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1 Introduction

Economic agents generally Þnd themselves in circumstances in which they have to maximize

their welfare while at the same time they must learn about fundamental relations that inßuence

their payoff. Optimal experimentation arises when the actions of the agents impact their

information set.1 In these circumstances the agents trade off optimal control with optimal

experimentation. In general these problems are difficult to solve since the actions of the agents

affect the distribution of payoffs. This paper demonstrates how to use the perturbation method

to approximate the solution to these problems.

Wieland (2000a) shows how to use value and policy function iteration to examine the

behavior of optimal experimentation problems.2 He introduced the optimal experimentation

problem into otherwise static optimization problem.3 Within the context of these problems he

was able to identify as much as a 52% increase in the agent�s value from experimentation.

Extending this procedure to more general problems or using it for the estimation of experi-

mentation effects is problematic. In the case of a continuous distribution in which the agent is

learning about four state variables Wieland�s computer program takes as much as a week to Þnd

a solution. Wieland (2002) evaluates a more complex macroeconomic problem in which agents

learn about nine state variables. However, computational time, about 60 hours, limits the dis-

cussion to pairwise evaluation of the complete optimal experimentation problem. This limits

the application of this procedure to calibration exercises and precludes the estimation of models

of optimal experimentation.4 In addition optimal experimenting about multiple parameters or

more complex dynamic settings is prohibitive. This paper provides an alternative procedure for

approximating optimal experimentation problems which can handle more complex problems,

as well as the estimation of experimentation effects.

1Balvers and Cosimano (1990,1994), Keller and Rady (1999), and Wieland (2000a) provide discussions of
the literature on optimal experimentation. Kendrick (2002) in his 2002 keynote address for the Society of
Computational Economics discusses the role of optimal experimentation in stochastic control problems.

2Beck and Wieland (2002) use the same technique when the state variable is dependent on one lag of the
dependent variable.

3Balvers and Cosimano (1990, 1994) and Wieland (2000b) provide examples in which this approach may be
applied.

4Wieland (2000b) provides a good example of a calibration exercise.
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This alternative procedure is based on the perturbation method of Judd and Gaspar (1997),

Judd (1998), and Jin and Judd (2002). The perturbation method is useful when a more general

problem reduces to a simpler problem under some well-deÞned circumstances. In addition the

simpler problem has a well-developed solution method. The perturbation method proceeds to

introduce parameters such that the general problem reduces to the simpler problem when these

parameters are zero. The more general problem is then approximated by taking a Taylor series

approximation around zero values for the perturbation parameters.

In most applied problems on optimal experimentation the objective is quadratic and the

equations of motions are linear. In addition it is usually possible to introduce parameters which

remove the optimal experimentation problem. For example in Weiland�s (2000b) optimal mon-

etary policy problem the optimal experimentation issue would not be present when the central

bank knows the impact of interest rates on inßation. Consequently, the optimal experimenta-

tion may be removed by attaching a parameter to the error term for this slope coefficient and

setting the parameter to zero.5

Without the optimal experimentation these problems fall into the general rubric of the

discounted stochastic regulator problem. The procedures for solving these problems have been

developed by Hansen and Sargent (1998), and Anderson, Hansen, McGrattan and Sargent

(1996). As a result we can use the perturbation method to approximate the optimal decision

of an agent in the presence of experimentation. In this paper the second order perturbation to

the experimentation problem is found. The optimal decision starts with the optimal decision

found in Anderson et. al.. Appended to this decision is a term which captures the effect of the

conditional variance-covariance matrix on the agents� optimal decisions.

This additional impact on the optimal decisions of the agent is akin to Ito�s lemma in

continuous time stochastic control problems.6 The effect of optimal experimentation works

through the second order effect of the variance-covariance matrix on the agent�s marginal

valuation of each state. This effect may be decomposed into two parts based on the chain rule.

5A similar set up could be used to apply the perturbation method to Balvers and Cosimano (1990, 1994).
6Keller and Rady (1999) provide an example of an optimal experimentation problem in continuous time.
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The variance-covariance matrix Þrst changes how each state variable impacts the equation of

motion for the state variables. This part occurs because this change inßuences the Kalman

gain. The second part consist of the marginal impact of the state variables on the agent�s

valuation. The perturbation method develops a systematic way to measure these effect of

optimal experimentation which is added to the optimal decision from the linear regulator

problem.7

There are several beneÞts to this procedure. First, it builds on a well-developed procedure

for handling a large class of economic problems. This class of problems includes those found in

the literature on optimal experimentation as well as problems with more complex dynamics.

Second, the procedure can be implemented on a computer in a timely manner. Finally, by

suitably modifying the estimation procedure of Anderson et. al. it is now feasible to estimate

optimal decision rules of agents in the presence of optimal experimentation. For example

Sargent (1999) develops an optimal monetary control problem which Þts into the Anderson et.

al. framework.8 This optimal monetary control problem is a more general version of Wieland

(2000b). Thus, it would be feasible to estimate an optimal central bank reaction function in

the presence of optimal experimentation.

The main drawback of this procedure is that it assumes that the value function and optimal

decisions are differentiable. There are at least two reasons found in the literature when the

value function is not differentiable. First, Balvers and Cosimano (1993) develop an example in

which the objective of the agent is convex. Earlier Easley and Kiefer (1988) showed that the

value function is convex in the conditional distribution of the shocks. As a result, the Bellman

equation is convex. Thus, the optimal decision is a corner solution. Balvers and Cosimano

show that the value function is not differentiable when the agents switches between corner

solutions. This problem would not occur when the one period reward function is sufficiently

concave relative to the convex effect of experimentation.9 This condition may be checked in

7Easley and Kießer (1988) develop the qualitative characteristics.
8Wieland�s (2002) model of monetary policy under uncertainty about the natural rate of unemployment and

Woodford�s (2002) model of imperfect common knowledge could also Þt within this class of models.
9Keller and Rady (1999) analyze a similar problem when the agent�s objective is concave. In this case corner

solutions arise when the experimentation effect is dominate. They also Þnd the value function is not differentiable
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the perturbation method by examining whether a particular matrix is negative deÞnite.10

Keller and Rady (1999) and Wieland (2000a) show that the value function is not differen-

tiable when the agent has incorrect limit beliefs. Following Kiefer and Nyarko (1989) Wieland

identiÞes three properties of limit beliefs and optimal decisions. First beliefs must be self-

reinforcing. Second, given the limit beliefs the reward function should be optimized. Third,

if the control variable is held constant, the agent would learn the mean value of the latent

variables. The possible solution to these conditions are incorrect when the expected values

of the latent parameters do not converge to their true value. In the simulations Keller and

Rady (1999) and Wieland (2000a) Þnd that the value function and optimal decisions are not

differentiable when the latent parameter corresponds to an incorrect limit belief. Thus, the

procedure needs to avoid these possibilities.

Using the perturbation method in the neighborhood of the linear regulator problem to ap-

proximate optimal experimentation problems helps to mitigate the convergence to incorrect

limit beliefs. Starting with Marcet and Sargent (1989) the literature on optimal learning has

developed conditions under which the learning procedure converges to the true parameter val-

ues.11 Hansen and Sargent (1998) use the Kalman Þltering procedure to represent optimal

learning in stochastic linear regulator problems. They also show that the Kalman Þltering

procedure is the dual for the linear regulator problem. As a result, the conditions for the con-

vergence of the Kalman Þlter are identical to those for a stable linear regulator problem. In this

paper the optimal experimentation problem is approximated by developing a parameterization

which collapses the optimal experimentation problem to the optimal learning problem in linear

regulator problems. When beliefs converge the expectation of the latent parameter will satisfy

the mean prediction property. In addition, the linear regulator problem will be optimized. The

difference is that the Kalman gain will be smaller so that the conditional variance-covariance

matrix will converge faster to a larger value. Thus, the perturbation method applied to optimal

in these cases.
10This matrix is effectively an approximation of the Hessian matrix for the Bellman equation.
11In optimal learning problems the agent�s actions do not affect the information used to update forecast, while

it does under optimal experimentation. See Evans and Honkapohja (2001) for a detail survey and discussion of
the work on optimal learning.
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experimentation problems in the neighborhood of the optimal learning problem will converge

to correct beliefs as long as the linear regulator problem is stable.

The next section summarizes the procedures to solve augmented linear regulator problems

following Anderson et. al. (1996). Section 3 develops the parameterization of the conditional

variance-covariance matrix so that the optimal experimentation problem reduces to the Kalman

Þltering problem when the parameters are set equal to zero. Section 4 derives the formula for

optimal conditions in the presence of a second order perturbation of the optimal experimenta-

tion problem. Section 5 illustrates the procedure. The analysis of Balvers and Cosimano (1990)

is applied to a bank with some monopoly power that does not know the demand for loans or the

supply of deposits. This example is a generalization of Balvers and Cosimano in that optimal

experimentation for two separate relations is undertaken. In addition the state vector includes

eleven variables, including lagged dependent variables, which moves stochastically over time.

The results of Balvers and Cosimano are quantiÞed in that both the loan and deposits rates

slowly adjust to changes in market conditions. The Þnal section concludes the paper.

2 The Augmented Linear Regulator Problem

The perturbation method is used to solve a general experimentation problem by approximating

the problem around a simpler problem with a known solution. In the optimal experimentation

problem the augmented linear regulator problem is taken as the simpler problem. In this

section we summarize the augmented linear regulator problem as well as its solution following

Anderson, et. al. (1996). The agent is assumed to choose a sequence {ut} to maximize

−E
Ã ∞X
t=0

βt
h
u0tRut + y

0
tQyyyt + 2y

0
tQyzzt + z

0
tQzzzt + 2u

0
tW

0
yyt + 2u

0
tW

0
zzt
i
|F0

!

subject to

xt+1 ≡
µ
yt+1
zt+1

¶
=

µ
Ayy Ayz
0 Azz

¶µ
yt
zt

¶
+

µ
By
0

¶
ut +

µ
Gyy Gyz
0 Gzz

¶µ
wyt+1
wzt+1

¶
=

Axt +But +Gw1t+1,
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Here {Ft : t = 0, · · ·} is an increasing sequence of information sets which is based on a martingale
difference process w01t+1 ≡ (wyt+1, wzt+1)0 such that E (w1t+1|Ft) = 0 and E

¡
w1t+1w

0
1t+1|Ft

¢
=

I. ut is the control vector, which may inßuence the endogenous state vector yt but does not

effect the exogenous state vector, zt. Each of the matrices are conformable to these vectors.

To solve this problem the cross product terms and the discount factor are eliminated by

deÞning the selection matrices Uy ≡ [I,O] and Uz ≡ [0, I] such that UzAU 0y = 0, UzGU 0y = 0,
and UzB = 0. Next let

yt ≡ βt/2Uyxt, zt ≡ βt/2Uzxt, vt ≡ βt/2(ut +R−1 (W 0
y W 0

z ) xt), (1)µ
A0yy A0yz
0 A0zz

¶
≡ β1/2

³
A−BR−1W 0´ , B0y ≡ β1/2UyB, and µ

Q0yy Q0yz
Q0

0
yz Q0zz

¶
≡ Q−WR−1W 0.12

The solution to this augmented regulator problem is given by

vt = −Fyyt − Fzzt,

where Fy ≡
h
R+B0yPyBy

i−1
B0yPyAyy and Fz ≡

h
R+B0yPyBy

i−1
B0y [PyAyz + PzAzz]. The

solution is found in two steps. First, Py solves the Riccati equation

Py = Qyy + [Ayy −ByFy]0 Py [Ayy −ByFy] + F 0yRFy,

and second, Pz satisÞes the Sylvester equation

Pz = Qyz + [Ayy −ByFy]0 PyAyz + [Ayy −ByFy]0 PzAzz.

Reversing the deÞnitions in (1) the solution to the discounted regulator problem is

ut = −
h
Fy +R

−1W 0
y

i
yt −

h
Fz +R

−1W 0
z

i
zt.

Under the augmented linear regulator problem the agent can learn about the economy

independent of their optimal decisions. This result follows from the certainty equivalence

property. Certainty equivalence is dependent on quadratic objectives, linear constraints and

independence among the distribution of shocks and the agents choice.

12To avoid unnecessary notation I delete the superscript on A and Q below.
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In learning problems the agent observes signals which are a linear combination of the hidden

state, control and random error vectors. For simplicity only the endogenous state vector is

hidden from the agent. The endogenous state vector follows

yt+1 = Ayyyt + Ayzzt +Byut +G
1w1t+1,

13

while the agent observes each period t the signals

st = Csyyt + Cszzt +Dut +Hw2t.

Assume

E

µ
w1t+1
w2t

¶
(w01t+1 w02t ) =

µ
I 0
0 I

¶
.

The agent is interested in forecasting the endogenous state vector �yt = E (yt|ut, zt, st, st−1, · · · ,
s0, �x0).

14 The Kalman Filter updates the agent�s forecast according to

�yt+1 = Ayy�yt + Ayzzt +Byut +Ktat,

where at = st − �st = Csy (yt − �yt) +Hw2t. The Kalman Gain is deÞned by

Kt = AyyΣtC
0
sy

³
CsyΣtC

0
sy +HH

0´−1 ,
and the conditional variance-covariance matrix of the state is updated according to

Σt+1 = AyyΣtA
0
yy +GG

0 − AyyΣtC 0sy
³
CsyΣtC

0
sy +HH

0´−1 CsyΣtA0yy.
In the optimal experimentation literature the agent has some ability to manipulate the

ßow of information. This means that H is a function of the agent�s decisions, so that the

variance-covariance matrix for the signal is also a function of the control vector, u. As a

result the agent�s decision inßuences the distribution of the state vector. Thus, the certainty

equivalence property no longer holds. This means that the agent�s optimization problem cannot

be separated from their forecasting problem. In the next section the optimal experimentation

problem is formulated.
13The superscript 1 refers to the column�s of G associated with the endogenous state variables. Without loss

of generality from now on I will delete the superscript on G.
14Ljungqvist and Sargent (2000, pp. 643-649) derives the Kalman Filter in a similar circumstances.
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3 Optimal Experimentation

In the optimal experimentation problem the agent chooses a sequence {ut} to maximize

−E
Ã ∞X
t=0

βt
h
u0tRut + y

0
tQyyyt + 2y

0
tQyzzt + z

0
tQzzzt + 2u

0
tW

0
yyt + 2u

0
tW

0
zzt
i
|F0

!

subject to

xt+1 = Axt +But +Gw1t+1,

�yt+1 = Ayy�yt + Ayzzt +Byut +Ktat = F [ut, �yt, zt,Σt, τ ] ,

Kt = AyyΣtC
0
sy

³
CsyΣtC

0
sy +HH

0´−1 ,
Σt+1 = AyyΣtA

0
yy +GG

0 − AyyΣtC 0sy
³
CsyΣtC

0
sy +HH

0´−1 CsyΣtA0yy = G [ut, zt,Σt, τ ] ,
zt+1 = Azzzt +Gzzwzt+1 = Z(zt)

and

E

Ã ∞X
t=0

h
|ut|2 + |yt|2

i
|F0

!
<∞.

In the optimal experimentation problem, the variance-covariance of the signal, HH 0, is a func-

tion of the current control ut and state vector zt. In particular, the uncertainty in the signals is

a linear function of the control and state vectors. This effect may be represented by replacing

Hw2t with

Hw2t + τ1u
0
t²1t + τ2z

0
t²2t

where w2t, ²1t, and ²2t are not correlated. The variance-covariance matrix, HH
0, is now

Vt = HH
0 + τ1u0tV3τ

0
1ut + τ2z

0
tV4τ

0
2zt,

Where V3 = Et [²1t²
0
1t] and V4 = Et [²2t²

0
2t]. The vectors τ

0
1 and τ

0
2 are perturbation vectors such

that each element is equal to one under optimal experimentation.15 In addition as both τ1 and

τ2 approach zero the variance-covariance matrix approaches HH
0, so that the problem reduces

to the linear regulator problem.

15Ljungqvist and Sargent (2000, pp.643-649) allow for time varying variance-covariance matrix as long as the
agent knows them.
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In this case the Bellman equation becomes

V [�yt, zt,Σt, τ ] = E [Π [ut, yt, zt, τ ] + βV [�yt+1, zt+1,Σt+1, τ ] |Ft] . (2)

Here

Π [ut, yt, zt, τ ] = −
³
u0tRut + y

0
tQyyyt + 2y

0
tQyzzt + z

0
tQzzzt + 2u

0
tW

0
yyt + 2u

0
tW

0
zzt
´
.

This dynamic programming problem incorporates two new effects which are not present

in the augmented linear regulator problem. The Þrst effect measures the effect of the choice

on the Kalman gain which in turn inßuences the conditional expectation of yt+1. The second

effect deals with the optimal choice on the conditional variance-covariance matrix for yt+1. To

analyze these effects the following results, proved in the appendix, are useful.

Lemma 1 The partial derivates of the Kalman Þlter are ∂F
∂ut

= vec
³h
B0y, 00

i´
, ∂F∂�yt = vec

³h
A0yy, 00

i´
−µµ

Kt
0

¶
⊗ Iq

¶
(Csy⊗Iq)vec (Iq), ∂F∂zt = vec

³h
A0yz, A0zz

i´
, ∂F∂Σt 6= 0, ∂F∂τ1

= 0, ∂F∂τ2
= 0, ∂2F

∂ut∂Σt
= 0,

∂2F
∂�yt∂Σt

6= 0, ∂2F
∂zt∂Σt

= 0, ∂
2F
∂Σ2

t
6= 0, ∂G

∂ut
= 0, ∂G∂zt = 0,

∂G
∂Σt

6= 0, ∂G
∂τ1

= 0, ∂G
∂τ2

= 0, and ∂2G
∂Σ2

t
6= 0

when the perturbation parameters are zero.16

4 Perturbation Method

The optimal experimentation problem introduced in the previous section does not have an

explicit solution. In this section the perturbation method is used to approximate this problem

following the analysis of Judd and Gaspar (1997), Judd (1998), and Jin and Judd (2002).

The tensor notation is used extensively in the perturbation method. This notation may

be illustrated by writing the quadratic form x0Ax as aijxiyj which means
P
i

P
j aijx

iyj. As

a result, a summation occurs whenever a superscript and a subscript match. The partial

derivatives ∂F [�yt,zt,ut,Σt,τ ]∂�xt
are represented by F ij for each state vector. For example F

i
j = a

i
zz,j

for the exogenous state vectors i and j. In a similar way F iα would be the partial derivative of

the ith state variable with respect to the αth control. F iα = 0 for the exogenous state vectors.

16To cut down on notation the functions F and Z have been stacked together and is called F. vec(A) stacks
the columns of A in a vector starting with the Þrst column.
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F iI represents the partial derivative of the i
th state variable with respect to the I th variance

or covariance term. F iI = 0 for the exogenous state vectors. Finally, F
i
I represents the partial

derivative of the ith state variable with respect to the Ith perturbation parameter. F iI = 0 for
both state vectors.

Given this notation the Euler conditions may be written as

E [Πα [u [�yt, zt,Σt, τ ] , yt, zt, τ ] +
βVi [�yt+1, zt+1,Σt+1, τ ]F

i
α [u [�yt, zt,Σt, τ ] , �yt, zt,Σt, τ ] +

βVI [�yt+1, zt+1,Σt+1, τ ]G
I
α [u [�yt, zt,Σt, τ ] , zt,Σt, τ ] |Ft

i
≤ 0

(3)

for each control α.

Solving the optimal learning problem (2) and (3) explicitly is problematic. The difficulty

comes about because of the additional non-linearity introduced by the control variables inßu-

ence on the Kalman Filter. However, the problem reduces to the augmented linear regulator

problem when the perturbation vector, τ , is set equal to zero. As a result the perturbation

method of Judd and Gaspar (1997), Judd (1998), and Jin and Judd (2002) may be applied

to (2) and (3). Equation (3) implies an implicit function for the control vector, u [�yt, zt,Σt, τ ],

so that equation (2) implies an implicit equation for V [�yt, zt,Σt, τ ]. The perturbation method

involves a taylor expansion of these functions around the known solution. In this case the

expansion is around
h
�yLRt , zt,Σ

LR
t , 0

i
, where the superscript LR refers to the linear regulator

solution.17 18

uα [�yt, zt,Σt, τ ] ≈ uα
h
�yLRt , zt,Σ

LR
t , 0

i
+ uαi

h
�yLRt , zt,Σ

LR
t , 0

i h
�xt − �xLRt

ii
+uαI

h
�yLRt , zt,Σ

LR
t , 0

i h
Σt − ΣLRt

iI
.

(4)

V [�yt, zt,Σt, τ ] ≈ V
h
�yLRt , zt,Σ

LR
t , 0

i
+ Vi

h
�yLRt , zt,Σ

LR
t , 0

i h
�xt − �xLRt

ii
+VI

h
�yLRt , zt,Σ

LR
t , 0

i h
Σt − ΣLRt

iI
+ 1

2Vij
h
�yLRt , zt,Σ

LR
t , 0

i h
�xt − �xLRt

ii h
�xt − �xLRt

ij
+ViI

h
�yLRt , zt,Σ

LR
t , 0

i h
�xt − �xLRt

ii h
Σt − ΣLRt

iI
+ 1

2VIJ
h
�yLRt , zt,Σ

LR
t , 0

i h
Σt − ΣLRt

iI h
Σt − ΣLRt

iJ
.

(5)

17In the appendix it is shown that VI = 0 and uγI = 0.
18These approximation may be done to a higher order, however, only the Þrst order terms in the optimal

control solution should be important for empirical work.
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As the perturbation vectors approach zero the variance-covariance term HH 0 approaches

the linear regulator value so that the equation of motion for the variance-covariance matrix,

G [ut, ztΣt, τ ], approaches its linear regulator counterpart. Thus, Σt approaches Σ
LR
t as τ tends

to zero. In addition the Kalman Gain, Kt, also approaches its value under the linear regulator

problem so that �xt tends to �x
LR
t . This means that the Þrst two terms in (4) are identical to

the augmented linear regulator problem so that

uα
h
�yLRt , zt,Σ

LR
t , 0

i
+ uαi

h
�yLRt , zt,Σ

LR
t , 0

i h
�xt − �xLRt

ii
=

−
h
Fy +R

−1Wy

i
�yLRt −

h
Fy +R

−1Wy

i h
�yt − �yLRt

i
−
h
Fz +R

−1Wz

i
zt

A similar argument applied to (5) leads to

V
h
�yLRt , zt,Σ

LR
t , 0

i
+Vi

h
�yLRt , zt,Σ

LR
t , 0

i h
�xt − �xLRt

ii
+
1

2
Vij

h
�yLRt , zt,Σ

LR
t , 0

i h
�xt − �xLRt

ii h
�xt − �xLRt

ij
= ρ+

h
�xLRt

i0 µPy Pz
Pz Pzz

¶ h
�xLRt

i
+
h
�xt − �xLRt

i0 µPy Pz
Pz Pzz

¶ h
�xt − �xLRt

i
.

Here Pzz was not needed for the solution to the linear regulator problem but can be found

from the Riccati equation following Hansen and Singleton (1998, p. 162.)

Pzz = Qzz + A
0
yzPyAyz + A

0
zzP

0
zAyz +A

0
yzPzAzz

−
h
A0yzPyBy + A

0
zzP

0
zBy

i h
R+B0yPyBy

i−1 h
B0yPyAyz +B

0
yPzAzz

i
+ A0zzPzzAzz,

which is solved by iterating on Pzz. Finally, ρ is found by iterating on

ρj+1 = βρj + β trace (PGG
0).

The remainder of this section derives an expression for the last term in (4), uαI

h
�yLRt , zt,Σ

LR
t , 0

i
.

First the impact of the uncertainty on the value function is found by taking the total derivative

of the value function (2) with respect to each of the q(q+1)
2 variance-covariance terms in Σt+1.

Here q is the number of endogenous state variables which are hidden from the agent.

VI [�yt, zt,Σt, τ ] = Et
h
βVj [�yt+1, zt+1,Σt+1, τ ]F

j
I [u [�yt, zt,Σt, τ ] , �yt, zt,Σt, τ ] +

βVJ [�yt+1, zt+1,Σt+1, τ ]G
J
I [u [�yt, zt,Σt, τ ] , zt,Σt, τ ]

i
.

(6)
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In this equation all the terms are known for the linear regulator problem except VI . As a result,

these equations can be stacked into a vector of q(q+1)2 Þrst order linear difference equations which

can be iterated on to yield VI
h
�yLRt , zt,Σ

LR
t , 0

i
.

To Þnd the second order effects in the appendix (6) is differentiated with respect to the

q+ r state variables. When the perturbation vector is set to zero, these derivatives are reduced

to

VIk
h
�yLRt , zt,Σ

LR
t , 0

i
= Et

h
βVj

h
�yLRt+1, zt+1,Σ

LR
t+1, 0

i
F jIk + βVJl

h
�yLRt+1, zt+1,Σ

LR
t+1, 0

i ³
F lk + F

l
αu

α
k

´
GJI

i
.

(7)

Consequently, if (7) are stacked together for each variance-covariance term, then (7) is a Þrst

order linear difference equation in the q(q+1)(q+r)
2 terms for VIk

h
�yLRt , zt,Σ

LR
t , 0

i
.

The results of a change in elements of the variance-covarince matrix on the optimal control

can now be calculated. While the calculations are long, the results are simpliÞed since the

function G is not inßuenced by changes in the optimal controls when the perturbation vector

is zero.19 As a result,

uγJ

h
�yLRt , zt,Σ

LR
t , 0

i
= −

h
Et
h
Πα,γ

h
uLRt , yLRt , zt, 0

i
+ βVik

h
�yLRt+1, zt+1,Σ

LR
t+1, 0

i
F iαF

k
γ

ii−1
×
h
Et
h
βViK

h
�yLRt+1, zt+1,Σ

LR
t+1, 0

i
F iαG

K
J

ii
,

(8)

where the inverse refers to the inverse tensor matrix.20 When this matrix is negative deÞ-

nite, then the problem has an interior solution so that the bang-bang solution of Balvers and

Cosimano (1993) is not present. By substituting (8) into (3) the linear approximation of the

optimal controls is complete. Examination of (8) reveals that the variance-covariance matrix

for the hidden state variables inßuences the decisions of the agent through its inßuence on the

value function for the agent�s problem. The chain rule implies that there are two parts to this

effect. First, the change in uncertainty changes the variance-covariance matrix through the

Kalman Þlter, GKJ . Next the variance-covariance matrix impacts the evaluation of how the

control vector inßuences the marginal future value of the state vector, ViKF
i
α. Both of these

effects are manifested through the change in uncertainty on the marginal value of the state

19Equation (8) is derived in the appendix.
20See Judd (1998, p. 500).
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vector, ViK based on (7). These effects work through the impact on the value function in this

respect the results are similar to Ito�s lemma in continuous time stochastic control.

5 An Example

Balvers and Cosimano (1990) use optimal experimentation to explain the slow adjustment of

prices for a Þrm with some monopoly power. Subsequently, Cosimano, Emmons, Lee and

Sheehan (2002) apply this argument to a bank to explain the slow adjustment of loan and

deposit rates to changes in the treasury bill rate. The presence of monopoly power can be

rationalized based on switching cost for the bank�s customers along the lines of Klemperer

(1995). The switching cost implies that the demand for loans is dependent on market share.

The market share is represented by the presence of lagged loans and deposits in the demand

for loans and supply of deposits, respectively. The demand for loans is also dependent on the

bank�s rate relative to the average loan rate in the market. The supply of deposits is also

dependent on the relative deposit rate.21

These generalizations of the original Balvers and Cosimano model yields an optimal exper-

imentation problem in which there are two control variables, eleven state variables including

lagged dependent variables, and two signals used to estimate four parameters. Yet, the solution

can be approximated quickly on a standard computer.

The bank sees the demand for loans

Lt = l0,t + l1Lt−1 − l2,t
h
rLt,i − rLt

i
+ ²t,1.

and the supply of deposits

Dt = d0,t + d
1
1Dt−1 + d2,t

h
rDt,i − rDt

i
+ ²t,2.

Here deÞne Lt as the demand for loans by the ith bank at time t; ²t,1 is the random change

21See Varian (1980) for a model of monopolistically competitive market in which a distribution in price
represents an equilibrium strategy. The model only represents the decision problem of an individual bank for
simplicity. McGrattan (1994) could be used to introduce strategic considerations but this would be beyond the
scope of this paper.
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in the demand for loans for the ith bank at time t;22 rLt,i is the ith bank�s loan rate at time t;

rLt ≡ 1
N−1

PN
j=1,j 6=i rLt,j is the average loan rate in the bank�s market at time t excluding this

institution, where N is the number of competitor banks; Dt represents the supply of deposits to

the ith bank at time t; rDt,i is the ith bank�s deposit rate at time t; ²t,2 is the random change in

the supply of deposit for the ith bank at time t; rDt ≡ 1
N−1

PN
j=1,j 6=i rDt,j is the average deposit

rate in the bank�s market at time t excluding this institution, where N is the number of banks

in the market;

The bank observes the quantity of loans and deposits but does not know the true slope and

intercepts for the demand for loans and supply of deposits. The intercepts are autoregressive

to represent the consumers who are not sensitive to changes in interest rates. As a result the

bank sees the two signals

s1 = l0,t − τL²t,5
³
rLt,i − rLt

´
+ ²t,1 and s2 = d0,t − τD²t,6

³
rDt,i − rDt

´
+ ²t,2.

The bank choose loan and deposit rates which maximizing proÞts³
rLt,i − rt − CLt

´
Lt +

³
rt(1− α)− rDt,i − CDt

´
Dt

subject to the demand for loans and the supply of deposits. The rt is the treasury bill rate; α is

the reserve ratio and CLt , C
D
t are the marginal resource cost of loans and deposits, respectively.

The control vector is ( rLt,i rDt,i )
0, the endogenous state vector is (CLt CDt Lt−1 Dt−1 l0,t d0,t )

0

and the exogenous state vector is zt ≡ ( rLt rDt rt 1 )0. The matrices in the augmented linear

regulator problem are

R ≡
µ
l2 0
0 d2

¶
;Wz ≡

µ−l2 0 −l2 0
0 −d2 −d2(1− α) 0

¶
;Wy ≡

µ−l2 0 −l1 0 −1 0
0 d2 0 d1 0 1

¶
;

Qyy is zero; Azz has roots less than one;

Qyy ≡ 1
2



0 0 l1 0 1 0
0 0 0 d1 0 1
l1 0 0 0 0 0
0 d1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0


; Qzz ≡ 1

2


0 0 l2 0
0 0 d2(1− α) 0
l2 d2(1− α) 0 0
0 0 0 0

;
22The normality assumption cannot be strictly true since the demand for loans could be negative. To avoid

this possibility the normality assumption could be dropped, as long as, the bank cares about the mean and
variance of the state variables. See Ljung qvist and Sargent (2000) for the derivation of the Kalman Filter under
this case.
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Qyz ≡ 1
2



l2 0 0 0
0 −d2 0 0
0 0 l1 0
0 0 −d1(1− α) 0
0 0 1 0
0 0 −(1− α) 0


; Ayy ≡



1 0 0 0 0 0
0 1 0 0 0 0
0 0 l1 0 1 0
0 0 0 d1 0 1
0 0 0 0 a11 0
0 0 0 0 0 a22


;

Ayz ≡



0 0 0 0
0 0 0 0
l2 0 0 0
0 −d2 0 0
0 0 0 l0
0 0 0 d0


; By ≡



0 0
0 0
−l2 0
0 d2
0 0
0 0


; Gyy ≡



0 0 0 0 0 0
0 0 0 0 0 0
0 0 σ1 0 σ3 0
0 0 0 σ2 0 σ4
0 0 0 0 σ3 0
0 0 0 0 0 σ4


;23

Csy ≡
µ
0 0 0 0 1 0
0 0 0 0 0 1

¶
; Csz and D are zero. H ≡

µ
σ1 0
0 σ2

¶
, V3 = V4 ≡

µ
σ25 0
0 σ26

¶
,

V 05 ≡
µ
σ21 0 0 0 0 0
0 σ22 0 0 0 0

¶
.24

The parameter values for this model are listed in Table 1. The parameter estimates are

based on monthly data from 1993-1999 which was taken from a Þnancial institution in a large

metropolitan area.25 Loan commitments are used for the loan demand and savings accounts

are used for deposits. Both accounts are highly persistent with the expected dependence on the

spread between bank rates and market rates for the metropolitan area. The exogenous state

variable, zt, is represented by the VAR model in Tables 2 and 3. This state vector includes the

market rates for loan commitments, savings deposit, interest bearing checking accounts and

treasury bills. One month lag in each of the interest rate variables was sufficient to generate

white noise errors.

The Þrst step of the simulation procedure is to implement the doubling algorithm of Hansen

and Sargent (1998) and Anderson et. al. (1996). This procedure generates the augmented

linear regulator solution. The behavior of the bank�s loan and deposit rates are portrayed by

the squares in Figures 1 and 2, respectively. For these simulations 11 random draws from the

normal distribution each month were used to generate the movement in the state vector, xt from

month to month. The Þrst month is an initial value for the state vector which approximates

a steady state. In Table 4 the state vectors for the Þrst and sixth month are recorded for the

23²t,3 and ²t,4 are random shocks to the intercepts l0,t and d0,t, respectively.
24The stochastic speciÞcation is slightly different since there is a variance-covariance matrix, V5, between w1t+1

and w2t. This causes the Kalman Þlter to change by replacing AΣtC
0 with AΣtC

0 + V5
25Rich Sheehan provided these estimates.
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linear regulator problem in columns 2 and 4. The optimal loan and deposit rate for the bank

are listed in Table 5. The loan rate is about 24 basis points below the market average in the

sixth month, while the deposit rate is about .87% above the market average.

In Table 6 the Kalman gain starts at about .5 for both rates and after six months drops to

about .3 and .08 for the loan and deposit rate, respectively. The initial value of the Kalman

gain can be manipulated by changing the variance of the constant relative to the variance in the

regression. By lowering the variance of the constant the conditional variance of the constant

decreases relative to the variance of the regression which leads to a decrease in the Kalman gain.

As the conditional variance of the constant for loans decreases over the six months, as seen in

Table 7 row 2, the Kalman gain decreases which increases the convergence of this conditional

variance.

In Table 8 the marginal value of the state variable, Vi is listed. These results are consistent

with intuition. An increase in cost reduces the value of the bank, while an increase in demand

increases its value. In summary the linear regulator solution behaves in a consistent and

intuitive way.

The conditional variance has a positive impact on the value of the bank in Table 9. Balvers

and Cosimano (1990) show that the bank has an increasing return to uncertainty in the inter-

cept. As a result, Jensen�s inequality implies that higher uncertainty leads to an increase in

the value of the bank.

We can now examine the impact of optimal experimentation on the behavior of the bank.

The simulation starts at the same initial values so that the Þrst occurrence of experimenting

is in month 2. This behavior is pictured in Figures 1 and 2 for the loan and deposit rates.

The rhombus represents the optimal experimentation. The loan rate initially goes below the

benchmark linear regulator solution by 35 basis points and goes about 7 basis points above

by the sixth month. This increases the uncertainty in the regression which lowers the Kalman

Gain to .08 in the second month and converges to the linear regulator value by the sixth month

as seen in Table 6 row 1. As a result the conditional variance for the loan intercept converges

faster to a higher value which can be seen in Table 7 column 3. The same experimentation
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occurs for the deposit rate except that the deposit rate is higher since it is a source of cost

rather than revenue.

In Table 10 we can see the effect of the conditional uncertainty on the optimal decisions of

the bank. An increase in the conditional variance of the demand for loan intercept tends to

increase the loan rate while the increase in the condition variance for deposits lowers the deposit

rate. This result works through the impact of the control variable on the state vector, F iα, in

equation (10). An increase in the bank�s loan rate decreases demand while the deposit rate

increases supply. These effects follow from the marginal value of the state vector, Vi in Table

8, interacting with, F jIk. The sign of these partial derivatives determines the negative inßuence

of VIk through equation (8), which in turn by equation (10) implies the partial derivative of

the control variable with respect to its conditional variance.

The behavior of the loan rate in Figure 1 can now be understood. The conditional variance

of the demand for loan intercept under experimentation is initially below the linear regulator

case so that the loan rate is lower. By the sixth month this conditional variance is higher under

optimal experimentation and its marginal impact on the optimal loan rate has also fallen. As

a result the loan rate is now slightly above the linear regulator case. This continues till the

30th month when the loan rate is only 1 basis point above the linear regulator case.

The same basic pattern occurs for the deposit rate. The deposit rate Þrst goes above the

linear regulator case by 65 basis points. By the sixth month the spread is down to 7 basis

points and goes below the linear regulator deposit rate by 3 basis points in the 8th month. The

conditional variance of the supply of deposit intercept converges quicker to a smaller value.

These simulations conÞrm most of the qualitative results of Balvers and Cosimano (1990).

The main new result is that after experimenting for a short period of time, the optimal loan rate

goes above the loan rate under optimal experimenting. This new insight occurs since it is now

possible to analyze optimal experimentation problems in a setting with changing state variables

as well as more complex dynamic linear regulator problems. In addition, these simulations

take less than a minute on a standard PC with a Pentium II 400 MHz chip. The estimation

of the parameters of these models would involve the repeated solution of the algorithm as the
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parameters are changed to optimize a likelihood function. Thus, it is now feasible to estimate

complex models of optimal experimentation.

6 Conclusion

This paper has developed a procedure for approximating optimal experimentation problems

for the class of augmented linear regulator problems. This procedure uses the perturbation

method of Judd and Gaspar (1997), Judd (1998), and Jin and Judd (2002). The optimal

learning problem within the context of the linear regulator problem is modiÞed by introducing

parameters into the conditional variance-covariance matrix. These parameters introduce the

possibility that either the control variables or the exogenous state vector can inßuence this

variance-covariance matrix. This parameterization of the optimal experimentation problem

includes all the examples seen in the literature such as Wieland (2000b, 2002), as well as more

complex problems. When these parameters are zero, the optimal experimentation problem

reduces to the optimal learning problem which has a well-deÞned solution. Thus, the pertur-

bation procedure can be used to Þnd the Þrst order approximation of the optimal decision of

the agents and the second order approximation of the value function.26

The optimal decision under experimentation, (4), is a linear combination of the usual so-

lution found by iterating on the Riccati equation and a term that captures the effect of un-

certainty on the value function of the agent, (10). This second term uses four matrices as

inputs which consist of derivatives of the equations of motion for the state vector and the con-

ditional variance-covariance matrix from the Kalman Filter. The formula�s for these matrices

are provided in the appendix. As a result optimal experimentation can be analyzed for any

augmented linear regulator problem. To implement this program: Þrst deÞne the matrices for

your particular problem as in Hansen and Sargent (1998). Second, apply the formulas given in

the appendix for the four matrices in equations (8) and (10). Third, iterate on the Þrst order

difference equation, (8), to measure the impact of the conditional variance-covariance matrix

26This procedure could be used to Þnd higher order approximations, however most empirical problems would
only Þnd second moments to be signiÞcant.
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on the marginal value of each state variable. The Final step implements equation (10), which

yields the effect of optimal experimentation on the optimal decision of the agent.

Implementation of this algorithm allows for the empirical evaluation of optimal experimen-

tation on the optimal decisions of agents. Once the optimal decision for a particular problem is

known, such as the optimal loan and deposit rate decisions found in section 5, the estimation

procedure of Anderson et. al. (1996) and Hansen and Sargent (1998) can be modiÞed by

replacing the linear regulator solution with the optimal experimentation solution. The esti-

mates of the underlying parameters are found by optimizing the likelihood function built on

this algorithm. It is feasible to estimate the effect of experimentation since each iteration on

this algorithm takes less than a minute on a standard PC. Thus, the impact of optimal ex-

perimentation on optimal decisions of agents can be accomplished for a large class of applied

economic problems.

7 Appendix

7.1 Derivatives of F.

Let ut have dimension px1, yt have dimension qx1, zt have dimension rx1, and at have dimension

sx1. The matrices have the dimensions so that product is well deÞned.

∂F

∂ut
= vec

³h
B0y, 0

0i´+ vecµ∙∂Ktat
∂ut

, 00
¸¶
.27

Ktat is dependent on Vt. As a result, look at

∂Vt
∂ut

=
∂τ1u

0
t

∂ut
V3utτ

0
1 +

¡
τ1u

0
t ⊗ Ip

¢
(V3 ⊗ Ip) ∂utτ

0
1

∂ut

which is zero for τ1 = 0.
28 Thus, ∂Ktat

∂ut
= 0, so that ∂F

∂ut
= vec

³h
B0y, 00

i´
.

∂F

∂�yt
= vec

³h
A0yy, 0

0i´+ vecµ∙∂Ktat
∂�yt

, 00
¸¶

∂

µ
Ktat
0

¶
∂�yt

= −
µµ

Kt
0

¶
⊗ Iq

¶
(Csy ⊗ Iq)V ec(Iq).29

27See Theorem 6.3 p.43 and item 4 p.50 of Rogers (1980).
28See Theorem 6.4 from Rogers (1980, p. 43).
29See item 16 Rogers (1980,p.53).
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Here 0 has dimension rxs. Thus,

∂F

∂�yt
= vec

³h
A0yy, 0

0i´− µµKt
0

¶
⊗ Iq

¶
(Csy ⊗ Iq)vec (Iq) .

∂F

∂zt
= vec

³h
A0yz, A

0
zz

i´
+ vec

µ∙
∂Ktat
∂zt

, 00
¸¶
.

Ktat is dependent on zt through Vt, as a result look at

∂Vt
∂zt

=
∂τ2z

0
t

∂zt
V4ztτ

0
2 +

¡
τ2z

0
t ⊗ Ir

¢
(V4 ⊗ Ir) ∂ztτ

0
2

∂zt

which is zero for τ2 = 0. Thus,
∂Ktat
∂zt

= 0, so that ∂F∂zt = vec
³h
A0yz, A0zz

i´
.

∂F

∂Σt
=

µ ∂Ktat
∂Σt
0

¶
.

where 0 has dimension qrxq. Ktat is the product of three matrices X ≡ AyyΣtC
0
sy, Y ≡³

CsyΣtC
0
sy +HH

0
´−1

and Z ≡ at. By the product rule for differentiation of matrices30

∂Ktat
∂Σt

=
∂X

∂Σt
(Y ⊗ Iq) (Z ⊗ Iq) + (X ⊗ Iq) ∂Y

∂Σt
(Z ⊗ Iq) .

Next,

∂X

∂Σt
=
∂AyyΣtC

0
sy

∂Σt
= vec(A0yy)vec(C

0
sy)

0, 31

which has dimension q2xqs.

∂Y

∂Σt
= −

µ³
CsyΣtC

0
sy +HH

0´−1 ⊗ Iq¶ vec(C 0sy)vec(Csy)0 µ³CsyΣtC 0sy +HH 0´−1 ⊗ Iq¶ , 32
which has dimension sqxsq.

∂Ktat
∂Σt

= vec(A0yy)vec(C
0
sy)

0
µ³
CsyΣtC

0
sy +HH

0´−1 ⊗ Iq¶ (at ⊗ Iq)
−
³
AyyΣtC

0
sy ⊗ Iq

´µ³
CsyΣtC

0
sy +HH

0´−1 ⊗ Iq¶
vec(C 0sy)vec(Csy)

0
µ³
CsyΣtC

0
sy +HH

0´−1 ⊗ Iq¶ (at ⊗ Iq) .
30at is not dependent on Σt.
31See item 13, Rogers (1980, p.52).
32See item 4 Rogers (1980, p.50).
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Next look at the effect of the perturbation vector

∂F

∂τ1
=

µ ∂Ktat
∂τ1

0

¶
.

Ktat is dependent on τ1 through Vt, as a result look at

∂Vt
∂τ1

=
∂τ1u

0
t

∂τ1
V3utτ

0
1 +

¡
τ1u

0
t ⊗ Ip

¢
(V3 ⊗ Ip) ∂utτ

0
1

∂ut

which is zero for τ1 = 0. Thus, ∂Ktat
∂τ1

= 0, so that ∂F
∂τ1

= 0. It also follows immediatly that

∂F
∂τ2

= 0

Now turn to the second order derivatives.

∂2F

∂ut∂Σt
=

µ ∂2Ktat
∂ut∂Σt
0

¶
.

∂Vt
∂ut

is independent of Σt so that all the terms in this second order derivatives are dependent

on this derivative. Thus, ∂2F
∂ut∂Σt

= 0.

∂2F

∂yt∂Σt
= −

∂

µ
Kt ⊗ Iq
0⊗ Iq

¶
∂Σt

[(Csy ⊗ Iq)V ec(Iq)⊗ Is] =

−
µ³
I(q,q) ⊗ Iq

´ ³
Iq ⊗ ∂Kt

∂Σt

´ ³
I(s,q) ⊗ Iq

´
0

¶
[(Csy ⊗ Iq)V ec(Iq)⊗ Iq] , 33

where I(s,q) is the commutation matrix and 0 has dimension q
2r× q2. The partial derivative is

∂Kt
∂Σt

=
h
vec(A0yy)− (Kt ⊗ Is) vec(C 0sy)

i
vec(Csy)

0
µ³
CsyΣtC

0
sy +HH

0´−1 ⊗ Is¶

=
h
vec(A0yy)− vec(CsyK 0

t)
i
vec(Csy)

0
µ³
CsyΣtC

0
sy +HH

0´−1 ⊗ Is¶ .34
The Þnal second order derivative is

∂2F

∂Σ2t
=

Ã
∂2Ktat
∂Σ2

t

0

!

where 0 has dimension q2rxq2.

33See Theorem 6.6 of Rogers (1980, p. 45).
34By Theorem 4.1 of Rogers(1980, p. 21), vec(XY Z) = (Z 0 ⊗X)vec(Y ).
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Let S ≡
³
I(q,s) ⊗ Iq

´µ
Iq ⊗ ∂(CsyΣtC0sy+HH0)

−1

∂Σt

¶³
I(s,q) ⊗ Iq

´
and T ≡³

I(q,q) ⊗ Iq
´
×
³
Iq ⊗ vec(A0yy)vec(C 0sy)0

´³
I(s,q) ⊗ Iq

´
so that

∂2Ktat
∂Σ2t

=
h
vec(A0yy)vec(C

0
sy)

0 ⊗ Iq
i
S [(at ⊗ Iq)⊗ Iq]

−T
∙µ³

CsyΣtC
0
sy +HH

0´−1 ⊗ Iq¶⊗ Iq¸
×
∙µ
vec(C 0sy)vec(C

0
sy)

0
µ³
CsyΣtC

0
sy +HH

0´−1 at ⊗ Iq¶¶⊗ Iq¸
−
h³
AyyΣtC

0
sy ⊗ Iq

´
⊗ Iq

i
S

×
∙µ
vec(C 0sy)vec(C

0
sy)

0
µ³
CsyΣtC

0
sy +HH

0´−1 at ⊗ Iq¶¶⊗ Iq¸
−
∙³
AyyΣtC

0
sy ⊗ Iq

´µ³
CsyΣtC

0
sy +HH

0´−1 ⊗ Iq¶⊗ Iq¸hh
vec(C 0sy)vec(C

0
sy)

0 ⊗ Iq
i
S [(at ⊗ Iq)⊗ Iq]

i
,

where the partial derivative is calculated in ∂Y
∂Σt
.

7.2 Derivatives of G

ut, zt, and τ only effect G through the Kalman Gain which in turn is inßuenced by Vt. As a

result ∂G
∂ut
, ∂G∂zt and

∂G
∂τ are all zero. Next,

∂G

∂Σt
= vec(A0yy)vec(A

0
yy)

0

−vec(A0yy)vec(C 0sy)0
∙³
CsyΣtC

0
sy +HH

0´−1 ⊗ Iq¸ hCsyΣtA0yy ⊗ Iqi
+
h
AyyΣtC

0
sy ⊗ Iq

iµ³
CsyΣtC

0
sy +HH

0´−1 ⊗ Iq¶ vec(C 0sy)vec(Csy)0
×
µ³
CsyΣtC

0
sy +HH

0´−1 ⊗ Iq¶ hCsyΣtA0yy ⊗ Iqi
−
h
AyyΣtC

0
sy ⊗ Iq

i ∙³
CsyΣtC

0
sy +HH

0´−1 ⊗ Iq¸ vec(C 0sy)vec(A0yy)0.
Let U ≡

³
I(q,s) ⊗ Iq

´ ³
Iq ⊗ vec(C 0sy)vec(A0yy)0

´ ³
I(q,q) ⊗ Iq

´
so that the second order partial

derivative is

∂2G

∂Σ2t
= −

h
vec(A0yy)vec(C

0
sy)

0 ⊗ Iq
i
S
h³
CsyΣtA

0
yy ⊗ Iq

´
⊗ Iq

i
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−
∙µ
vec(A0yy)vec(C

0
sy)

0
∙³
CsyΣtC

0
sy +HH

0´−1 ⊗ Iq¸¶⊗ Iq¸U
−T

∙µµ³
CsyΣtC
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i
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0
yy)
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i

7.3 Derivation of (7)

The second order effects on the value function are calculated by taking the total differentiation

of (6) with respect to the q + r state variables to yield q + r difference equations for each

variance-covariance term

VIk [�yt, zt,Σt, τ ] =

Et
h
βVjl [�yt+1, zt+1,Σt+1, τ ]

³
F lk [ut, �yt, zt,Σt, τ ] + F

l
α [ut, �yt, zt,Σt, τ ]u

α
k [�yt, zt,Σt, τ ]

´
F jI [ut, �yt, zt,Σt, τ ] +

βVjL [�yt+1, zt+1,Σt+1, τ ]
³
GLk [ut, zt,Σt, τ ] +G

L
α [ut, zt,Σt, τ ]u

α
k [�yt, zt,Σt, τ ]

´
F jI [ut, �yt, zt,Σt, τ ] +

βVJl [�yt+1, zt+1,Σt+1, τ ]
³
F lk [ut, �yt, zt,Σt, τ ] + F

l
α [ut, �yt, zt,Σt, τ ]u

α
k [�yt, zt,Σt, τ ]

´
GJI [ut, zt,Σt, τ ] +

βVJL [�yt+1, zt+1,Σt+1, τ ]
³
GLk [ut, zt,Σt, τ ] +G

L
α [ut, zt,Σt, τ ] u

α
k [�yt, zt,Σt, τ ]

´
GJI [ut, zt,Σt, τ ] +

βVj [�yt+1, zt+1,Σt+1, τ ]
³
F jIk [ut, �yt, zt,Σt, τ ] + F

j
Iα [ut, �yt, zt,Σt, τ ]u

α
k [�yt, zt,Σt, τ ]

´
+

βVJ [�yt+1, zt+1,Σt+1, τ ]
³
GJIk [ut, zt,Σt, τ ] +G

J
Iα [ut, zt,Σt, τ ]u

α
k [�yt, zt,Σt, τ ]

´i
.

(9)

If the perturbation vector is set equal to zero, then by Lemma 1 equation (9) becomes (7). In

these calculations, I use the result that Et[F
j
I ] is zero, since Et[at] = 0.
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7.4 Derivation of VIJ

The second order partial derivatives of the value function with respect to the elements of the

variance-covariance matrix satisÞes

VIJ [�yt, zt,Σt, τ ] =

Et
h
βVjl [�yt+1, zt+1,Σt+1, τ ]

³
F lJ [ut, �yt, zt,Σt, τ ] + F

l
α [ut, �yt, zt,Σt, τ ] u

α
J [�yt, zt,Σt, τ ]

´
F jI [ut, �yt, zt,Σt, τ ] +

βVjL [�yt+1, zt+1,Σt+1, τ ]
³
GLJ [ut, zt,Σt, τ ] +G

L
α [ut, zt,Σt, τ ] u

α
J [�yt, zt,Σt, τ ]

´
F jI [ut, �yt, zt,Σt, τ ] +

βVj [�yt+1, zt+1,Σt+1, τ ]
³
F jIJ [ut, �yt, zt,Σt, τ ] + F

j
Iα [ut, �yt, zt,Σt, τ ] u

α
J [�yt, zt,Σt, τ ]

´
+

βVKl [�yt+1, zt+1,Σt+1, τ ]
³
F lJ [ut, �yt, zt,Σt, τ ] + F

l
α [ut, �yt, zt,Σt, τ ]u

α
J [�yt, zt,Σt, τ ]

´
GKI [ut, zt,Σt, τ ] +

βVKL [�yt+1, zt+1,Σt+1, τ ]
³
GLJ [ut, zt,Σt, τ ] +G

L
α [ut, zt,Σt, τ ] u

α
J [�yt, zt,Σt, τ ]

´
GKI [ut, zt,Σt, τ ] +

βVK [�yt+1, zt+1,Σt+1, τ ]
³
GKIJ [ut, zt,Σt, τ ] +G

K
Iα [ut, zt,Σt, τ ]u

α
J [�yt, zt,Σt, τ ]

´i
.

(10)

These second order partial derivatives are dependent on uαJ [�yt, zt,Σt, τ ], however, it will turn

out that these partial derivatives can be calculated independent of (10) when the perturbation

vector is zero. Once this is complete, (10) may be stacked into a q2(q−1)2
4 vector to yield a Þrst

order linear difference equation in VIJ
h
�yLRt , zt,Σ

LR
t , 0

i
.

7.5 Derivation of (8)

To Þnd (8) Þrst take the total differentiation of the Euler condition with respect to Σt for each

control variable α

Et [Πα,γ [ut, yt, zt, τ ] u
γ
J [�yt, zt,Σt, τ ] +

βVik [�yt+1, zt+1,Σt+1, τ ]F
i
α [ut, �yt, zt,Σt, τ ]

³
F kJ [ut, �yt, zt,Σt, τ ] + F

k
γ [ut, �yt, zt,Σt, τ ] u

γ
J [�yt, zt,Σt, τ ]

´
+

βViK [�yt+1, zt+1,Σt+1, τ ]F
i
α [ut, �yt, zt,Σt, τ ]

³
GKJ [ut, zt,Σt, τ ] +G

K
γ [ut, zt,Σt, τ ] u

γ
J [�yt, zt,Σt, τ ]

´
+

βVi [�yt+1, zt+1,Σt+1, τ ]
³
F iαJ [ut, �yt, zt,Σt, τ ] + F

i
αγ [ut, �yt, zt,Σt, τ ]u

γ
J [�yt, zt,Σt, τ ]

´
+

βVIk [�yt+1, zt+1,Σt+1, τ ]G
I
α [ut, zt,Σt, τ ]

³
F kJ [ut, �yt, zt,Σt, τ ] + F

k
γ [ut, �yt, zt,Σt, τ ] u

γ
J [�yt, zt,Σt, τ ]

´
+

βVIK [�yt+1, zt+1,Σt+1, τ ]G
I
α [ut, zt,Σt, τ ]

³
GKJ [ut, zt,Σt, τ ] +G

K
γ [ut, zt,Σt, τ ]u

γ
J [�yt, zt,Σt, τ ]

´
+

βVI [�yt+1, zt+1,Σt+1, τ ]
³
GIαJ [ut, zt,Σt, τ ] +G

I
αγ [ut, zt,Σt, τ ] u

γ
J [�yt, zt,Σt, τ ]

´i
.

(11)
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(11) can be solved for uαJ to yield

uαJ [�yt, zt,Σt, τ ] = − {Et(Πα,γ [ut, yt, zt, τ ] +
βVik [�yt+1, zt+1,Σt+1, τ ]F

i
α [ut, �yt, zt,Σt, τ ]F

k
γ [ut, �yt, zt,Σt, τ ] +

βViK [�yt+1, zt+1,Σt+1, τ ]F
i
α [ut, �yt, zt,Σt, τ ]G

K
γ [ut, zt,Σt, τ ] +

βVi [�yt+1, zt+1,Σt+1, τ ]F
i
αγ [ut, �yt, zt,Σt, τ ] +

βVIk [�yt+1, zt+1,Σt+1, τ ]G
I
α [ut, zt,Σt, τ ]F

k
γ [ut, �yt, zt,Σt, τ ] +

βVIK [�yt+1, zt+1,Σt+1, τ ]G
I
α [ut, zt,Σt, τ ]G

K
γ [ut, zt,Σt, τ ] +

βVI [�yt+1, zt+1,Σt+1, τ ]G
I
αγ [ut, zt,Σt, τ ]

o−1
Xn

Et
h
βVik [�yt+1, zt+1,Σt+1, τ ]F

i
α [ut, �yt, zt,Σt, τ ]F

k
J [ut, �yt, zt,Σt, τ ] +

βViK [�yt+1, zt+1,Σt+1, τ ]F
i
α [ut, �yt, zt,Σt, τ ]G

K
J [ut, zt,Σt, τ ] +

βVi [�yt+1, zt+1,Σt+1, τ ]F
i
αJ [ut, �yt, zt,Σt, τ ] +

βVIk [�yt+1, zt+1,Σt+1, τ ]G
I
α [ut, zt,Σt, τ ]F

k
J [ut, �yt, zt,Σt, τ ] +

βVIK [�yt+1, zt+1,Σt+1, τ ]G
I
α [ut, zt,Σt, τ ]G

K
J [ut, zt,Σt, τ ] +

βVI [�yt+1, zt+1,Σt+1, τ ]G
I
αJ [ut, zt,Σt, τ ]

io
.

(12)

Equation (8) in the text is found by using Lemma 1 to evaluate the partial derivatives at the

linear regulator solution.

7.6 Proof of VI = 0 and uγI = 0.

For each of the perturbation parameters in the vector, τ ,

VI [�yt, zt,Σt, τ ] = Et
h
ΠI [ut, yt, zt, τ ] + βVj [�yt+1, zt+1,Σt+1, τ ]F jI [ut, �yt, zt,Σt, τ ]

+βVJ [�yt+1, zt+1,Σt+1, τ ]G
JI [ut, zt,Σt, τ ] + βVI [�yt+1, zt+1,Σt+1, τ ]

i
.

(13)

The partial derivatives, F jI and G
J
I , are zero by Lemma 1 when they are evaluated at the linear

regulator solution. The partial derivatives of the variance-covariance terms HH 0 in the Kalman

Filter are zero when the perturbation parameters are zero. It follows that uγI(�y
LR
t , zt,Σ

LR
t , 0) =

0 since it is dependent on the partial derivatives F jI and G
J
I .
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Table 1: Parameters

Variable Value standard deviation Value

l0 4.8601*104 σ1 1.4436*106

a11 .9000 σ2 1.2017*107

d0 2.1029*105 σ3 5.9955*105

a22 .9000 σ4 7.4062*105

l1 .9946 σ5 1.8423*108

d1 .9245 σ6 2.1667*109

l2 9.0943*108

d2 4.3335*109

α 0

Table 2: VAR for Exogenous State Vector

State Variable rL rD1 rD2 r constant

rL .5512 -.5415 .5000 .2785 .0470
rD1 .0172 .6793 .4354 .0367 -.00218
rD2 -.01459 .0527 .9075 .0400 -.0006
r .0352 -.9238 1.2885 .8467 .0094

Table 3: Variance-covariance Matrix for VAR

State Variable rL rD1 rD2 r

rL 2.0177*10−5 5.5679*10−7 1.1708*10−7 4.4902*10−9

rD1 1.2331*10−7 -1.1915*10−8 -5.5679*10−10

rD2 8.2302*10−7 1.0038*10−9

r 3.27*10−6

Table 4: State Vector for 1st and 6th Month

State Variable x1 xLR1 x6 xLR6
CL 0.0600 0.0600 0.0600 0.0600
CD 0.0100 0.0100 0.0100 0.0100
L 4.4424*107 4.4424*107 9.0006∗107 8.9132*107

D 4.4062*107 4.4062*107 1.7462∗108 1.1577*108

l0,t 1.3108*106 1.3108*106 2.8550*106 1.5322*106

d0,t -5.9325*107 -5.9325*107 -3.3591*107 -3.3592*107

rL 0.1240 0.1240 0.1216 0.1216
rD1 0.0260 0.0260 0.0247 0.0247
rD2 0.0147 0.0147 0.0134 0.0134
r 0.0503 0.0503 0.0516 0.0516
constant 1 1 1 1

Table 5: Control Vector for 1st and 6th Month

Control Variable u1 uLR1 u6 uLR6
rLi 0.12212 0.12212 0.11983 0.11917
rD1i 0.02542 0.02542 0.04131 0.04065
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Table 6: Kalman Gain for 1st and 6th Month

Kalman Gain K1 KLR
1 K6 KLR

6

rLi 0.21628 0.49558 0.28141 0.29107
rD1i 0.006741 0.44867 0.0015415 0.077448

Table 7: Variance for 1st and 6th Month

ΣL1 ΣD11 ΣL6 ΣD16
Optimal 6.0988*1011 9.9114*1012 8.8885*1011 2.21946*1012

LR 2.0474*1012 1.1751*1013 8.5563*1011 1.2122*1013

Table 8: Partial Derivative of Value Function with Respect to State Vector

State Variable Vi
CL -1.3149 *109

CD -5.5258*109

L 0.1366
D 0.1107
l0,t 0.7419
d0,t 0.6506
rL 9.0752107

rD1 -4.2130*109

rD2 -1.0731*109

r 1.3256*109

constant 2.4822*108

Table 9: VI for 1st and 6th Month

1st Month 6th Month

ΣL1 1.2730*10−9 7.5818*10−10

ΣD11 4.9437*10−10 4.9505*10−10

Table 10: uγJ for 1st and 6th Month

ΣL1 ΣD11 ΣL6 ΣD16
rLi 3.6500*10−14 0 1.2785*10−14 0
rD1i 0 -4.2285*10−17 0 -4.7765*10−16
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Figure 2. 
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