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Abstract 

Technological change is a key determinant of economic growth. The estimation of 

technological change is a very important but troublesome task.  One of the crucial problems in 

conventional methods for the estimation is that they do not sufficiently have micro-theoretical 

underpinnings. The main purpose of this paper is to suggest a new decompositional approach to 

evaluating technological change in deterministic AGE fashion. The multiple calibration technique is 

applied  to assess it. This method enables us to decompose technical change into one by price 

substitution effects and the other by factor-biased effects.  
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1. Introduction 

Although several decades have passed since Solow’s seminal papers appeared, there is still 

room for progress in the estimation of technological change.  Although the estimation is cumbersome, it is 

necessary if we want to understand the contribution of factors to economic growth or the change of 

economic structures over time. 

The purpose of this paper is to suggest a new approach to the estimation of technological change.  

One of the most common methods is the Total Factor Productivity measurement or the Growth 

Accounting method shaped by Solow (1957), which decomposes output growth into measured increases 

in factor inputs and technical change (see, for example, Denison, 1967; Jorgenson and Griliches, 1967).  

This method is of great significance with regards to the explicit integration of economic theory into such a 

decomposition (Griliches, 1996).  This paper is motivated by Solow’s theme.  The “new wrinkle” we want 

to describe is an elementary way of segregating technological change due to price substitution effects from 

that due to other effects, capturing the interdependence among economic sectors.  The double calibration 

technique (Dawkins et al., 2001) is applied to decompose technological change. 

This method also takes over the inheritance of the Input Output (IO) analysis.  In the IO 

framework, Structural Decomposition Analysis (SDA) has recently developed into a major tool for 

decomposition (Rose and Casler, 1996), as it overcomes the static features of the IO analysis and enables 

us to examine structural changes.  However, as Rose and Casler (1996) point out, “a rigorous grounding in 

economic theory is lacking for SDA”.  This paper may provide some theoretical underpinnings to IO 

analysis.   

In addition, the method has an advantage - data availability or efficiency.  Although the attempt 
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to conduct econometric studies often suffers from data insufficiency, our approach requires only two 

period datasets.  It is therefore a practical alternative to econometrics. 

Section 2 explains the methodology, while Section 3 applies this method to an empirical case, 

the oil crises in Japan.  Our method can segregate price-induced technological change from other causes, 

and the analysis may have some implications for Japanese environmental policy, including the carbon tax 

that is currently being discussed. 

 

2. The Methodology 

In this section, our new method of evaluation is explained.  The new feature of the method is the 

application of the double calibration technique to ex post decomposition analysis of technological change 

between two periods.1,2  This technique enables us to disentangle the individual causes from a series of 

simultaneous shocks to an economy in consistent with the general equilibrium theory.  In the paper, total 

technological change (TTC) can be decomposed exactly into two components, price-induced 

technological change (PITC) and factor-biased technological change (FBTC). 

Let us consider the behavior of industries.  Their production functions are given by 

constant-returns-to-scale CES functions, and they are assumed to act so as to maximize their profits in 

competitive markets.  Hence, factor inputs per unit output (hereafter factor inputs) in the initial period       

                                                        
1 For the double calibration technique, see Dawkins et al. (2001).  Only a few attempts have been made at the 

double calibration (e.g., Piggott and Whalley, 2001; Abrego and Whalley, 2002).  

2 In the analysis, like other literature on this subject, technological change is defined as changes of factor inputs 

per unit output, which is identical to the changes of input coefficients in IO tables. 
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(t = t0) are derived as in equation (1).  Capital (K) and labor (L) are the primary factors. 
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where 0
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and jb is the scale parameter.  

The parameter ijλ  embodies (sector-specific) FBTC.  In t0, all prices and 0

ijλ  are set at unity.  

When the values of 0

ijx  and 0

jX  are obtained from the actual data, and the substitution parameters jσ  are 

exogenously given, all parameters of the production functions, a  andij jb , are determined to reproduce the 

actual economic structure in t0 as an equilibrium.  This is the same procedure followed under the 

conventional single calibration technique.3  Then, the production functions are specified.  The parameters, 

, ija jb , and jσ , are assumed to be invariant over the periods. 

Next, in the terminal period (t = t1), factor inputs in t1 are given by equation (2). 
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where 1

ijx is the input of i by sector j in t1 , 1

jX is the output of sector j in t1,  is the price of i in t1

ip 1, and 1

ijλ  

is the FBTC parameter in t1. 

In the double calibration technique, another data period is used to specify unknown parameters.  

Hence, when the values of 1

ijx , 1

jX , and  are obtained from the dataset, the FBTC parameters 1

ip 1

ijλ  are 

endogenously determined to replicate the economic structure in t1 as another equilibrium.  In other words, 

                                                        
3 For the single calibration technique, see Mansur and Whalley (1984) and Dawkins et al. (2001). 
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1

ijλ  are chosen to fill the gap between the counterfactual equilibrium associated with the price change 

under the specified production functions and the actual equilibrium in t1. 
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As in equation (3), changes in factor inputs (TTC) are decomposed into PITC and FBTC.  PITC, 

which depends on the elasticity of substitution jσ  and the change in relative prices over the periods, 

embodies the price substitution effects on the production functions.  On the other hand, FBTC embodies 

the parts of the factor input change that cannot be explained by price substitution effects.  Hence, when 

>1, factor-augmenting technological change occurs, while when 1

ijλ <1, factor-diminishing 

technological change occurs. 

Figure 1 illustrates the concept of the method.  From a theoretical viewpoint, PITC represents 

the change in factor inputs along the production functions, and FBTC represents the shift of the production 

functions.  In contrast to IO analysis, in which technological change is measured without respect to price 

change, our new method can explicitly incorporate price substitution effects into the evaluation of 

technological change. 

Further, equation (2) can also be expressed as equation (4) using matrices.  
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Interestingly, equation (4) is similar to the RAS matrices in IO analysis (e.g., Bacharach, 1970).  

In the RAS terminology, Q  is regarded as the  matrix, which stands for substitution effects, and  as 

the  matrix, for fabrication effects.  

ˆ R̂ P̂

Ŝ

 

3. Empirical Results 

In this section, this evaluation method is applied to an actual case, the oil crises in Japan.  In the 

1970s, skyrocketing oil prices greatly influenced the Japanese economy.  This situation offers a typical 

example to apply our method. 

For the analysis, 1970 and 1980 data are used.  Nominal outputs (factor inputs) are obtained 

from Input–Output Tables (Management and Coordination Agency).  Real outputs (factor inputs) are 

estimated by deflating nominal outputs by the following price indices.  Price indices are from the 

Domestic Wholesale Price Index (Bank of Japan)4 or Deflators on Outputs of National Accounts 

(Economic Planning Agency).5  Capital and labor prices are estimated following Ito and Murota (1984). 

Tables 1, 2 and 3 show FBTC in the cases where σ  = 0, σ  = 0.5 and σ  = 1, respectively.6  

FBTC, which is represented as a percentage change, varies depending on σ .  First, in the case where       

σ  = 0, there is no price substitution and PITC = 0.  Hence, FBTC explains all the changes in factor inputs, 

                                                        
4 For EII, MAC, OMF, COAL, OIL, ELC and GAS. 

5 For AGM and SER. 

6 In this paper, elasticities of substitution are assumed to be constant in all sectors and between inputs for 

simplicity.  However, this methodology can be applied to the case where elasticities are different in each sector 

and between inputs using nested production functions. 
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i.e., FBTC can be regarded as technological change itself.  Next, as shown in the Tables, FBTC changes in 

line with changes in σ .  A larger σ  makes price substitution effects more likely.  Therefore, the more 

σ   increases, the larger the proportion of TTC that is explained by PITC.  In the analysis, elasticities of 

substitution are arbitrarily changed between zero and one, since the purpose here is to explain our 

methodology.  In practice, empirically estimated parameters should be used for substitution parameters.  

For the Japanese case, the existing literature (e.g., Tokutsu, 1994) shows that most elasticities of 

substitution are below one. 

 Here, the case of OIL is analyzed as an example, since FBTC for OIL is considered to be greatly 

affected by the oil crises.  In the case where σ  = 0 (no price substitution) in Table 1, most sectors have a 

negative FBTC for OIL.  This means that factor inputs of OIL decreased in most sectors, implying that 

OIL-saving technological change occurred in the 1970s. 

However, price substitution effects had occurred in reality.  These effects are taken into 

consideration in Tables 2 and 3.  As has been seen, FBTC for OIL increases as σ  becomes larger.  In Table 

3, all the sectors have a positive FBTC for OIL, which means factor-augmenting technological change 

occurred.  This implies that price substitution effects were expected to induce a larger decrease in factor 

inputs of OIL, whereas factor inputs did not decrease to the degree that was expected from these effects.  

In sum, OIL-saving technological change over the periods can be explained entirely, or even more, by 

PITC, rather than FBTC. 
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4. Conclusion 

This paper proposed a new methodology for the evaluation of technological change.  This 

method serves as an elementary but powerful tool for empirical studies.  In addition, it may give some 

micro-theoretical foundations to conventional methods. 

 Griliches (1996) has mentioned that all the pioneers of this subject were clear about the 

tenuousness of the estimation of technological change.  This caution holds true for our method as well - for 

example, one limitation of the method is that it employs a deterministic procedure.  The method could be 

more fruitful if used complementarily with other conventional methods such as IO-SDA or econometric 

methods. 
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Table 1 Factor-biased technological change (percentage changes) when σ = 0 

Input Sector     
 AGM EII MAC OMF SER 
AGM -4.7% -32.4% -53.1% -0.4% -1.8%
EII 15.4% -3.1% -69.3% 18.1% 2.1%
MAC 105.5% 23.0% 4.9% 109.0% 36.0%
OMF 0.1% -5.7% -58.7% -11.1% -32.4%
SER 32.4% -2.0% -36.9% 29.1% 5.3%
COAL -117.3% -12.2% -142.1% -72.5% -5.7%
OIL -11.2% -8.0% -117.3% 0.6% -51.2%
ELC 28.2% 2.6% -37.6% 36.5% 20.4%
GAS 40.0% 32.0% -59.4% 34.0% 54.3%
K 29.3% 11.2% -33.0% 52.9% 37.0%
L -57.8% -31.6% -85.1% -19.1% -25.9%
Classifications are as follows.   
AGM: Agriculture, forestry, fishery and mining, EII: Energy intensive industry 
(paper and pulp, chemical, ceramics, and iron and steel), MAC: Machinery, OMF: 
Other manufacturing, SER: Services and others, COAL: Coal and coal products, 
OIL: Oil and oil products, ELC: Electricity, GAS: Gas, K: Capital, L: Labor. 

 

Table 2 Factor-biased technological change (percentage changes) when σ = 0.5  

Input Sector     
 AGM EII MAC OMF SER 
AGM -4.7% -32.0% -29.6% -8.7% -5.2%
EII 15.1% -3.1% -46.2% 9.4% -1.7%
MAC 82.0% -0.1% 4.9% 77.1% 9.1%
OMF 8.5% 3.0% -26.8% -11.1% -27.5%
SER 35.9% 1.8% -9.9% 24.1% 5.3%
COAL -103.2% 2.2% -104.5% -66.8% 5.0%
OIL 36.8% 40.4% -45.7% 40.2% -6.6%
ELC 51.5% 26.3% 9.2% 51.5% 40.3%
GAS 53.8% 46.2% -22.2% 39.4% 64.6%
K 4.7% -13.0% -34.0% 20.0% 9.0%
L -32.2% -5.5% -35.9% -1.8% -3.7%
Classifications are the same as in Table 1.   

 

Table 3 Factor-biased technological change (percentage changes) when σ = 1  

Input Sector     
 AGM EII MAC OMF SER 
AGM -4.7% -31.7% -6.1% -17.1% -8.7%
EII 14.7% -3.1% -23.0% 0.7% -5.5%
MAC 58.5% -23.3% 4.9% 45.2% -17.9%
OMF 16.8% 11.8% 5.0% -11.1% -22.6%
SER 39.3% 5.6% 17.0% 19.2% 5.3%
COAL -89.1% 16.7% -66.9% -61.1% 15.6%
OIL 84.9% 88.7% 25.8% 79.9% 38.0%
ELC 74.9% 50.0% 56.0% 66.5% 60.2%
GAS 67.6% 60.3% 15.1% 44.9% 75.0%
K -19.8% -37.2% -35.1% -12.9% -19.0%
L -6.5% 20.5% 13.3% 15.5% 18.5%
Classifications are the same as in Table 1.   
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Figure 1 The method 
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