolio Decision-Making over Many
Periods,” Journal of Financial Economics, Vol. 1, pp. 67-94.

[Sandroni (2000)] Sandroni, A. (2000), “Do Markets Favor Agents Able to Make Ac-
curate Predictions?” Econometrica, Vol. 68, No. 6, pp. 1303-1341.

[Sciubba (1999)] Sciubba, E. (1999), “The Evolution of Portfolio Rules and the Capital
Asset Pricing Model”, DAE Working Paper no. 9909, University of Cambridge.

[Spear (1989)] Spear, S. (1989). “Learning Rational Expectations Under Computabil-
ity Constraints,” Econometrica Vol. 57, pp. 889-910.

[Szpiro (1997)] Szpiro, G. G., (1997), “The Emergence of Risk Aversion,” Complexity
2, pp. 31–39.

[Tay and Linn (2001)] Tay, N. and S. Linn (2001), “Fuzzy Inductive Reasoning, Ex-
pectation Formation and the Behavior of Security Prices,” Journal of Economic
Dynamics and Control, Vol. 25, pp. 321-361.

[Tesfatsion (2001)] Tesfatsion, L. (2001), “Introduction to the Special Issue on Agent-
Based Computational Economics,” Journal of Economic Dynamics and Control,
Vol. 25, pp. 281–293.

[Vriend (2000)] Vriend, N. J. (2000), “An Illustration of the Essential Difference be-
tween Individual and Social Learning, and its Consequences for Computational
Analyses,” Journal of Economic Dynamics and Control, Vol. 24, pp. 1–19.

[Litzenberger (1988)] Huang, C. F. and Litzenberger, R. H. (1988), Foundations for
Financial Economics, Prentice Hall, pp. 27–33.


