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How stable are Monetary Policy Rules: Estimating the Time-Varying Coefficients 
in A Monetary Policy Reaction Function for the U.S.  

 

P. A. V. B. SWAMY, GEORGE S. TAVLAS and I-LOK CHANG*   

 

We consider the relation among the federal funds rate and the Federal Reserve’s 

expectations for future inflation, the future gap between actual and potential output, and 

the future foreign exchange value of the U.S. dollar. The coefficients of this relation are 

biased when relevant explanatory variables are omitted and/or when the included 

explanatory variables are measured with error. This presents obstacles to verifying the 

conditions under which monetary policies can be effective which, as we show, can only 

be stated in terms of the relation’s bias-free coefficients. To deal with this problem, we 

demonstrate how auxiliary variables, called concomitants, can be used to remove 

omitted-variable and measurement-error biases without assuming the “true” functional 

form of the relation to be known. Numerical algorithms for enacting this procedure are 

presented and an illustration is given using the U.S. quarterly data for 1960Q1-2000Q4.          

 

I. INTRODUCTION 

  

Considerable recent research on monetary policy has focused attention on 

examining the extent to which the conduct of monetary policy can be characterized by a 

simple relationship between a policy instrument and a small set of variables.1 This work 

was largely inspired by John Taylor (1993), who suggested a rule whereby the central 

                                                 
*P.A.V.B. Swamy is a mathematical statistician at the Bureau of Labor Statistics, 
Washington, DC 20212, George S. Tavlas is Director-Advisor, Economic Research 
Department, Bank of Greece, Athens, Greece, and I-Lok Chang is an Associate Professor 
in the Department of Mathematics, American University, Washington, DC 20016. The 
authors received several helpful comments and suggestions from Peter Clark of the 
International Monetary Fund and also from Peter von zur Muehlen. The views expressed 
in this paper are the authors’ own and do not represent those of their respective 
institutions. Much of the work presented in this paper was done when the first author was 
a visiting scholar at the International Monetary Fund during June 2001.     
1 There could be more than one instrument of monetary policy. For example, the Federal 
Reserve sometimes changes both the federal funds rate target and the discount rate and it 
some other times changes only the federal funds rate target.     
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bank sets its policy-determined interest rate in response to deviations of actual inflation 

from target and to the gap between actual and potential output. Taylor compared the 

actual federal funds rate with the rate given by a specified simple policy rule where the 

parameters were imposed rather than estimated, and found that the suggested rule 

captured the behavior of the funds rate quite well. This work spawned considerable 

research aimed at examining the extent to which monetary policy can be characterized as 

following a simple policy rule, where the parameters of the rule are estimated.2  

   

Such a rule is usually represented by an equation of the following form: 

     t
*
tt2

*
t1

*
t   ) y- (y  ) - (  r  r εαππα +++=                                                                          (1) 

where *
tr  = policy-determined interest rate, r  = the long-term equilibrium nominal rate, 

π  = inflation rate, *π  = target inflation rate, y = real output, *y  = potential output, and 

ε  = disturbance term.  

  

This approach assumes that the monetary authority reacts only to two variables--

inflation and output--and that the response in the interest rate instrument to these 

variables is invariant over the sample period. In particular, there is assumed to be a linear 

relationship between the interest rate and its determinants and the coefficients in this 

relationship are fixed. There have been attempts to estimate changes in the coefficients in 

the periods before and after Paul Volcker was Chairman of the Federal Reserve Board 

(see Clarida, Gali and Gertler (2000), Judd and Rudebusch (1998), Taylor (1999), and 

Orphanides (2001a)), but this work has remained in the context of a fixed-coefficient 

linear model. 

  

However, this is a rather restrictive assumption, as it is plausible that the degree to 

which monetary policy responds to its determinants varies over the business cycle. In 

other words, it would seem reasonable to allow for the possibility that the central bank 

adjusts the interest rate it controls more rapidly to a given gap between actual or expected 

                                                 
2 See, for example, Richard Clarida, Jordi Gali and Mark Gertler (1998, 2000), John Judd 
and Glenn Rudebusch (1998), Athanasios Orphanides (2001a) and Taylor (1999).     
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inflation, and to the gap between actual and potential output, in light of the existing 

cyclical situation. This highlights a more general issue of the functional form of the 

monetary policy reaction function. A linear function is generally used on the grounds of 

simplicity, but in principle one cannot rule out that the true model may be nonlinear. 

Thus, there is a problem of unknown functional forms. In addition, there are also the 

problems of interpretation of ε  and the appropriateness of assumptions one might make 

about it.   

 

Moreover, equation (1) assumes that the formulation and implementation of 

monetary policy can be described in terms of achieving two objectives relating to 

inflation and output. While this would appear to be a plausible overall approach to the 

conduct of monetary policy, it is a severely restricted characterization of the set of factors 

that determines the actually observed policy instrument. There are a host of other factors 

that affect the monetary authority’s decision to raise or lower its interest rate and that are 

unlikely to be fully incorporated in the variables in equation (1). For example, actual and 

prospective developments in money supply growth, exchange rates, and commodity 

prices may influence the setting of the policy instrument over and above the extent to 

which they are reflected in current and projected inflation. Moreover, the fact that the 

disturbance term in (1) tends to be highly auto-correlated, which often leads researchers 

to introduce a lagged dependent variable into the equation, suggests that it is mis-

specified (see Imke Brueggemann and Daniel Thornton (2001)). Thus, the estimation of 

equation (1) is subject to biases arising from omitted variables.  

 

Finally, the estimation of equation (1) typically assumes that all of the right-hand 

side variables are observed without error. In particular, the assumption that the real 

interest rate is constant is questionable, as the rise in U.S. productivity growth in the 

second half of the 1990s, for example, probably indicates that the real interest rate 

increased over this period. More generally, it needs to be realized that in deciding on the 

level of the federal funds rate in a given period, the Federal Open Market Committee 

(FOMC)--the policy-making body of the Federal Reserve--does not have accurate data at 

the time of decision-making on inflation and output. While current-period inflation can 
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be estimated fairly accurately, the stance of policy may be based on the projection of 

future inflation. This was clearly the case in 1994, for example, and hence the use of 

current-period inflation would be inappropriate. One can attempt to mimic how the 

monetary authority would forecast inflation, but errors would inevitably remain in the 

measure used for expected inflation. The problem is even more difficult with regards to 

the output gap, as there is considerable uncertainty at the time the policy stance is 

determined regarding both the current level of output, given the typically large data 

revisions in this series, and the level of potential output, given the conceptual and 

measurement issues involved (see Orphanides (2001b)). Therefore, there are ample 

reasons to believe that serious errors-in-variables problems are present with equation (1).  

  

The major objective of this paper is to provide an integrated approach for dealing 

with all three problems identified above: unknown functional form, omitted-variable 

biases, and errors in variables. The next section describes our suggested method for 

achieving this objective. This is followed by the application of this approach to the 

estimation of a monetary policy reaction function for the U.S. Federal Reserve. Some 

concluding remarks are given at the end of the paper.                      

 

II. SPECIFICATION AND ESTIMATION OF A MONETARY POLICY REACTION FUNCTION 

 

A. Embedding a True model in a Class of Models 

  

We assume that the Federal Reserve has a target for a nominal short-term interest 

rate that is based on its expectations about future inflation, expected potential output, and 

other variables affecting the state of the economy. This target affects the actual interest 

rate. Algebraically,  

      x  ]|) y-E[(y  ]|) - E[(  r  r
tn

3
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llααππα                                    (2) 

where *
tr  is an actual nominal short-term interest rate, tr  is the long-term equilibrium 

nominal rate, )|E( tft Ω+π  is the expected inflation rate for a future period t + f based on 
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the information tΩ  available to the central bank at the time it sets interest rates, *
tπ  is the 

central bank’s target inflation rate, ty  is real output and *
ty  is potential output so that 

]|) y- E[(y t
*
tt Ω  measures the expected output gap. The *

tx l s with l  > 2 are all other 

factors that influence the policy-determined interest rate besides the first three variables 

on the right-hand side of equation (2). We treat the variables with an asterisk as 

unobservable true measurements, known only to the central bank, t indexes time, and the 

total number of explanatory variables tn  depends on time if the set of the determinants of 

*
tr  changes over time. Note that there is no need to have an error term in equation (2), 

since we included all the determinants of *
tr  on the right-hand side of (2). To simplify our 

notation, we write   ,   - r 0t
*
t1tt απα =   ,x  )|E( *

1ttft =Ω+π  and *
2tt

*
tt x  ]|) y- E[(y =Ω . 

Suppose that data on ,n ,  K,  ,x t
*
t Kll =  are not available. Such variables are called 

excluded variables. With this notation, (2) can be rewritten as  

      x  x    r
1-K

1j

n

K

*
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*
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t

t
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++=
l

llααα                                                                                      (3)  

 

Excluded variables are not unique and can have several representations, as John 

Pratt and Robert Schlaifer (1984, p. 13) have shown. We may not know anything about 

some of these variables. Even the data that are available on a subset of the variables in (3) 

may contain measurement errors. For example, our proxies for the unobservable central 

bank expectations that appear in equation (2) are necessarily approximations. We now 

show how we deal with these problems. The variables  ,x*
jt j = 1, ,K  K-1, are labeled the 

included explanatory variables. The intercept, 0tα , is also of interest, since it is a function 

of both the long-run equilibrium nominal rate and the central bank’s target inflation rate, 

both of which may change over time.  

  

B. Three Fundamental Problems with Equation (1) and Their Solutions  

 
Unknown-functional-form problem: P.A.V.B. Swamy and George Tavlas 

(2001a) define as true  



 6

(I) any variable or value that is not incorrectly measured and  

(II) any economic relationship (i) with the true functional form, (ii) without any 

omitted explanatory variables, and (iii) without incorrectly measured variables.  

  

Equation (3) satisfies conditions II(ii) and II(iii) because by construction, it has no 

omitted or incorrectly measured variables. These are the two good theoretical properties 

that are built into (3). Consequently, equation (3) is true in the sense of (II) if we can 

prove that it has the true functional form. But we are unable to do so because equation 

(3)’s true functional form is unknown. To be sure, there is no such thing as the true 

functional form of (3) unless there is a real-world relationship underlying (3). Suppose 

that such a relationship exits.3 Then one way of embedding the unknown “true” 

functional form of equation (3) in a class without assuming a specific, possibly false, 

form is not to restrict the pattern of variation in its coefficients in any way. Different 

paths of variation in these coefficients generate various functional forms and the class of 

functional forms equation (3) represents is unrestricted as long as its coefficients’ pattern 

of variation is not restricted in any way. This supports the notion that a member of such 

an unrestricted class can be assumed to be true in the sense of (II) above. For certain 

(unknown) paths of variation in its coefficients, (3) coincides with the underlying “true” 

economic relationship. Clearly, the coefficients, jtα , j = 1, tn ,K , are constants if the 

functional form of the “true” version of (3) is linear. This linear form is unlikely to be 

true because the stance of monetary policy changes with the position of the economy in 

the business cycle phase. For this reason, we prefer not to assume that the jtα ’s are 

constant. 

  

Thus, the possible non-linearity of the “true” economic relationship underlying 

equation (3) is one justification for letting the coefficients, jtα , j = 0, 1, tn ,K , of the 

linear--in variables--form of (3) vary over time. The α  coefficients that follow the “true” 

                                                 
3 We use the term “true” in this paper to mean “the assumed truth” precisely because of 
this assumption. It is clear that the term “assumed true model” does not refer to a model 
that is absolutely true, but refers to a model that is assumed to be true. 
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paths of variation represent the “true” effects on *
tr  of its determinants. These are what 

we refer to as the bias-free coefficients on the *
jtx s and *

tx l s. The adjective “bias-free” is 

appropriate for these coefficients because the biasing effects of omitted variables and 

misspecifications of the “true” functional form are not present on the coefficients of (3) 

with the “true” pattern of variation. However, the partial derivatives of *
tr  with respect to 

the *
jtx s  and *

tx l s cannot be determined without knowing the functional form of the 

“true” economic relationship underlying (3).   

 

To the extent that the “true” functional form of equation (3) is different for 

different central banks, it is not possible to obtain a single solution to the unknown-

functional-form problem that is appropriate for all applications of equation (3). Any 

solution to the problem is application specific. A solution to the problem that is 

appropriate for a particular application we make of equation (3) in this paper is given in 

Section III below.  

               

Omitted-variables-bias problem: Pratt and Schlaifer (1984) proved that if the 

net effect of excluded variables (∑ =

tn

K
*
ttxl llα ) in equation (3) is replaced by an error term, 

then it is “either meaningless or false” to assume that this error term is uncorrelated with 

the included explanatory variables. Their proof involves in showing that the α ’s are 

altered when equation (3) is rewritten in terms of the *
jtx s and a function of the *

jtx s and 

*
tx l s with l  j≠ . This property of the α s shows that the error term written in place of 

∑ =

tn

K
*
ttxl llα is non-unique and assumes different forms in different representations of 

equation (3). The error term in some of these representations is correlated with the 

included explanatory variables (see Swamy, Jatinder Mehta and Rao Singamsetti 1996, p. 

124). It is also true, however, that some of the *
tx l s cannot be identified. Under these 

circumstances, an assumption that the included explanatory variables are uncorrelated 

with the net effect of unidentified excluded variables is “meaningless,” and the stronger 

assumption that the included explanatory variables are not correlated with any excluded 
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variable is false, a result (and terminology) due to Pratt and Schlaifer (1984, p. 12). Thus, 

what we know about equation (3) is not enough to prove that excluded variables are 

uncorrelated with the included explanatory variables.   

  

Solution: Do not assume that excluded variables are uncorrelated with the 

included explanatory variables, but assume that they are related to the included 

explanatory variables according to:  

      x    x
1-K

1j

*
jttjt0

*
t ∑

=

+= lll ϕϕ                            ( l  = K, K , tn )                                              (4) 

Again, all of the coefficients of equation (4) are allowed to vary freely so that equation 

(4) coincides with the underlying “true” economic relationship for a certain pattern of 

variation in its coefficients. The non-linearities of the “true” economic relationship 

underlying equation (4) are our justifications for letting the coefficients of equation (4) 

vary over time. In order to account for the correlations among the included and excluded 

explanatory variables, substitute equation (4) into equation (3). This gives 

     ∑
=

+=
1-K

1j

*
jtjt0t

*
t x    r ββ                                                                                                        (5)    

where ∑ =
+= tn

K t0t0t0t )  (  
l ll ϕααβ  and for j = 1, ,K  K-1, ∑ =

+= tn

K tjtjtjt )  (  
l llϕααβ . The 

coefficients of this equation are unaltered when equation (3) is rewritten in terms of the 
*
jtx s and a function of the *

jtx s and *
tx l s with l  j≠  (see Swamy, Mehta and Singamsetti 

1996, p. 124).  

 

The elimination of the last tn  - K explanatory variables (or so-called “excluded 

variables”) from the “true” economic relationship underlying equation (3) comes at a 

cost. This cost is the contamination of the first K coefficients of (3) caused by the 

addition of an unwanted term of the type ∑ =

tn

K tjt 
l llϕα  to each one of those coefficients, 

as in equation (5). It is not possible to avoid this contamination as long as the coefficients 

of equation (4) are nonzero. Because of this contamination the explanatory variables in 

equation (5) and the same explanatory variables in equation (3) cannot have the same 

coefficients, even though these two equations have the same dependent variable. Further 
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differences between the corresponding coefficients on the included explanatory variables 

in equations (3) and (5) arise if measurement errors are present in our data, as we now 

show.                 

 

Errors-in-variables problem: Observed (as opposed to the “true”) values of the 

variables are likely to contain measurement errors. More specifically, the differences 

between the unobservable central bank expectations in equation (2) and their proxies can 

be viewed as measurement errors. We can only use some proxies for these expectations 

because we have no idea of how these expectations are formed. So the proxies we use for 

these expectations cannot be based on any knowledge the central bank has but we do not 

have. They can only be based on our “coherent” beliefs about the central bank 

expectations and are different from the rational expectations of variables considered in 

much of the literature.     

 

Solution: Suppose that 0t
*
tt  v r  r +=  and jt

*
jtjt  v x  x += , j = 1,K , K-1, where tr  

and jtx  are the observed counterparts of *
tr  and *

jtx , respectively, and the vs represent 

measurement errors, which may not have means zero. Some of the *
jtx s denote the state 

of policy-maker’s knowledge of the economy at the time of decision-making on inflation 

and output. They are different from the corresponding jtx s because of data revisions, 

measurement errors, and of the differences between equation (5) and the models that give 

the forecasts of future variables for the policy-maker’s use. We indicate our choice of tr  

and jtx  in Section III below. To bring us closer to estimation, substitute into equation (5) 

the observable counterparts of its dependent and explanatory variables to obtain  

      x    r
1-K

1j
jtjt0tt ∑

=

+= γγ                                                                                                         (6)  
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where ) v   (  0t
n

K t0t0t0t
t ++= ∑ =l llϕααγ  and for j = 1, ,K  K-1,  

∑ =
+= tn

K
jt

jt
tjtjtjt  .)

x
v

 - 1)(  (  
l llϕααγ 4 The method used to derive equation (6) may be called 

a model-consistent method of dealing with errors in variables in general and with 

individuals’ expectations in particular.     

 

C. The Appropriate Interpretations of the Coefficients of Equation (6) and Their 

Implications 

 
 (a) The intercepts of equation (4), i.e., t0lϕ , are the portions of excluded variables 

remaining after the effects of the included explanatory variables have been removed. 

Only these portions appear in the intercepts of equations (5) and (6). This shows that the 

interpretation that the error terms of econometric models represent the net effects of 

omitted variables is generally inappropriate.      

 

 (b) For j = 0, jtγ  of equation (6) is the sum of three parts: (i) the bias-free 

intercept of equation (3), (ii) a combination of the portions of excluded variables ( t0lϕ ) 

with the coefficients on excluded variables ( tlα ) acting as its coefficients, and (iii) the 

measurement error in the dependent variable of equation (6). This means that the 

intercepts of equations (3) and (4), the coefficients on excluded variables, and the 

measurement error in the dependent variable are the sources of the intercept of equation 

(6).  

                                                 
4 Note that dummy variables should not be used as explanatory variables in equation (6) 
because they are not explanatory variables. The consequence of including a dummy 
variable as an explanatory variable with a time-varying coefficient is that the coefficient 
times the variable is zero whenever the variable takes the value zero regardless of the 
value of the coefficient. Hence the coefficient values corresponding to the zero values of 
the variable are arbitrary. Even when an explanatory variable is not a dummy variable, 
the value of its time-varying coefficient is also arbitrary whenever the variable takes the 
value zero.    
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(c) For j = 1, ,K  K-1, jtγ  of equation (6) is also the sum of three components, 

,jtα  ∑ =

tn

K tjt ,
l llϕα  ∑ =

+ tn

K
jt

jt
tjtjt ),

x
v

 - )(  (
l llϕαα  which have the following economic 

interpretations: (i) the term jtα  represents the bias-free coefficient on the “true” value of 

the jth included explanatory variable ( *
jtx ) in the “true” economic relationship underlying 

equation (3). (ii) The term ∑ =

tn

K tjtl llϕα  represents an “indirect” effect due to the fact that 

the “true” value of the jth included explanatory variable affects the “true” values of 

excluded variables that, in turn, affect the “true” value of the dependent variable of 

equation (3). This term is also called an “omitted-variables bias” in econometrics. (Recall 

that tlα is the effect of the “true” value of the l th omitted variable ( *
tx l ) on the “true” 

value of the dependent variable ( *
tr ) and tjlϕ  is the effect of the “true” value of the jth 

included explanatory variable ( *
jtx ) on the “true” value of the l th excluded variable 

( *
tx l ).) The term, ∑ =

tn

K tjtl llϕα , is the same as a simultaneous-equations bias. Under our 

assumptions, equations (3) and (4) hold simultaneously and they are combined into one in 

(5). In other words, whenever the tjlϕ s are not zero, i.e., the relations in (4) hold, they 

give nonzero values to the simultaneous-equations bias. (iii) Finally, the term 

∑ =
+ tn

K jtjttjtjt )]x/v)(  [-(
l llϕαα  captures a “measurement-error bias” due to mismeasuring 

the jth included explanatory variable (recall that jtv  is the measurement error in jtx ).  

 

(d) Omitted-variable biases are unlikely to have the same pattern of variation that 

excluded variables have and hence are likely to be different from excluded variables. No 

procedure other than that of converting some of excluded variables into included 

variables can reduce the magnitude of omitted-variable biases. With respect to 

measurement-error biases, their magnitudes are reduced whenever the absolute values of 

the errors of measurement in our data are reduced. We cannot go from equation (3) to 

equation (6) without contaminating the bias-free coefficients, jtα , j = 1, ,K  K-1. 

Omitted-variable and measurement-error biases contaminate them. Similarly, the 
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intercept of equation (3) becomes the intercept of equation (6) only after it is 

contaminated by a combination of the intercepts of equations (4) and by the measurement 

error in the dependent variable of equation (6). For these reasons, we call the jtγ s the 

“biased” coefficients.      

 

In the discussion that follows, it should be remembered that only the coefficients, 

jtα , j = 0, 1, ,K  K-1, that have the “true” pattern of variation provide information about 

the “true” economic relationship underlying equation (3). Unfortunately, we do not have 

the necessary data to estimate (3). We only have data on the dependent and explanatory 

variables of equation (6). Estimates of the coefficients of the latter equation cannot 

provide information about the assumed true pattern of variation in jtα , j = 0, 1, ,K  K-1, 

unless we have a method of separating the bias-free coefficients (i.e., the coefficients of 

equation (3) having the “true” pattern of variation) from the omitted-variable and 

measurement-error biases contained in the coefficients of equation (6). We present such a 

method below.         

  

The bias-free coefficients cannot be constant unless equation (3) is linear, as we 

have already pointed out. The remaining two components of the coefficients of equation 

(6) (the omitted-variable and measurement-error biases) cannot be constant if (i) the set 

of omitted variables changes over time, (ii) the ratios ( jtv / jtx ) vary over t, and (iii) the 

“true” functional forms of equations (3) and (4) are nonlinear. Thus, the premises of 

fixed-coefficient models are inconsistent with the appropriate interpretations of the 

coefficients of equation (6) if any one of (i) to (iii) holds and hence fixed-coefficient 

models cannot coincide with the corresponding “true” economic relationships.5  

  

                                                 
5 I-Lok Chang, Swamy, Charles Hallahan and Tavlas (2000), Swamy and Tavlas (2001a) 
and Sophocles Brissimis, George Hondroyiannis, Swamy and Tavlas (2001) show that in 
general, stationarity, linearity, and differencing of variables to induce stationarity are 
inconsistent with the appropriate interpretations of the coefficients of equation (6). 
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In addition, (i) for j = 1, ,K  K-1, jtγ  is a function of jtx , as can be seen from its 

measurement-error-bias component, ∑ =
+ tn

K jtjttjtjt )]x/v)(  [-(
l llϕαα , (ii) all the 

coefficients of equation (6) are functions of the time-varying coefficients, tlα , l  = K, 

K , tn , on excluded variables and (iii) 0tα  is a function of 1tα . These properties 

demonstrate that it is inappropriate to assume that in equation (6), the coefficients are 

constant and uncorrelated with each other and with the included explanatory variables. 

Any method of estimation of equation (6) that ignores these correlations can lead to 

inconsistent estimators of its parameters.       

 

D. A Consistent Method of Estimating Equation (6) 

 

 One question that needs to be answered before estimating equation (6) is that of 

parametrization: which features of equation (6) ought to be treated as constant 

parameters? We should be aware that inconsistencies arise if we adopt a parameterization 

that is not consistent with the interpretations of the coefficients of equation (6) given 

above. To avoid such a parameterization, we make the following assumptions:   

Assumption I: The bias-free and other components of the coefficients of equation (6) 

satisfy the stochastic equations 

∑
∈

+=
jPm

j1tmtjmjt   z  επα                                                                                                         (7) 

∑∑
∉=

+=+=
j

t

Pm
j2tmtjm

jt

jt
n

K
tjt

jt

jt
jtjtjt   z  )

x
v

 - 1)((  )
x
v

 -(   - επϕαααγ
l

ll ,                                            (8) 

which can be combined into    

   ∑
=

+=
1-p

0m
jtmtjmjt   z  επγ                      (j = 0, 1, ,K  K-1)                                                      (9) 

where 1  z0t =  for all t, the mtz with m > 0 are called “concomitants,”  P Pj ⊂ = {0, 1, 

2, 1-p ,K }, which is the “index set” formed by the values of m, and j2tj1tjt     εεε +=  with 

E( s)z'|j1tε  = 0 and E( s)z'|j2tε  = 0. The concomitants are assumed to be mean 

independent of j1tε  and j2tε , which are assumed to satisfy the stochastic equation:  
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     jt1-jtjjjt a    += εφε                                                                                                           (10) 

where for j, j′  = 0, 1, ,K  K-1, 11- jj << φ , and the jta s are serially uncorrelated with 

E( jta ) = 0 and jjtjjt   )aE(a ′′ =σ  for all t.6 , 7  

 

 In equation (9), p concomitants including 0tz  are used to explain the variation in 

jtγ . Of these concomitants, some are used in equation (7) to explain the variation in the 

bias-free component of jtγ  and the remaining are used in equation (8) to explain the 

variation in the indirect effects and measurement-error biases contained in jtγ .  The 

coefficient j0π  on 0tz  represents a constant portion of jtα  if it has the right sign and of 

jtjt  - αγ  otherwise. The portion of jtα  that depends on mtz  with m > 0 is a variable. Also, 

note that the sets of concomitants used in equations (7) and (8) may be different for 

different coefficients of equation (6). Equations (7) and (8) relate the time-varying 

components of the coefficients of equation (6) to the time-varying concomitants and error 

terms. The greater the proportion of the variation in jtγ  explained by the concomitants in 

equation (9), the better. Equating time-varying coefficients to fixed coefficients is a 

specification error and this error is avoided in equations (7) and (8). These equations have 

error terms because the concomitants included in them may not explain all the variation 

in the components of the coefficients of equation (6). Equation (10) is introduced to allow 

for the possibility that the unexplained portion of jtγ  is serially correlated.   

 

It should be noted that the decompositions of sγ  in (9), unlike those in (6), depend 

on our choice of concomitants. This difference in decompositions will prove useful later 

in this analysis. Also, the explanatory variables of equation (6) and their coefficients 

                                                 
6 The term “concomitants” is borrowed from Pratt and Schlaifer (1988) who do not use 
equation (9) in their work. They also do not deal with errors of measurement.  
7 Equation (10) can be generalized to include nonzero correlations between jtε  and 1-tj′ε  
with j  j ′≠  (see Chang et al. 2000). We write the covariance matrix of )a , ,a ,a( t1,-K1t0t ′K  

as a
2
a ∆σ , where a∆  is the K ×  K matrix having ( 2

ajj /σσ ′ ) as its (j, j′ )th element.    
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cannot have the same pattern of variation and the concomitants are introduced to explain 

the variation in the coefficients. For this reason, the concomitants cannot be the same as 

the explanatory variables and should not be included in equation (6) as explanatory 

variables. For the same reason, the explanatory variables should not be included in 

equations (7) and (8) as concomitants.   

  

Inserting equation (9) into equation (6) gives the appropriate conditional moments 

of tr  given the values of jtx s and mtz s if equations (7) and (8) include those 

concomitants that satisfy the following assumption.          

Assumption II: (i) Given the values of the concomitants, mtz , the explanatory variables 

of equation (6) are independent of the jtε , and  

(ii) )r ,z ,,z|1- K, 1,  j ,S pr(x tt1,-p1tjjt KK=∈  = )z ,,z|1- K,1,  j ,Spr(x t1,-p1tjjt KK=∈ , 

where the jS ’s are the intervals containing the realized values of the jtx s  to which the 

realized values of tr  are connected by the “true” relationship underlying equation (3).8 , 9 

                                                 
8 Assumption II(i) captures the idea that the explanatory variables of equation (6) can be 
independent of the jtε s conditional on the given values of concomitants, even though 
they are not unconditionally independent of the jtγ s. In other words, Assumption II(i) 

says that jtx  is correlated with its coefficient jtγ  because of the terms ∑ −

=
+

1

1m mtjmj0 z  p ππ , 

but once these terms are subtracted from jtγ , the remainder ( jtε ) is independent of jtx . 
That is, by using the decomposition (9) of jtγ  that is different from that given in equation 
(6), we find a solution to the problem of the correlation between jtγ  and jtx . If the 
decomposition of jtγ  in (9) were the same as that in (6), then Assumption II(i) would be 
false. As regards Assumption II(ii), it says that tr  is related to the jtx , j = 1, ,K  K-1, and 
the mtz , m = 1, ,K  p-1, according to the “true” relationship underlying equation (3), even 
though the coefficients of this relationship are changed in the presence of omitted 
variables and measurement errors (see Pratt and Schlaifer 1988, pp. 34-37). In this 
statement, the quotes added to the word true are unnecessary if the true economic 
relationship underlying equation (3) actually exists. Arnold Zellner (1988), Robert 
Basmann (1988) and Pratt and Schlaifer (1984, 1988) describe the properties of such true 
economic relationships. Assumption II(ii) is false if, for all t and j = 1, ,K  K-1, both 
E( tr | jtx , j = 1, ,K  K-1, and mtz , m = 1, ,K  p-1) and E( jtx | mtz , m = 1, ,K  p-1, tr ) exist 
and are finite and if E( jtx | mtz , m = 1, ,K  p-1, tr ) ≠   E( jtx | mtz , m = 1, ,K  p-1).  
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  The a priori choice of concomitants depends on intuitions about how the 

information contained in the concomitants is relevant to the information about the bias-

free coefficients being sought. One such intuition is that the sources of variation in the 

bias-free components of the coefficients of equation (6) are the non-linearities of the 

“true” true economic relationship underlying equation (3). From this intuition it follows 

that the concomitants to be included in equation (7) are those that capture such non-

linearities. Thus, equations (7) and (8) play a crucial role of maintaining the connection 

between the coefficients of equations (3) and (6).10  

        

Substituting (9) into (6) gives an equation in a consistently estimable form  

  ∑ ∑ ∑
−

= = =

++++++=
1

1m

1-p

1m

1-p

1m
t1,-Kmtm1,-Kt1,-K1,0-K1tmt1m1t10mt0m00t    xz  x   xz  x  z    r

p

ππππππ L     

          t1,-Kt1,-K1t1t0t x  x   εεε ++++ L                       (t = 1, 2, K , T)                                 (11) 

                                                                                                                                                 
9 There are similarities as well as differences between Assumption II(i) and the 
econometrician’s definition of instrumental variables. Like the instrumental variables, the 
concomitants are highly correlated with the explanatory variables of equation (6) but 
unlike the instrumental variables, the concomitants are only independent of the 
remainders jtε  of the coefficients of equation (6) and are not independent of the intercept, 

0tγ . Consequently, Assumption II(i) is consistent and the definition of instrumental 
variables is inconsistent with the appropriate interpretations of the coefficients of 
equation (6). Also, Chang et al. (2000, p. 117) show that the instrumental variables do not 
exist as long as the error term of equation (9) for j = 1, ,K  K-1 is not degenerate at zero. 
To choose among different sets of concomitants, we need additional criteria, such as 
those presented in Swamy and Tavlas (2001a).  
10 We have shown in footnote 4 that the coefficients of equation (6) are arbitrary if the 
corresponding explanatory variables are dummy variables. This problem does not arise if 
some of the concomitants are dummy variables because the constant coefficients of 
equation (9) take the same values whether or not the corresponding z variables take zero 
values. By making the coefficients of equation (6) functions of both dummy and 
continuous variables, we can allow both discrete and continuous changes in the 
coefficients of equation (6). The functional form of equation (6) when some of the z’s in 
(7) and (8) are dummy variables, is more general than that of the fixed-coefficient analog 
of equation (6) with dummy variables as some of its explanatory variables. The inclusion 
of dummy variables in the fixed-coefficient analog of equation (6) introduces only 
discrete changes into its coefficients. This is a very restrictive functional form that can be 
false. Moreover, the fixed-coefficient analog of equation (6) with dummy variables is not 
consistent with the appropriate interpretations of the coefficients of equation (6).  
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Note that this equation is not obtained by adding an arbitrary error term to an ad hoc 

mathematical equation. It is derived from equations (3)-(10), which together form a 

consistent set. This consistency is relative to the appropriate interpretations of the 

coefficients of equation (6). The existence of equations (3)-(6) follows from that of the 

“true” economic relationship underlying equation (3).11 Equation (11) has K error terms, 

as many as there are coefficients in equation (6). Of these, K-1 errors are the products of 

sε and the included explanatory variables. Consequently, the sum of the K error terms in 

(11) is both heteroscedastic and serially correlated. Thus, our derivation of equation (11) 

is justified by its producing such errors with no appeal to any arbitrary heteroscedasticity 

assumption. Since the pattern of variation in jtx  is different from that in jtγ , the jtx s 

cannot be proper concomitants. For choices of proper concomitants satisfying 

Assumptions I and II, equation (11) provides a better second-order approximation to 

equation (6) than equation (11) with jtjt x  z =  or the equations given by another approach 

known as the hierarchical Bayes procedure.12              

  

Under Assumptions I and II, the right-hand side of equation (11) with the last K 

terms suppressed gives the conditional expectation of tr  as a nonlinear function of the 

                                                 
11 By contrast, cointegrating and error-correction models exist only if a particular term 
made explicit in Swamy and Mehta (1996) is added and subtracted on the right-hand side 
of a vector moving average model with fixed coefficients, which itself does not exist 
unless a stationarity condition is satisfied. This condition is inconsistent with the 
appropriate interpretations of the coefficients of equation (6), as the above argument 
shows. Omitted-variable and measurement-error biases contained in the coefficients of 
cointegrating and error-correction models are ignored.      
12 Differences between our and the hierarchical Bayes modeling procedures can be seen if 
our derivation of equation (11) is compared with G. S. Datta, P. Lahiri, T. Maiti and K. L. 
Lu’s (1999) derivation of a time series generalization of a cross-sectional model used in 
small-area estimation. The principle of estimating models under assumptions that are 
consistent with the appropriate interpretations of their coefficients applies not only to 
equation (6) but also to hierarchical Bayes models. The reason is that the coefficients of 
hierarchical Bayes models cannot be free of omitted-variable and measurement-error 
biases. The estimates of those coefficients may not be consistent unless appropriate 
corrections for such biases are applied to them.     
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conditioning variables.13 This result explains why the addition of a single error term to a 

mathematical equation and the exclusion of the interaction terms on the right-hand side of 

equation (11) yield an inappropriate conditional expectation of tr in the usual situations 

where measurement-error and omitted-variable biases are present and the “true” 

functional forms are unknown.14     

 

The procedure of identifying the coefficients of equation (11) is the same as that 

of identifying the coefficients of generalized linear regression models. Following the 

latter procedure, we can find the conditions under which the coefficients of equation (11) 

are identifiable and consistently estimable. What is novel here is our method of 

identifying the time average ( ∑=

T

1t jtT
1 α ) of each of the bias-free coefficients, jtα , j = 

1,K , K-1, in equation (3). We now present this method.15 Let 0tx  be equal to 1 for all t. 

Then the conditional expectation, zs) xs,|E(rt , implied by equation (11) is equal to 

                                                 
13 Chang et al. (2000) develop a numerically stable algorithm for estimating equation (11) 
subject to equality and inequality constraints on its parameters. J. Thomas Yokum, Albert 
Wildt and Swamy (1998) show that equation (11) has better forecasting properties than 
some of its special cases.  
14 Two of the conditions under which equation (11) has Diewert’s flexible functional form 
are (i) jtjt x  z =  for all j and t and (ii) the distribution of jtε  is degenerate at zero for j = 
1,K , K-1 and all t (see W. Erwin Diewert and T.J. Wales 1987). Neither condition is 
consistent with the appropriate interpretations of the coefficients of equation (6), as we 
have shown above. 
15Making a distributional assumption about the jta  in (10) gives the distributions of the 
random coefficients of equation (6). Random coefficients are also called random 
parameters. In this regard, Zellner (1989) asks: “Is the distribution of the random 
parameters a prior or is it part of the model?” (p. 302). One can perform a Bayesian 
analysis of model (11) by putting a prior distribution on its parameters. Without a doubt 
this distribution is a prior. The appropriate likelihood function for this Bayesian analysis 
is given by equation (11), which cannot be derived without inserting (9) into (6). 
Therefore, the distribution of the random coefficients of equation (6) based on equation 
(9) is part of model (11). This does not mean that in specifying equation (9) we did not 
use our prior information in the form of the appropriate interpretations of the coefficients 
of equation (6). We doubt that coherent inferences can be obtained by putting a 
distribution on the coefficients of equation (6) that is inconsistent with the coefficients’ 
appropriate interpretations.    
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( )∑ ∑= =

1-K

0j jt
1-p

0m mtjm xzπ , which, in view of equations (7) and (8), can be written as 

( )∑ ∑ ∑= ∈ ∉
+

1-K

0j jtPm Pm jmmtjm xz  z
j j

mtππ . Using the connection, established by equation (7), 

between zs) xs,|E(rt  and equation (3) gives ( )∑ ∑= ∈
=

1-K

0j jtPm mtjm
*
t xz  zs) xs,|E(r

j
π . 

Therefore, for t = 1, 2,K , T,   1,- K,1,  j K=  and 1-p ,1,  m K= :  

        
zx

zs) xs,|E(r (ii) ;z  
x

zs) xs,|r(E )i( jm
mtjt

*
t

2

Pm
mtjm

jt

*
t

j

ππ =
∂∂

∂
=

∂
∂ ∑

∈

if m j P∈  and = 0 otherwise    

                                                                                                                                         (12)                               

The zs included in equation (9) are all the right concomitants only if they completely 

explain all the variation in the coefficients of equation (6) and the derivatives in (12) have 

the right signs and the right time profiles.16 If the coefficients of equation (11) are 

identifiable and consistently estimable, then so are these partial derivatives.   

 

We would also like to identify and consistently estimate the bias-free component 

( jtα ) of the “biased” effect ( jtγ ) of jtx  on tr  because it is the quantity of interest. We do 

not obtain this quantity unless we add the error term ( j1tε ) of equation (7) to the partial 

derivative in (12)(i). Unfortunately, this error term is not identified, even though the 

partial derivative is identifiable. For this reason, the bias-free coefficient, jtα , is only 

partially identifiable. That is, it is identifiable except for its random error term. More 

generally, the coefficients of equation (6) and their bias-free components in each period 

are only partially identifiable because the error terms of equations (7) and (8) are not 

                                                 
16In a recent study, Kashyap and Stein (2000) test their hypotheses about the signs of the 
second- and third-order partial derivatives of a variable with respect to other variables 
specified by them. They do the usual: estimate these derivatives without correcting for 
omitted-variable and measurement-error biases. They also do not correct for the 
inaccuracies in their specified functional forms. Furthermore, these derivatives may not 
exist because some of the variables with respect to which they are taken are discrete. 
Swamy and Tavlas (2001b) compare Kashyap and Stein’s method with the method 
adopted in this paper. Unlike Kashyap and Stein (2000), Laurentius Marais and William 
Wecker (1998) do the unusual: correct for omitted-variables and measurement- error bias, 
but their method ignores the unknown functional-form problem.       
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identified. This shows that there are limits to what we can learn about equation (2) from 

equation (11).  

 

A key item of interest from equation (2) is the bias-free component, 1tα (see, e.g., 

Clarida et al. 1998, p. 1037). Yet, if 1tα  is only partially identifiable, what can we learn 

about this key item? We address this issue.    

  

It follows from equation (10) that the distribution of jtε  is degenerate at zero (or 

at a nonzero value) if jjφ  = 0 (or 1) and the distribution of jta  is degenerate at 0. If, in 

addition, j1tε  takes values in a small interval around zero with probability 1, then the 

partial derivative in (12)(i) gives a good approximation to jtα . We give below a method 

of verifying these conditions. Whether or not these conditions hold depends on the 

number and the appropriateness of concomitants included in equations (7) and (8).       

  

We estimate all the parameters of equation (11) using an iterative re-weighted 

generalized least squares (IRWGLS) method developed by Chang et al. (2000). In this 

procedure, the estimated covariance matrix of the error term, t1,-Kt1,-K1t1t0t x  x  εεε +++ L , 

changes from one iteration to the next.17 Hence the term “re-weighted” appears in 

IRWGLS.  The minimum-norm solutions of equations that connect the residuals of 

equation (11) to the error term of equation (9) are used to estimate the jtε  (see Chang, 

Hallahan and Swamy 1992). The estimated jtε  are used to estimate the error covariance 

matrix of equation (11). Some authors would rather use the convenient a priori value of 1 

in place of the unknown “true” value of jjφ  than estimate jjφ  from sample data subject to 

the restrictions that (i) 11- jj << φ  and (ii) the variance of jta  is nonnegative (see, for 

example, Datta et al. 1999). Our view is that it is a mistake to use a convenient a priori 

value in place of the unknown “true” value of a parameter without knowing whether or 

                                                 
17 In the applications of this procedure reported in the next section, convergence of the 
iterated scheme to one or more sets of parameter estimates did not require over 50 
iterations.     
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not the a priori value is compatible with the sample information. The IRWGLS method 

can be used to verify the compatibility of the a priori value of 1 for jjφ . Because of our 

restriction, 11- jj << φ , equation (10) cannot cover the case where jjφ  = 1 as a special 

case. However, our experience with the IRWGLS method tells us that for some models 

and some data sets, the estimates of some of the jjφ  would be as close to 1 as 0.995 and 

the estimates of some of the variances of jta ’s would be as close to zero as 0.0001. The 

IRWGLS estimate of 0.995 for jjφ  may mean that the restriction jjφ  = 1 is compatible 

with the sample data. This estimate together with the IRWGLS estimate of 0.0001 for the 

variance of jta  may mean that the distribution of jtε  is close to a degenerate distribution. 

These estimates imply that the concomitants included in equation (9) explain most of the 

variation in jtγ .  

 

Let jmπ̂  and jtε̂  be the IRWGLS estimators of jmπ  and jtε , respectively. Then 

inserting them into equation (9) gives the estimate ∑
=

+=
1-p

0m
jtmtjmjt ˆ  zˆ  ˆ επγ  of the “biased” 

effect of jtx  on tr . We take ( )∑ ∑= ∈

T

1t Pm mtjm
j

zˆT1 π as the IRWGLS estimator of 

( )∑ =
=

T

1t jtjT T1  αα , a time average of the bias-free component of jtγ , provided that the 

sign and time profile of ∑
∈ jPm

mtjmzπ̂  and the signs of the estimates of the second-order 

partial derivatives in (12)(ii) agree with our prior beliefs based on the relevant economic 

theory. Similarly, the IRWGLS estimator of an average of the sum of omitted-variable 

and measurement-error biases contained in the coefficients of equation (6) is 

( )∑ ∑= ∉

T

1t Pm mtjm
j

zˆT1 π . The condition under which the estimator 

( )∑ ∑= ∈

T

1t Pm mtjm
j

zˆT1 π is consistent is that | ( )∑ ∑= ∈

T

1t Pm mtjm
j

zˆT1 π - ∑=

T

1t jt |(1/T) α  

converges in probability to zero as T ∞→ .              
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A necessary condition that the right concomitants are included in equations (7) 

and (8) is that the IRWGLS estimates of ∑
∈ jPm

mtjmzπ  and the IRWGLS estimates of the 

second-order derivatives in (12)(ii) have the right signs. The source of these signs is, of 

course, the economic theory that has suggested the variables to be included in equation 

(3).  

 

III. MONETARY POLICY RULES IN THE UNITED STATES DURING 1960Q3-2000Q4   

 

 A. A Model of the Federal Reserve’s Reaction Function  

 

We assume that the following version of equation (6) adequately represents the 

monetary-policy reaction function for the U.S. Federal Reserve:    

   ,xxx  r 3t3t2t2t1t1t0tt γγγγ +++=                                                                                   (13)  

where tr  = the federal funds rate in percent, 1tx  = inflation in percent = log 

( 4-tt /PP )× 100, tP  = GDP implicit price deflator for the U.S., 2tx  = output gap = 

(deviation of the logarithm of U.S. GDP from the least squares estimates of a quadratic 

trend) ×  100, 3tx  = the exchange rate between the U.S. dollar and a basket of other 

currencies. It is assumed that for j = 0, 1. 2, 3,  

   jt3tj32tj21t1jj0jt   z  z  z     εππππγ ++++=                                                                          (14) 

with 1tz  = the reciprocal of the U.S. unemployment rate in percent, 2tz  = 5-year moving 

average of inflation ( 1tx ), and 3tz  = ×)M/(M log -5t1-t  100, tM  = M2 measure of money 

for the U.S.,    

   jt1-jtjjjt a    += εφε ,                                                                                                           (15) 

and t indexes quarters. Equations (13)-(15) are analyzed under Assumptions I and II with 

K and p equal to 4. The data used cover the period 1960Q3-2000Q4, and 1979Q3 is the 
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period in which we believe that the Federal Reserve changed the course of its monetary 

policy.18  

 

Equations (13) and (14) are much more elaborate than the equation suggested by 

the following argument of Taylor (1999, p. 323): “a function relating the interest rate to 

the price level and real output will still emerge if the money stock is not growing at a 

fixed rate, but rather responds in a systematic way to the interest rate or to real output; the 

response of money will simply change the parameters of the relationship” [our emphasis].      

 

A necessary and sufficient condition for macroeconomic stability: A real rate 

can be obtained by subtracting )| E( x tft
*
1t Ω= +π  from both sides of equation (3) with K 

= 4, provided *
tr  represents the realized value of the federal funds rate in quarter t and all 

the right-hand side variables of equation (3) represent its determinants. Doing so gives  

   ∑
=

++++=
tn

4

*
tt

*
3t3t

*
2t2t

*
1t1t

*
t1tt

*
1t

*
t xx x  1)x - (   - r x - r

l
llααααπα                                         (16) 

All the coefficients of equation (16) are bias-free, as shown in Section IIC. Suppose that 

equation (16) is a central bank’s reaction function. Then the central bank increases *
tr to 

reduce inflation whenever it expects inflation to go up. Taylor (1999, p. 331) argues that 

this is a good policy if it brings about an increase in the real interest rate and a wrong 

policy if it brings about a fall in the real interest rate. Decreases in *
tr  that decrease the 

real interest rate represent good policy actions only in periods of decreasing inflation. 

Now we ask the question: What are the conditions under which equation (16) gives such 

good policy rules? The answer is as follows. The real rate, *
1t

*
t x - r , increases if an 

                                                 
18 We also experimented with several other specifications that excluded the exchange rate 
variable from equation (13), excluded the 5-year moving average of inflation and/or the 
reciprocal of the U.S. unemployment rate from equation (14), included in equation (13) 
additional explanatory variables including the lagged dependent variable, 1-tr , and 
included additional concomitants in equation (14). None of these experiments gave us 
plausible results. In particular, the inclusion of 1-tr  with a fixed or variable coefficient on 
the right-hand side of equation (13) introduced high spurious inter-correlations among the 
time-varying coefficients. This experience shows that equation (13) gives spurious results 
if it has a lagged value of its dependent variable as one of its explanatory variables.         
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increase in *
tr  exceeds an increase in *

1tx  and decreases if a decrease in *
tr  is less than a 

decrease in *
1tx . From equation (16) we can derive that  x - r *

1t1,
*

1t ++ ∆∆ =  

*
1t1t

*
1t1,1t1,

n

4

*
1t,1t,

*
1t3,1t3,

*
1t2,1t2,

*
1t1t1,1t 1)x - ( - 1)x - (  )x  x  x   - r(

t

αααααπα ++
=

+++++++++ ++++∆ ∑
l

ll , 

where ∆  is the difference operator, i.e., for any tx , t1t1t x - x  x ++ =∆ . Therefore, an 

increase in *
tr  exceeds an increase in *

1tx  if and only if  

  )x  x  x   - r(
tn

4

*
1t,1t,

*
1t3,1t3,

*
1t2,1t2,

*
1t1t1,1t >+++∆ ∑

=
+++++++++

l
llαααπα

]x/x)( -  - 1[x *
1t1,

*
1t1,1t1,1t

*
1t1, ++++ ∆∆∆ αα .                                                                              (17) 

Alternatively, a decrease in *
tr  is less than a decrease in *

1tx  if and only if the strict 

opposite of condition (17), i.e., condition (17) with its inequality sign reversed, holds. 

Condition (17) is satisfied if   

(i)   )x  x  x   - r(
tn

4

*
1t,1t,

*
1t3,1t3,

*
1t2,1t2,

*
1t1t1,1t ≥+++∆ ∑

=
+++++++++

l
llαααπα  0 and (ii) 

1    ]x/x)[( 1t
*

1t1,
*

1t1,1t1, >+∆∆ +++ αα 19                                                                                    (18)  

The strict opposite of condition (17) holds if condition (18)(ii) and the opposite of 

condition (18)(i), i.e., condition (18)(i) with its ‘≥ ’ sign changed to ‘≤ ’, hold. An 

expected increase in inflation will bring about an increase in the real interest rate if it 

results in an increase in *
tr  that satisfies conditions (i) and (ii) in (18). Thus, in the case 

where the central bank’s expectation of an increase in inflation comes true and its policy 

action of increasing *
tr  leads to the satisfaction of conditions (i) and (ii) in (18), the real 

rate adjusts to stabilize the economy. Using strong prior information, Taylor (1999) and 

Clarida et al. (1998, p. 1037), among others, assume that tr  and *
tπ  are constant and that 

they know the dates at which the coefficients on the included explanatory variables in 

condition (18)(i) change. They also ignore the biases introduced by excluded variables, 
                                                 
19  x - x - x  x - x  x)1 - ( - x)1 - ( *

1t1,
*
1t1t

*
1t1,1t

*
1t1,1t

*
1t1,1t1,

*
1t1t

*
1t1,1t1, +++++++ ∆+= αααααα  

*
1t1,

*
1t1,1t

*
1t1,1t1, x - x  )x( ++++ ∆∆+∆= αα  > 0 if and only if condition (18)(ii) with positive 

*
1t1,x +∆  holds. Conditions (i) and (ii) in (18) are stronger than the necessary and sufficient 

condition (17).     
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measurement errors, and the inaccuracies in their specified functional forms. 

Consequently, in their case, the term ) - r( *
1t1t1,1t +++∆ πα  in condition (18)(i) reduces to zero 

and condition (18)(ii) simplifies to 1α  > 1 in the periods in which 1α  is a constant. Any 

policy that does not satisfy these simplified conditions need not necessarily be bad 

because Taylor’s and Clarida et al.’s assumptions could be false. For example, in the 

general case, where (i) 1tα  is a positive variable and (ii)  ]x/x)[( *
1t1,

*
1t1,1t1, +++ ∆∆α  > 0, not 

only the values of 1tα  greater than 1, but also some of the values of 1tα  less than 1 satisfy 

condition (18)(ii). What values of 1tα lying between 0 and 1 satisfy condition (18)(ii) 

depends on the value of  x/x)[( *
1t1,

*
1t1,1t1, +++ ∆∆α . The values of ]x/x)[( *

1t1,
*

1t1,1t1, +++ ∆∆α  for 

which some of the negative values of 1tα  satisfy condition (18)(ii) may not occur. Even 

when condition (18)(ii) is satisfied, condition (18)(i) may not be satisfied. Condition (17) 

can be satisfied even when conditions (18)(i) and (18)(ii) are not satisfied. A decrease in 

expected inflation will bring about a decrease in the real interest rate if and only if it leads 

to a decrease in *
tr  that satisfies the strict opposite of (17). All these are clearly dynamic 

conditions where the bias-free effect on the federal funds rate of expected inflation varies 

over time, and from these conditions it is not obvious that a hallmark of “good monetary 

policy” is the satisfaction of only condition (18)(ii). These interpretations extend the 

previous studies’ interpretation of fixed 1γ  to the variable 1tα  with the “true” pattern of 

variation.        

 

Good monetary policy rules: Increases in *
tr  represent good monetary-policy 

rules if and only if they satisfy condition (17) in periods of rising inflation. Alternatively, 

decreases in *
tr  represent good monetary-policy rules if and only if they satisfy the strict 

opposite of (17) in periods of falling inflation. We define policy mistakes as big 

departures from such good policy rules. This definition, though not operational, is the 

right one if omitted variables and measurement errors are present and the “true” 

functional forms of monetary-policy reaction functions are unknown, as they usually are. 

Also, from a satisfaction of condition (18)(ii) we cannot infer that a policy mistake has 

not been made because without condition (18)(i) (or its opposite) it is not a sufficient 
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condition. Alternatively, from a failure of condition (18)(ii) we cannot conclude that a 

policy mistake has been made because with condition (18)(i) (or its opposite) it is not a 

necessary condition. We obtain a fallacious argument if we do so. Even if a central 

bank’s actions satisfy condition (18)(ii),  they may not satisfy condition (17) in periods of 

rising inflation or the strict opposite of (17) in periods of falling inflation. Taylor’s (1969) 

claim is that a monetary policy that stays close to his two baseline monetary policy rules 

would be a good policy. It should be noted that the parameter values Taylor (1999) uses 

to define his baseline policy rules are not corrected for omitted-variables and 

measurement-error bias and for inaccuracies in his specified functional form. Therefore, 

in the next section, we use the method of Section II to correct for such biases and 

inaccuracies. At a minimum, the above argument shows that it is not easy to find the 

correct interpretation of monetary history. Condition (17) or its strict opposite contains 

too many unknowns and our methodology in Section IID gives only the estimates of the 

bias-free components of the coefficients on the explanatory variables included in 

equation (13). With these estimates, we cannot verify any of condition (17), its strict 

opposite, and condition (18)(i).                    

 

B. Empirical Results  

 

Before proceeding to describe the estimates of the time-varying coefficients of 

equation (13), it is useful to first estimate equation (13) using the standard fixed-

coefficient assumption. The least squares estimates of these coefficients are given in 

Table 1 for the entire sample period, 1960Q3-2000Q4, as well as for the two sub-periods, 

1960Q3-1979Q2 and 1979Q3-2000Q4, described above. It is interesting to note that the 

coefficient on inflation more than doubles between the two periods, which is consistent 

with the view that the Federal Reserve under the chairmanship of Paul Volcker gave 

much greater weight to reducing inflation than did previous chairmen. There is also some 

evidence that the importance accorded to fluctuations in output in the conduct of 

monetary policy was lower in the second period, but the estimation results for the entire 

sample period indicate that deviations of output from potential played essentially no role 

in monetary policy process. The empirical results for the full sample also suggest that the 



 27

foreign exchange value of the dollar did not play a role in monetary policy decisions. 

These results will change if we correct for omitted-variables and measurement-error bias 

and for the inaccuracies in the linearity of the fixed-coefficients version of equation (13). 

Furthermore, the statistical consistency of the least squares estimator used to obtain the 

estimates in Table 1 requires the conditions that contradict the appropriate interpretations 

of the coefficients of equation (13) given in Section IIC.  For these reasons, we cannot 

stop our investigation here.         

 

We turn now to the estimation results shown in Table 2 and Charts 1-5 for the 

time-varying coefficients of equation (13) and the fixed coefficients of equation (14). We 

obtained these results by applying the IRWGLS method to equations (13) and (14) under 

Assumptions I and II.  The estimated time profile of the intercept ( 0tγ ) is given in Chart 

1. This time profile does not permit the separation of the time profiles of the long-run 

equilibrium nominal federal funds rate ( tr ) and the Federal Reserve’s target inflation rate 

( *
tπ ) from those of the other components of 0tγ . The only conclusion that we can draw 

from Chart 1 is that during 1974Q3-1986Q1, 0tγ̂  is negative and in all other quarters of 

our sample period, it is positive. This means that during some of the quarters of the 

period 1974Q3-1986Q1, *
tπ  might have exceeded tr . The Federal Reserve’s target 

inflation rate ( *
tπ ) implies a negative real rate if it exceeds the long-term equilibrium 

nominal rate ( tr ). A comparison of the estimated time profiles of the biased effects ( jtγ , j 

= 1, 2, 3) of expected inflation, expected output gap, and expected exchange rate is given 

in Chart 2. The signs of these biased effects are ambiguous, since they are contaminated 

by omitted-variable and measurement-error biases.   

 

The IRWGLS estimate of jjφ  in equation (15) is equal to 0.995 for j = 0 and 1 and 

is equal to -0.995 and 0.932 for j = 2 and 3, respectively. The maximum of the IRWGLS 

estimates of the variances of the jta  in equation (15) is equal to 0.00004. An implication 

of these estimates is that the three concomitants included in equation (14) explain most of 
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the variation in the coefficients of equation (13), provided that jjφ  in equation (15) is not 

constrained to be zero.  

 

In equation (16), the bias-free effects on the federal funds rate of the Federal 

Reserve’s expectations about the future inflation, the future output gap, and the future 

foreign exchange value of the U.S. dollar are denoted by  , , 2t1t αα  and 3tα , respectively. 

Economic theory predicts that the signs of  1tα  and  2tα  are positive and the sign of 3tα  

is negative.20 These bias-free effects are the weights the Federal Reserve assigns to the 

expected values of inflation, output gap, and the dollar exchange rate when taking 

monetary-policy decisions. We do not know of any variables that have the same behavior 

over time as these weights. It is possible that none of the , , 2t1t αα  and 3tα  has the same 

behavior over time as any observable variables. We believe that the dummy variable that 

takes the value zero before 1979Q3 and 1 during and after this quarter represents a very 

restrictive form of variation over time. This variation may not agree with the changes the 

Federal Reserve actually made in the , , 2t1t αα  and 3tα  during our sample period. Any 

method that splits a sample period into a finite number of sub-periods and fits a different 

fixed-coefficients analog of equation (13) in each sub-period, not only ignores both 

omitted-variables and measurement-error bias and inaccuracies in the specified functional 

form of equation (13), but also makes the strong assumption that the dates at which the 

parameters of the fixed-coefficients analog of equation (13) have changed are exactly 

known. Such methods have questionable relevance to any past behavior and may have 

little or no relevance to any future behavior of the coefficients of equation (13). 

Therefore, we decided to experiment with several sets of concomitants and to accept only 

one of those sets that gave us the most plausible estimates of the bias-free effects with the 

right signs and to interpret the results carefully.  

 

                                                 
20 For our measure of the exchange rate between the U.S. dollar and a basket of other 
currencies, an increase in the exchange rate means an appreciation of the dollar, which 
leads to a decline in the federal funds rate.         
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Based on the signs of the IRWGLS estimates of the coefficients of equation (14), 

we take the functions, 1t11zπ , 3t232t2220 z  z  πππ ++ , and 3t331t3130 z  z  πππ ++ , as our 

measures of the bias-free components of the coefficients ( jtγ , j = 1, 2, 3), respectively.21 

We could not take any other function of the terms on the right-hand side of equation (14) 

as a measure of the bias-free component of jtγ  because its IRWGLS estimate has the 

wrong sign in at least one quarter of the sample period and/or has an implausible time 

profile. Our measures of the bias-free effects are true if (i) the distributions of , , 21t11t εε  

and 31tε  in equation (7) are tight around zero, (ii) the second-order partial derivatives, 

1t1t3t2t1t3t2t1t
*
t

2 zx/)z ,z ,z , x, x, x|E(r ∂∂∂ , 2t2t3t2t1t3t2t1t
*
t

2 zx/)z ,z ,z , x, x, x|E(r ∂∂∂ , 

3t2t3t2t1t3t2t1t
*
t

2 zx/)z ,z ,z , x, x, x|E(r ∂∂∂ , 1t3t3t2t1t3t2t1t
*
t

2 zx/)z ,z ,z , x, x, x|E(r ∂∂∂ , and 

3t3t3t2t1t3t2t1t
*
t

2 zx/)z ,z ,z , x, x, x|E(r ∂∂∂  exist and are equal to 11π , 22π , 23π , 31π , and 

33π , respectively, and (iii) the second-order partial derivatives of 

)z ,z ,z , x, x, x|E(r 3t2t1t3t2t1t
*
t  with respect to ( 1tx , 2tz ), ( 1tx , 3tz ), ( 2tx , 1tz ), and ( 3tx , 

2tz ) exist and are equal to zero. Note that our measure of the bias-free component of the 

coefficient on inflation in equation (13) is based on the assumption that the weight the 

Federal Reserve attaches to inflation in its formulations of the targets for the federal 

funds rate is proportional to the reciprocal of the U.S. unemployment rate. The lower the 

unemployment rate, the higher the weight it gives to inflation. This assumption is 

reasonable in view of the available trade off between unemployment and inflation in the 

absence of shifts in the short-run Philips curve.     

 

The IRWGLS estimates of the coefficients of the above partial derivatives are 

given in Table 2. The estimates of the second-order partial derivatives of 

)z ,z ,z , x, x, x|E(r 3t2t1t3t2t1t
*
t  with respect to )z ,(x and )z ,(x 3t2t1t1t  have the positive 

sign and those with respect to ),z ,(x ,)z ,(x 1t3t2t2t  and )z ,(x 3t3t  have the negative sign.      

 

                                                 
21 Before adopting these measures, we tried several other measures that did not yield 
plausible results.      
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In Table 2, the IRWGLS estimates of 11π , 20π , 23π , and 30π  are positive. Of 

these, only the estimate of 11π  is significant. The IRWGLS estimates of 22π , 31π , and 

33π  are negative. All these estimates are insignificant. It can be seen from Charts 3-5 that 

these estimates imply the estimates of “bias-free” effects that have the right sign 

throughout the sample period.     

 

Table 2 also gives the time averages of the estimates of the “bias-free” effects 

over the different sample periods, as well as the constant and the time-varying 

components of each average. Recall that the bias-free effect of an explanatory variable 

excludes the influence of omitted variables, measurement errors, and of the deviation of 

any specified functional form from the “true” functional form. Thus, the estimates of 

average “bias-free” effects given in Table 2 should be more accurate than the least 

squares estimates given in Table 1, provided our measures of the bias-free effects are 

appropriate. One argument that favors our measures is that there is no apparent 

contradiction between our measures and the appropriate interpretations of the coefficients 

of equation (13) given in Section IIC. There are also other differences between the 

estimates in Tables 1 and 2, which we now discuss.  

 

Turning first to the “bias-free” effect of inflation on the federal funds rate, implied 

by the estimates in Table 2, it can be seen that on average, the IRWGLS estimate of this 

effect is significantly higher in the earlier period than in the later period, in contrast to the 

least squares results. Moreover, this average effect is greater than unity over the entire 

sample as well as in the two sub-samples. Put differently, the estimated average “bias-

free” effects of inflation on the federal funds rate for the two sub-periods are significant, 

greater than 1, and are also significantly different from each other. The least squares 

estimates of the coefficient on inflation in Orphanide’s (2001b) model of the Federal 

Reserve’s reaction function for the two sub-periods are also greater than 1. The results 

that are similar to the least squares results in Table 1 are that the IRWGLS estimates of 

the average “bias-free” effects of the output gap have t-ratios that are slightly less than 2, 

with the magnitude of the reaction somewhat lower in the Volcker sub-period. 

Alternatively stated, the estimated average “bias-free” effects of the output gap on the 
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federal funds rate for the two sub-periods are significant at the 10% level and are not 

significantly different from each other. Finally, the results in Table 2 and Chart 5 indicate 

the expected average “bias-free” effect of exchange rate changes, but the effect is quite 

small and insignificant. With the exception of the second sub-period, this finding is 

similar to that reported in Table 1 for the least squares results. The least squares estimate 

of 3γ  for the second sub-period has the wrong sign.       

 

Chart 3 shows the variation over time in the coefficient on inflation in equation 

(13). As discussed above, the IRWGLS estimation procedure yields two estimates for this 

coefficient in each period: the biased effect, which includes omitted-variable biases and 

the impacts of measurement errors and misspecifications of the “true” functional form of 

equation (13), and the bias-free effect, which is purged of these factors. It is readily 

apparent from Chart 3 that omitted-variables and measurement-error bias and 

misspecifications of the “true” functional form generate a substantial bias in the estimate 

of the response to inflation on the part of the Federal Reserve, which appears to be 

particularly pronounced during the 1960s and the period 1984-2000. Thus, if 

measurement errors, omitted variables, and misspecifications of the “true” functional 

form are not taken into account in the estimation of the monetary policy reaction 

function, one can get a seriously distorted impression of the responsiveness of the Federal 

Reserve to inflation.    

 

As discussed above, the “bias-free” effect of inflation on the federal funds rate is 

estimated as a single time-varying term, which is a fixed coefficient, times the reciprocal 

of quarterly unemployment rate ( 1tz ). Thus, in our model of the Federal Reserve’s 

reaction function, a decrease in the unemployment rate increases this effect. By virtue of 

this definition, the time profile of the estimated “bias-free” effect of inflation on the 

federal funds rate is the same as that of the reciprocal of the unemployment rate. We thus 

associate the decreasing values of the unemployment rate with the increasing estimates of 

this effect, and vice versa. What this means is that the weight, which the Federal Reserve 

attaches to inflation when taking the monetary-policy decisions, varies inversely with the 

unemployment rate. An increase in money growth over time could raise inflation. 
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Therefore, a central bank that is concerned about inflation will not allow money growth 

to continue to increase over time, as this will be inflationary. Now, using the reciprocal of 

the unemployment rate as a single determinant of the “bias-free”-effect component of the 

coefficient on inflation makes the IRWGLS estimates of this effect exceed 1 throughout 

our sample period, as can be seen from Chart 3. From the discussion in Section IIIA it 

follows that these greater than 1 estimates of 1tα  do not necessarily mean that policy 

mistakes have not been made at any time during our sample period. These estimates 

trended upward during 1961Q2-1969Q1, 1971Q4-1973Q4, and 1975Q2-1979Q2. During 

most of the quarters of these periods inflation was rising (Chart 3). Under a more 

responsive monetary policy, inflation would not have risen as much as it did during 

1963Q3-1970Q2, 1972Q3-1975Q1, and 1976Q4-1981Q1. Taylor (1999) could be right in 

saying that the monetary policy was too tight during the early 1960s and was too easy 

during the late 1960s and 1970s. The factors, such as increased government spending 

arising from the Vietnam War and the two oil price shocks in the 1970s, were the driving 

forces behind rising inflation during the late 1960s and 1970s.    

 

Chart 3 shows that as inflation was brought under control in the 1980s, the 

estimates of the “bias-free” effect of inflation declined during 1979Q3-1983Q1 and 

1989Q2-1992Q3. These estimates increased during 1983Q2-1989Q1, in which period 

inflation first decreased and then increased. The monetary tightness followed during the 

period 1983Q2-1986Q2 could be excessive because during this period inflation was 

falling. Chart 3 also shows that during 1992Q3-2000Q4 the estimated “bias-free” effect 

of inflation rose sharply even though inflation increased very little over this period.     

 

Turning now to Chart 4, which shows the estimated biased and “bias-free” effects 

of the output gap on the fed funds rate, we see again that the presence of omitted 

variables, mismeasurements, and misspecifications of the “true” functional form 

generates a substantial bias in the estimated impact of the output gap on the interest rate.  

This may reflect the significant mismeasurement of the output gap during the 1970s and 

early 1980s, as documented by Orphanides (2001b); the output gap was thought at the 

time to be much larger than revised data subsequently indicated. It should also be noted 
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that the estimated “bias-free” effect of the output gap on the interest rate is not only much 

larger than the biased effect, but is also much smoother. This estimated “bias-free” effect 

increased during 1960Q3-1964Q1, 1981Q4-1987Q2, and 1993Q3-1999Q4. It trended 

downward during 1964Q2-1981Q3 and 1990Q3-1993Q2. Some of the increases in the 

estimated “bias-free” effect of the output gap on the interest rate are consistent with the 

fact that inflation was brought under control during the 1980s and 1990s. These results 

are produced by our assumption that the function 3t232t2220 z  z  πππ ++  provides an 

adequate approximation to the bias-free component of the coefficient on the output gap.           

               

It may be wrong to exclude the exchange rate variable from equation (13) because 

its estimated “bias-free” effects on the fed funds rate are small and insignificant. The 

reason is that it is the conjunction of the variables in equations (13) and (14) that 

produced the results in Table 2 and Charts 1-5. These results changed when we changed 

this conjunction. In any case, the rationale for dropping a variable because its coefficient 

estimate happened to have a low computed t-ratio in a given sample is ordinarily very 

weak, as Pratt and Schlaifer (1984, 1988) point out.       

 

IV. Conclusions 

  

The biasing effects of measurement errors, omitted variables, and 

misspecifications of “true” functional forms are a pervasive problem in econometrics. A 

necessary and sufficient and a sufficient condition under which a monetary-policy rule is 

a good policy can only be stated in terms of the bias-free effects on the federal funds rate 

of a number of variables including the Federal Reserve’s expectations about future 

inflation, the future gap between actual and potential output, the future foreign exchange 

value of the dollar, etc. Not all of these “bias-free” effects are identifiable on the basis of 

the available data. The estimates of the identifiable “bias-free” effects presented in this 

paper leave open the possibility that the Federal Reserve may have made policy mistakes 

during 1960Q3-2000Q4. Under a more responsive monetary policy, inflation would not 

have risen as much as it did during 1963Q3-1970Q2, 1972Q3-1975Q1, and 1976Q4-
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1981Q1. The paper also shows that it is not easy to find the correct interpretation of 

monetary history.       
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Table 1 
Least Squares Estimates of a Federal Reserve Interest Rate Reaction Function with Fixed 

Coefficients  
Dependent variable = the U.S. Federal Funds rate  

                                         Coefficient Estimates 
 

Coefficient  

1960Q3-1979Q2 1979Q3-2000Q4 1960Q3-2000Q4 
0γ  4.8105 

(1.5565) 
-3.6671 

(-3.9612) 
3.8055 

(2.8364) 
1γ  0.6176 

(6.7111) 
1.3442 

(21.294) 
0.9530 

(12.593) 
2γ   0.2811 

(5.8505) 
0.1742 

(3.5194) 
0.0051 

(0.0890) 
3γ  -0.0172 

(-0.7957) 
0.0600 

(7.1183) 
-0.0075 

(-0.6972) 
Note: Below each coefficient estimate is its t-ratio shown in parentheses. The coefficient 

0γ  is the intercept, 1γ  is the coefficient on U.S. inflation ( 1tx ), 2γ  is the coefficient on 
U.S. output gap ( 2tx ), and 3γ  is the coefficient on the exchange rate between the U.S. 
dollar and a basket of other currencies ( 3tx ).   
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Table 2 
IRWGLS Estimates of a Federal Reserve Interest Rate Reaction Function with Time-Varying Coefficients  

Dependent variable = the U.S. Federal Funds rate 
Estimates Average Bias-Free Effects, Their Coefficients, 

and Their Differences Between the Periods 
1960Q3-1979Q2 and 1979Q3-2000Q4 

1960Q3-
1979Q2 

1979Q3-
2000Q4 

1960Q3-2000Q4 

i1Tα a = 






 ∑ =

iT

1t 1t
i

11 z
T
1π̂  

2.4933 
(4.2157) 

2.1308 
(4.2157) 

2.3008 
(4.2157) 

11π̂    12.8800 
(4.2157) 

11Tα -
21Tα  0.3625 

(4.2157) 
 

i2Tα b  = 









+








+ ∑∑ =

ii T

1 3t
i

23
T

1t 2t
i

2220 z
T
1ˆz

T
1ˆ  ˆ πππ  

0.6368 
(1.9342) 

0.6027 
(1.9777) 

0.6187 
(1.9624) 

20π̂    0.7987 
(1.8498) 

22π̂    -0.0567 
(-1.1570) 

23π̂    0.0062 
(0.2927) 

12Tα -
22Tα  0.0341 

(0.6193) 
 

i3Tα c  = 









+








+ ∑∑ ==

ii T

1t 3t
i

33
T

1t 1t
i

3130 z
T
1ˆ z

T
1ˆ  ˆ πππ  

-0.0832 
(-1.5369) 

-0.0656 
(-1.1615) 

-0.0738 
(-1.3429) 

30π̂    0.0216 
(0.1969) 

31π̂    -0.4388 
(-0.9599) 

33π̂    -0.0025 
(-0.6383) 

13Tα -
23Tα  -0.0176 

(-1.3441) 
 

a
i1Tα  = Average bias-free component of 1tγ , the coefficient on U.S. inflation; iT  = 321 Tor  ,T ,T , where 

,T ,T 21  and 3T  are the numbers of observations in the periods 1960Q3-1979Q2, 1979Q3-2000Q4, and 

1960Q3-2000Q4, respectively. b
i2Tα  = Average bias-free component of 2tγ , the coefficient on U.S. 

output gap. c
i3Tα  = Average bias-free component of 3tγ , the coefficient on the exchange rate between the 

U.S. dollar and a basket other currencies. Below each coefficient estimate is its t-ratio shown in 

parentheses.     

  

 



 40

Chart 1: Time Profile of the Estimated Intercept of a Federal Reserve Interest Rate 

Reaction Function 
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Note: 0tγ̂  = the estimated intercept.   

 

Chart 2: Time Profiles of the Estimated “Biased” Effects of Inflation, Output Gap, and 

the Exchange Rate on the Federal Funds Rate for the U.S.  
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Note: Gamma1 =  ˆ1tγ = the estimated “biased” effects of inflation, Gamma2 = 2tγ̂  = the 
estimated “biased” effects of output gap, and Gamma3 = 3tγ̂  = the estimated “biased” 
effects of the U.S. dollar exchange rate.   
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Chart 3: Time Profiles of U.S. Inflation and Its Estimated “Biased” and “Bias-Free” 

Effects on the U.S. Federal Funds Rate 
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Note: Gamma1 = 1tγ̂  = the estimated “biased” effects and BFc11 = 11π̂ (1/U.S. 

unemployment rate) = the estimated “bias-free” effects.     

 
Chart 4: Time Profiles of the Estimated “Biased” and “Bias-Free” effects of U.S. Output 

Gap on the U.S. Federal Funds Rate 
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Note: Gamma2 = 2tγ̂  = the estimated “biased” effects and BFc2023 = 

2220 ˆ  ˆ ππ + 5yrMAInf + 100)/M2log(M2ˆ 5-t1-t23π  = the estimated “bias-free” effects.    
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Chart 5: Time Profiles of the Estimated “Biased” and “Bias-Free” Effects of the 

Exchange Rate between the U.S. Dollar and A Basket of Other Currencies on the U.S. 

Federal Funds Rate 
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Note: Gamma3 = 3tγ̂  = the estimated “biased” effects and BFc3013 = 3130 ˆ  ˆ ππ + (1/U.S. 
unemployment rate) + )100/M2log(M2ˆ 5-t1-t33π  = the estimated “bias-free” effects.  
 

 


