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Abstract

A current problem of interest in macroeconomics is the computation
of consumption and saving functions for agents who experience uninsur-
able income shocks and engage in precautionary saving. With constant
relative risk aversion utility, this decision problem cannot be solved an-
alytically. One popular method for computing policy functions has been
to use perturbation theory, Taylor-expanding around the special case of
perfect certainty, where the problem is exactly solvable, and computing
correction terms that are linear in the variance of the income process.
Here, I show that it is straightforward to extend this procedure to com-
pute the linear contribution of the skewness. However, in this dynamic
environment where perturbations get compounded over time, for each mo-
ment of the income process there will be a lower-bound on the interest
rate below which the correction terms generated by that moment diverge
at large lifetimes. In the limit of large orders, this lower bound on the
interest rate converges to the equilibrium interest rate for the correspond-
ing infinite-horizon, constant-growth economy without uncertainty. Since
in equilibrium, precautionary saving must lower the interest rate below
that limit, perturbation theory must break down for some moment of the
income process. That is, the Taylor series will not converge, so adding
terms of successively higher order to the series will only improve the ap-
proximation to a point, after which adding more terms will worsen the
approximation. As an example, I present a case where a second-order ap-
proximation to the consumption function, which includes variance effects
but not skewness and higher-moment effects, performs substantially worse
than a zeroth-order approximation, which entirely ignores the effects of
uncertainty.

∗I would like to thank James Bullard, Stefano Eusepi, Harry Paarsch, Chris Sleet, and
Charles Whiteman for their advice and suggestions.
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A problem of interest in macroeconomics is the computation of partial
and general equilibria in a bond economy where agents have constant relative
risk aversion (CRRA) preferences. This is a model in which there is no ag-
gregate uncertainty, so contingent-claim assets which insure against shocks to
the economy as a whole are unnecessary. Risk-free bonds are a sufficient asset
to achieve intertemporal transfer needs. It has been hoped that streamlined
models of this sort might help to unravel various puzzles regarding consumption
and interest rates.

For the trivial case of complete markets and complete certainty, con-
sumption and bond demand functions can be derived analytically. A more
interesting problem arises when agents face an uncertain, uninsurable income
stream. In this circumstance, agents wishing to hedge against negative income
shocks would ideally purchase assets that are perfectly correlated with their
income. However, markets are incomplete in this model, and such assets are
not present. Therefore, agents must instead substitute risk-free bonds for these
nonexistent assets. Although risk-free bonds offer returns uncorrelated with in-
come, agents are, nevertheless, able to use bonds to partially alleviate the welfare
loss associated with their idiosyncratic risk. One can show qualitatively that
this precautionary saving motive will increase the demand for bonds (Leland
(1968), Sandmo (1970)) and decrease interest rates (Aiyagari (1994), Huggett
(1993)). However, consumption and bond demands cannot be computed analyt-
ically with uninsurable uncertainty if preferences are CRRA. This complicates
the quantitative exercise of determining the magnitude of precautionary saving
effects. While the original Lifecycle/Permanent-Income Hypothesis (LCPIH),
derived under perfect foresight, is generally believed to be a poor description
of empirical consumption behavior (Browning and Crossley (2001)), there is no
consensus of opinion about how much precautionary saving by itself can account
for observed deviations from the LCPIH.

Several researchers (a partial list would include Carroll (1997,2001a),
Hall (1988), Letendre and Smith (2001), Skinner (1988), and Viceira (2001))
have investigated this consumption/saving model by perturbing consumption
functions or Euler equations1. Although the terminology of perturbation the-
ory is fairly new to the economics literature, the technology has been in use
for as long as economics has been a mathematical science. A perturbative
method is simply a method that involves the approximation of a function by
its Taylor expansion. Any linearization procedure is an example of perturba-
tion theory in its most elementary form. More generally, these methods are
an integral component of the macroeconomist’s toolkit. They are used reg-
ularly to express endogenous variables as approximate functions of exogenous
variables. Although perturbative methods have been pitched under this name

1Another method for solving these kinds of models is the intrinsically numerical approach
of computing consumption functions either through value-function or Euler-equation itera-
tion (Deaton (1992)), and aggregating these computed functions to clear markets. Instead
of perturbing around the known solution to a solvable problem, these methods proceed by
discretizing the state space to a finite number of points and computing the exact value of the
relevant function at each point.
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most prominently as an adjunct to numerical methods (Judd (1999)), they are
fundamentally an analytical method with the power to reveal functional de-
pendences that can only be inferred when numerical values are plugged into
exogenous parameters from the start.

This paper takes a detailed look at how perturbative methods can be
used in a dynamic context and what new things can go wrong that do not arise
in static problems, especially as one pushes on to higher orders. Perturba-
tion theory expresses endogenous variables as power series in a dimensionless
parameter, the perturbation parameter, and provides a prescription for comput-
ing each coefficient of the series in terms of lower-order coefficients. For small
values of the perturbation parameter, the power series can then be approxi-
mated by the sum of a finite number of terms. In static problems, perturbation
calculations can usually produce an entire infinite series which will converge for
any value of the perturbation parameter below some radius of convergence. It
then is possible to achieve an approximation to any desired accuracy as long as
the perturbation parameter is below this radius. In dynamic problems, that
will not always be the case, for pathologies can arise which limit the order to
which a perturbation series can be computed. As a result, there can be tighter
limits on how much perturbation theory can tell you than would occur in other
settings. The mindset that a first or second-order calculation is an initial step
in a sequence of calculations which will ultimately converge to an exact answer
is overly optimistic.

Under the label of a second-order Taylor expansion, Skinner (1988) has
worked out the consumption function for a finite-horizon model with income
and interest-rate shocks.2 Given the assumptions we make regarding the in-
come process, his results are equivalent to a perturbative expansion to second
order in the coefficient of variation.3 This captures the lowest-order effects of
the variance and precautionary saving. Here, we compute policy functions to
third order for a model with a fixed interest rate and independently distributed
income shocks. Note that there is nothing especially remarkable about the
third-order contribution, which captures the lowest-order skewness effect. The
main contribution here is to show that the cost of performing the third-order
calculation is the same as for the second-order calculation. As such, if one is
going to compute the second-order contribution, one might as well compute the
third-order contribution also. The marginal computational cost only begins to
increase again at fourth order, where cross terms first appear.

If we ignore cross terms and higher-order effects, it is straightforward to
carry out the procedure used at second and third order to compute the lowest-
order contribution of each moment of the income process to value and policy
functions. In other words, we compute a part of the nth-order term in the
perturbation series, notably the easiest part. Computing this part is enough to

2Talmain (1998) has extended these results for a general utility function in the special case
where the interest rate equals the discount rate.

3The first-order conditions of the optimization problem guarantee that first-order effects
must vanish. See Cochrane (1989). This reduction of the welfare loss from a first-order to a
second-order effect is the extent to which agents can self-insure with bonds.
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unearth a problem: for every n, there is a lower bound on the interest rate below
which the nth-order perturbation correction will diverge for large lifetimes. This
lower bound increases with n, converging to the equilibrium interest rate for a
perfect-foresight infinite-horizon economy in the limit of large n—in the absence
of growth, this interest rate will be the discount rate. Since the equilibrium
interest rate for a model with precautionary saving must be less than the perfect-
foresight interest rate, in general equilibrium the perturbation series will only
exist up to a finite number of terms in the infinite horizon. Consequently, for
interest rates below the discount rate, perturbative methods cannot be used
to compute endogenous variables to arbitrary accuracy. On the contrary, one
can find examples where a second-order approximation is substantially worse
than a zeroth-order calculation. Fortunately, however, a divergence in the nth-
order correction does not diminish the accuracy of lower-order perturbation
calculations.

These divergences are related to the singularity in the CRRA utility
function at zero consumption. This singularity causes the perturbation series
to diverge for agents with low wealth, but one might not expect it to cause
a problem for high-wealth agents. In an economy without growth, if interest
rates are below the discount rate, then, in the absence of precautionary motives,
agents will have no incentive to save. Thus, without uncertainty, all agents will
eventually spend their wealth down to zero. This solution without uncertainty
corresponds to the zeroth-order solution to the problem, the solution that we are
expanding around. This dissipation of wealth in the solution we are expanding
around takes agents out of the convergence region of the state space, and that is
what causes the perturbation calculation to go wrong. The particular pathology
identified in this paper does not arise for interest rates above the discount rate,
where the zeroth-order solution takes agents away from zero consumption.

It should be emphasized that this dynamic pathology is entirely a failure
of perturbation theory. The exact policy and value functions are well-behaved.
Moreover, this failure does not alter the common wisdom that precautionary
saving is a second-order effect. The pathology arises because the value function
that we insert into the Bellman equation at each stage is itself the result of a
perturbation calculation. If we were somehow given the exact value function
for an arbitrary period, we could presumably use perturbation theory to com-
pute the value function of the previous period without any difficulty, assuming
the agent’s wealth is large enough. It is the compounding of perturbation
corrections over time that produces these artificial divergences.

The paper proceeds as follows. In Section 1, we introduce the model
to be considered here. In Section 2, we discuss our choice of perturbation pa-
rameter and how the validity of perturbative methods depends on this choice.
In Section 3, we derive the bond demand of agents to third order in the coef-
ficient of variation. In Section 4, we consider the behavior of the lowest-order
contribution of the nth moment of the income process at large lifetimes and ex-
amine how this can diverge. In Section 5, we conclude with a discussion of the
generality of the pathologies found here to other dynamic models and describe
other applications of perturbation theory to issues of consumption and saving.
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1 The Model

Consider an economy with one consumption good in which agents live for
T + 1 periods. Although the economy will be stationary, we will allow for the
possibility of constant economic growth, so behavioral quantities can depend on
both absolute time and the age of an agent. Since we will solve the agent’s
optimization problem by backwards induction, it is convenient to measure the
age of an agent in terms of the number of periods remaining in his life rather than
by how many periods he has lived. Behavioral quantities like consumption will,
therefore, have two time indices: a subscript that refers to absolute time and a
superscript that refers to the number of periods remaining in life. For example,
cst is the consumption of an agent at time t who has s periods remaining.

An agent born at τ maximizes

Uτ =
TX
s=0

βsu(cT−sτ+s ), (1)

where the discount rate β ∈ (0, 1) and the utility function u(·) has the CRRA
form. Given the coefficient of relative risk aversion γ ≥ 0,

u(c) =

½
ln c γ = 1
1

1−γ c
1−γ γ 6= 1 . (2)

(We will derive all results for the case γ 6= 1. It is easily shown that endogenous
observables vary continuously with γ at γ = 1.) An agent at t with s periods left
will earn a stochastic income endowment eyst . We assume that eyst is nonnegative
and distributed independently both across time and across agents. We will also
assume that, for a given s, eyst0 and Gt0−teyst will have the same distribution for
any t and t0, where G is the gross growth rate of the economy. In other words,
the distribution of eyst will scale as the growth factor Gt. (We will say more
about the distribution of the eyst in the next section.) One intertemporal asset,
a risk-free bond, is available for investment and pays a constant, exogenous
gross interest rate R > 1. The net interest rate r = R− 1. Bond holdings are
indexed according to when they pay off: bst is purchased at t − 1, by an agent
with s+ 1 periods remaining, pays off Rbst at t.

The agent’s optimization problem can be expressed in terms of a recur-
sive sequence of Bellman equations. Let vst (b, y) denote the value function of an
agent at t with s periods left, bond holdings b, and current income realization y.
Consider an agent born at τ . In his last period, he will consume any remaining
wealth, so his terminal value function is

v0τ+T (b, y) = u (y +Rb) . (3)

Given the value function vsτ+T−s(b, y), the value function for the agent when he
has s+ 1 periods left must satisfy the Bellman equation:

vs+1τ+T−s−1(b, y) = max
b0,c

©
u(c) + βEτ+T−s−1[vsτ+T−s(b

0, ey0)]ª (4)
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subject to

c+ b0 = y +Rb (5)

c ≥ 0.

For an agent just born, bTτ = 0 since he will have no initial bond holdings.

2 The Role of the Perturbation Parameter

Let δ be a parameter in a problem for which we know the solution if δ = 0.
Perturbative methods involve Taylor expansions of the solution with respect to
δ. We can view δ as a bookkeeping device. Calculating the nth order effect
amounts to calculating all terms in the sequence of order δn or less.4 The as-
sumption that we can ignore higher-order terms in an nth-order approximation
depends on δn+1 being significantly smaller than δn. Ideally then, researchers
would like to consider situations where the value of δ is small compared to 1.
In the limit of very small δ, even low-order perturbation approximations should
be very accurate. Conversely, for δ on the order of 1, a researcher will need to
compute solutions to a high order to achieve that same level of accuracy.

In the context of the present paper, we are typically interested in com-
puting expectations of the form

Et

·µ ewt+1
wt

¶ρ¸
(6)

for some power ρ, where wt is total wealth (the sum of current income, expected
future income, and bond holdings) at t. (We will suppress age superscripts for
this discussion.) Expressions of this type arise because the Euler equation for
an agent in the model of Section 1 is

1 = βREt

"µect+1
ct

¶−γ#
, (7)

and consumption is approximately proportional to wealth.
Let zt+1 = Et[ ewt+1] and ∆ ewt+1 = wt+1 − zt+1. Then we can write (6)

as µ
zt+1
wt

¶ρ
Et

·µ
1 +

∆ ewt+1
zt+1

¶ρ¸
. (8)

4Let f(δ) be a function of the parameter δ ∈ [0, 1) and g(δ) a positive function of δ. We
say that f(δ) = O(g(δ)) (“f(δ) is of order g(δ)”) if and only if there exists a real number
M ≥ 0 such that

|f(δ)|
g(δ)

≤M

for all values of δ ∈ [0, 1). If f1(δ) = O(g1(δ)) and f2(δ) = O(g2(δ)), then f1(δ)f2(δ) =
O(g1(δ)g2(δ)).
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Using the Taylor expansion

(1 + x)ρ = 1 + ρx+
ρ(ρ− 1)

2
x2 +

ρ(ρ− 1)(ρ− 2)
3!

x3 + · · · , (9)

which is valid for |x| < 1, the expectation in (8) can be replaced by

1 + ρEt

·
∆ ewt+1
zt+1

¸
+

ρ(ρ− 1)
2

Et

"µ
∆ ewt+1
zt+1

¶2#
(10)

+
ρ(ρ− 1)(ρ− 2)

3!
Et

"µ
∆ ewt+1
zt+1

¶3#
+ · · · ,

as long as the supremum of |∆ ewt+1| is less than zt+1.5 Since current income is
the only random component of ewt+1,

∆ ewt+1 = eyt+1 − µt+1,
and (10) becomes

1 +
ρ(ρ− 1)

2
Et

"µeyt+1 − µt+1
zt+1

¶2#
+

ρ(ρ− 1)(ρ− 2)
3!

Et

"µeyt+1 − µt+1
zt+1

¶3#
+ · · · .

(11)

If we can set up the problem so that Et [(∆ ewt+1/zt+1)n] is of order δn for some
exogenous parameter δ, then we are in a position to use perturbative methods.
For the purposes of this paper, we will achieve this perturbative situation by
assuming the nth moment of the income process is of order δn.

Formally, we assume the moments of the distribution for the income of
an agent at t with s periods remaining, eyst , satisfy the following conditions: let
δ ∈ [0, 1) be an exogenous, dimensionless parameter, which we will imprecisely
call the “coefficient of variation”, and suppose that

E[eyst ] = µst , (12)

and

E
h³ eyst−µst

µst

´ni
= O(δn), n ≥ 2. (13)

5The power series (10) can be written
P∞
n=0Et

h
Γ(ρ+1)

n!Γ(ρ−n+1)
³
∆ ewt+1
zt+1

´ni
. According to

27.2 of Halmos (1974), if the power series S =
P∞
n=0 Et

h¯̄̄
Γ(ρ+1)

n!Γ(ρ−n+1)
¯̄̄ ¯̄̄

∆ ewt+1
zt+1

¯̄̄ni
is finite,

then the summation and the expectation operator commute, so S equals the expectation in

(??). Since Et
h¯̄̄

∆ ewt+1
zt+1

¯̄̄ni ≤ µ
∆wsupt+1

zt+1

¶n
, where ∆wsupt+1 is the supremum of the possible

values of ∆ ewt+1, S ≤P∞
n=0

¯̄̄
Γ(ρ+1)

n!Γ(ρ−n+1)
¯̄̄ µ

∆wsupt+1

zt+1

¶n
. Since the series in (9) has unit radius

of convergence and since power series are absolutely convergent, this bound on S will be finite
if ∆wsupt+1 < zt+1.
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(For most of the numerical examples we consider in this paper, δ will equal
the ratio of the standard deviation to the mean in each period, and so the
terminology that δ is the coefficient of variation would be precisely correct.
That will not be true for the general model, although δ will be proportional to
the coefficient of variation in the limit as δ → 0.) This δ will play the role of
the perturbation parameter in our perturbation expansion. We can then define

exst = eyst − µst
δ

(14)

and

ksn,t = E[(exst )n] (15)

for n ≥ 2, where ksn,t is finite as δ → 0. A distribution that satisfies

|(eyst − µst )| ≤ δµst

for all posible realizations of eyst will satisfy these moment conditions. More
generally, we can view these conditions as defining a “compact” distribution in
the sense that Samuelson (1977) used the term (not to be confused with the
usual notion of a compact set).

As a result, under the moment conditions (13), (11) simplifies to

1 +
ρ(ρ− 1)

2

δ2k2,t+1
z2t+1

+
ρ(ρ− 1)(ρ− 2)

3!

δ3k3,t+1
z3t+1

+ · · · . (16)

Let xsupt+1 be the supremum of the set of possible realizations of |ext+1| . If δxsupt+1 <
zt+1, then the series (16) will converge.

In the absence of exogenous borrowing constraints, Aiyagari (1994)
showed that there will be an endogenous borrowing constraint with CRRA
utility because agents will never borrow more than the minimum they can be
assured they will be able to pay back. Suppose we have a constant income
process independent of t. If the realization of ex which is largest in magnitude
is negative, the lowest possible income realization will be µ − δxsup. In that
case, the bond demand for an agent with an infinite lifespan must satisfy

bt+1 ≥ −µ− δxsup

r
,

and expected wealth at t+ 1, zt+1, must satisfy

zt+1 =
R

r
µ+Rbt+1 ≥ R

r
δxsup. (17)

Therefore, under these conditions, the series (16) will converge for any feasible
wealth value.

Note, however, that convergence of the series does not by itself make
perturbation theory useful. Truncating (16) at order n will only give a decent

8



approximation where terms of order higher than n are negligible relative to the
sum up to the nth term. Since each term is a decreasing function of zt, there
will be a lower bound on the values of zt for which the nth order approximation
achieves a given accuracy, and this lower bound will generally be larger than
the bound δxsupt .

The condition (13) is a very stringent condition to place on the moments,
and it would not be satisfied by many popular income parameterizations. For
example, Carroll (1997,2001b) uses an income process in which there is a small
probability p that income will be zero in any period. One might think that
the probability p would also be a reasonable choice of perturbation parameter
since it too is a dimensionless parameter between 0 and 1. However, this is
not the case. Let us consider the behavior of the moments for a probability
distribution

ey = ½ Y 1− p
εY p

,

where ε = 1− δ > 0 is small. The mean of this distribution is

µ = E[ey] = (1− p)Y + pεY = (1− p(1− ε))Y .

The nth order moment is

E [(ey − µ)n] = (1− p) [1− (1− p(1− ε))]
n
Y n + p [ε− (1− p(1− ε))]

n
Y n

= (1− p)p(1− ε)n
£
pn−1 + (−1)n(1− p)n−1¤Y n.

For 0 < ε < 1, these moments will be of order δn as we have assumed. However,
if ε = 0, which would be the case if we want a distribution with a possibility
of a zero realization, then E[(ey − µ)n] = p + O(p2) for all n ≥ 2. There is no
diminishment of the successive moments with respect to p. Thus, p would not
be a good choice of a perturbation parameter if we are attempting to evaluate
the moment expansion (11).

Notice, however, that while the moments do not diminish with n, they
do scale as Y n. Thus, for small Y/zt+1, the terms of the series (11) should still
get progressively smaller, and we can still do perturbation theory using Y/zt
as the perturbation parameter. All the perturbation calculations involving
value and policy functions in this paper will remain valid for a noncompact
distribution if we use bδ = µt+1/zt+1 as the perturbation parameter, where µt+1
is still mean income.6

Unfortunately, this alternate choice of perturbation parameter has two
downsides. The first is that for comparable values of wealth the perturbation
parameter will be larger. If mean income is constant, average wealth will typ-
ically be on the order of µ/r, where r is the net interest rate, so for an agent
of average wealth the perturbation parameter will be on the order of r. For
typical values of interest rates on the order of 5%, this should be small enough
to make low-order perturbation calculations accurate approximations. On the

6This is the approach used in Feigenbaum (2001a).
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other hand, a relatively poor agent will have a larger value of bδ. For bδ close to
unity, one will have to go to very high orders of perturbation theory to obtain
a decent approximation. This difficulty will plague any work involving Taylor
expansions of the Euler equation (7). Moreover, these higher-order terms will
be of significant magnitude for poor agents. In the context of Euler-equation
estimation, if one neglects third and higher-order effects in a regression of con-
sumption growth on state variables for a sample with a substantial proportion
of low-wealth agents, estimates of structural parameters will be inconsistent be-
cause these higher-order effects are significant and depend on those structural
parameters. This is one of several arguments that Carroll (2001a) has given for
abandoning Euler-equation estimation of preference parameters, although this
particular criticism should not present a problem if we restrict our attention to
wealthy agents7.

The second downside is that we cannot use a perturbation parameter
that is specific to each agent to compute macroeconomic quantities. Conse-
quently, if we wished to clear markets and calculate interest rates under the
approach of this paper, we would have to use a compact income distribution.
It may also be possible to exploit p as a perturbation parameter, although it is
not clear how that could be done.

3 Value and Policy Functions

The consumption/saving decision described by the Bellman equation (4) is
a recursive problem that must be solved backwards iteratively from the end of
life. In this section we demonstrate how to compute the second-order pertur-
bation correction for the first iteration, when an agent has one future period
remaining in life and no existing bond holdings. The second and third-order
corrections are fully worked out for an agent with T periods remaining in Ap-
pendix B.

Consider an agent who is born at t = 0 and lives until t = 1. The
consumer’s problem gives rise to the Lagrangian

L = (y0 − b1)1−γ
1− γ

+ βE0

·
1

1− γ
(ey1 +Rb1)1−γ¸ . (18)

(We will suppress the age superscript in this discussion.) Differentiating L by
the choice variable b1, we obtain the first-order condition

(y0 − b1)−γ = βRE0

h
(µ1 + δex1 +Rb1)−γi , (19)

7Here, we are perturbing around a linearization of the Euler equation. The details of this
discussion will differ if we proceed from a log-linearization, but the upshot should remain the
same. There will be a region of the wealth space where the perturbation series converges,
which will, however, be bounded both above and below. As one gets closer to the edge of
this region, one will have to go to ever higher orders to maintain the same level of accuracy.
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where (14) defines ex1. Eq. (19) can be simplified to
y0 − b1 = φ

³µ1
R
+ b1

´Ã
E0

"µ
1 +

δex1
µ1 +Rb1

¶−γ#!−1/γ
. (20)

The quantity

φ =
£
βR1−γ

¤−1/γ
(21)

is the inverse of the marginal propensity to save in the limit as T →∞ and all
marginal propensities to save and consume are functions of φ alone.

Using (9), we can Taylor-expand the expectation factor of (20) to obtainµ
1 +

δex1
µ1 +Rb1

¶−γ
= 1− γδex1

µ1 +Rb1
+

γ(γ + 1)δ2(ex1)2
2(µ1 +Rb1)

2
+O(δ3). (22)

As we discussed in the previous section, this Taylor expansion will be valid
as long as ¯̄̄̄

δex1
µ1 +Rb1

¯̄̄̄
< 1 (23)

for all possible realizations of ex1. For sufficiently small δ, this inequality should
be obeyed except for very poor agents with µ1+Rb1 ≈ 0. Note that large pos-
itive realizations of ex1 can be just as problematic as large negative realizations.

Given the moment assumptions (14) and (15), Eq. (22) has expectation

E0

"µ
1 +

δex1
µ1 +Rb1

¶−γ#
= 1 +

γ(γ + 1)δ2k2,1
2(µ1 +Rb1)

2
+O(δ3).

Applying (9) a second time, we get the resultÃ
E1

"µ
1 +

δex1
µ1 +Rb1

¶−γ#!−1/γ
= 1− (γ + 1)δ

2k2,1
2(µ1 +Rb1)

2
+O(δ3). (24)

Inserting (24) into the first-order condition (20) gives

y0 − b1 = φ

·
µ1
R
+ b1 − (γ + 1)δ2k2,1

2R(µ1 +Rb1)

¸
+O(δ3). (25)

This can be rewritten

b1 =
1

1 + φ

½
y0 − φ

·
µ1
R
− (γ + 1)δ2k2,1
2R(µ1 +Rb1)

¸¾
+O(δ3). (26)

Note that we have not actually solved for the bond demand b1 since b1
appears on the righthand side. Although we could solve exactly for b1 here if
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we ignore the O(δ3) terms, this would not be feasible if we included any higher
order terms. Perturbation theory directs us to Taylor expand b1:

b1 = b
(0)
1 + δb

(1)
1 + δ2b

(2)
1 +O

¡
δ3
¢
. (27)

Let total wealth wst be the sum of current income, expected future income,
and current bond holdings for an agent at t when s periods remain:

wst = y
s
t +

hs−1t+1

R
+Rbst . (28)

Here, hst is the expected present value of the current and remaining stream of
income for an agent at t with s periods remaining:

hst =
sX
i=0

µs−it+i

Rs−i
. (29)

(So Eq. (28) applies for s = 0, we define h−1t = 0 for all t.) For an agent born
at t = 0 who lives two periods, wealth at t = 0 is

w0 = y0 +
µ1
R

(30)

since the agent will begin life with no bond holdings. We define the zeroth-order
expectation of wealth at t = 1 as

z1 = µ1 +Rb
(0)
1 .

Then we can equate coefficients of powers of δ in Eq. (26) to determine the
coefficients of the expansion (27):

b
(0)
1 =

1

1 + φ

h
y0 − φ

µ1
R

i
(31)

b
(1)
1 = 0 (32)

b
(2)
1 =

φ

1 + φ

(γ + 1)k2,1
2Rz1

Since

z1 =
Rw0
1 + φ

,

we can rewrite

b
(2)
1 = φ

(γ + 1)k2,1
2R2w0

. (33)
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Notice that any first-order contribution to the bond demand vanishes.
This is a fairly general result that will hold whenever the choice of the bond
demand is unconstrained. Essentially, the first-order condition is a restriction
that any first-order perturbations must vanish8. Consequently, the second-order
effect of Eq. (33) is the lowest-order contribution to the precautionary saving
effect. A positive variance induces agents to save more than they would if their
income was certain. Because the coefficient of w−10 in (33) is positive, the bond
demand function will be strictly convex. This is the flip side of Carroll and
Kimball’s (1996) result that the consumption function will be strictly concave.

To simplify the more general expression derived in Appendix B arising
from a model where agents live for T + 1 periods, we make use of the notation
of q-deformed numbers, a concept first introduced by Heine. For q ≥ 0 and n
both real numbers, we define

(n)q =
1− qn
1− q . (34)

For n a positive integer, this is equivalent to the geometric series

(n)q = 1 + q + · · ·+ qn−1.
Appendix A contains some useful results from q-arithmetic that help to simplify
computations.

For general t and 0 ≤ s ≤ T , we can write the value function that solves
(4) as

vst (b
s
t , y

s
t ) =

(s+ 1)γ
φ−1

1− γ
(wst )

1−γ
·
1− δ2

(1− γ)γ

2

Ks
2,t − ks2,t
(wst )

2
(35)

+δ3
(1− γ2)γ

6

Ks
3,t − ks3,t
(wst )

3

¸
+O(δ4).

where K0
n,t = k

0
n,t, and

Ks
n,t = k

s
n,t +

µ
(s+ 1)φ
(s)φ

¶n−1 Ks−1
n,t+1

Rn
(36)

for s > 0. The bond demand at t for 0 ≤ s ≤ T − 1 is

bst+1(b
s+1
t , ys+1t ) =

(s+ 1)φ
(s+ 2)φ

(ys+1t +Rbs+1t )

− φs+1

(s+ 2)φ

"
hst+1
R
− γ + 1

2

δ2(Ks+1
2,t − ks+12,t )

ws+1t

+
(γ + 1)(γ + 2)

6

δ3(Ks+1
3,t − ks+13,t )

(ws+1t )2

#
+O(δ4). (37)

8In a model with binding liquidity constraints, where the first derivative of the Lagrangian
is not zero, first-order perturbation corrections need not vanish.
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We carry out these calculations up to third order because the only
contribution to these expressions at second and third order comes from the
lowest-order (i.e. linear) contribution of the variance and skewness respectively.
Beginning with fourth order, we would see the effects of squares and products
of variances, cross terms that complicate the algebra enough to forestall their
calculation in this this paper. Cross terms do not appear at second or third
order because of the cancelling of first-order corrections. If there was a nonzero
first-order correction, the square of this first-order correction would appear in
the equation for the second-order correction, but the first-order condition elim-
inates those terms. Indeed, it will generally be true that cross terms will not
emerge until fourth order in perturbation calculations where first-order correc-
tions vanish. Thus, the relative simplicity of the third-order calculation for this
problem is not a special result.

The variance effect, reflected in terms involving Ks+1
2,t , behaves as in

the two-period case. Increases in the variance of income lower utility and
induce agents to increase their bond holdings. This is the precautionary saving
effect. In contrast, the skewness effect, reflected in the Ks+1

3,t terms, increases
utility and decreases saving. Agents with CRRA preferences are risk averse but
skewness loving. If we went on to work out the fourth-order corrections, these
would have an ambiguous sign. Terms deriving from the fourth-order moment
will lead to greater saving, but cross-terms involving products of variances will
have the opposite sign. Which force wins out will depend on whether the raw
kurtosis terms are greater or less than some function of the variance terms.
Similar considerations would apply to fifth and higher-order moments.

By substituting (37) into the budget constraint (5), we obtain the con-
sumption function

cs+1t (bs+1t , ys+1t ) =
φs+1

(s+ 2)φ

"
ws+1t − γ + 1

2

δ2(Ks+1
2,t − ks+12,t )

ws+1t

+
(γ + 1)(γ + 2)

6

δ3(Ks+1
3,t − ks+13,t )

(ws+1t )2

#
+O(δ4). (38)

Let csn,t denote the nth-order perturbation approximation to the consump-
tion function

csn,t = y
s
t +Rb

s
t −

nX
i=0

¡
bs−1t+1

¢(i)
(so (38) corresponds to cs+13,t ). As an example of how much the second and
third-order corrections to the consumption function, consider the case where
the income process has a stationary distribution

eyst = ½ 1 + δ probability p
1− δ probability 1− p (39)

for all t and s, so the income will have variance k2 = 4p(1− p)δ2 and skewness
8p(1− p)(1− 2p)δ3, which will be positive or negative depending on whether p
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is less or greater than 1/2. In Fig. 1, we plot |∆ctn,s|/bcts for n = 0, 2 and 3 as a
function of wealth wts for an agent with β = 0.96, γ = 2, p = 0.9, δ = 0.5, and
41 periods remaining, where

∆ctn,s = c
t
n,s − bcts

and bcts is a consumption function evaluated numerically using value-function
iteration and Schumaker shape-preserving splines as described in Judd.(1999).9

The chosen parameters p and δ for the income process give a variance k2 = 0.09
and a negative skewness k3 = −0.072. This is a situation where the agent
typically receives a constant income, but has a 10% probability of receiving a
temporary negative income shock corresponding to a loss of 2/3 of his usual in-
come. For small values of w, none of the three perturbed consumption functions
does a good job of approximating the numerical consumption function, which
is to be expected from the discussion of Section 2. In the low-wealth regime,
the consumption function is always much less than is predicted by perturbation
theory. In part, this reflects additional precautionary saving induced by the
Aiyagari borrowing constraint, which does not show up in low-order perturba-
tion calculations. On the other hand, for large values of wealth, the pertur-
bation approximation works quite well, improving with each successive order.
The second-order consumption function, which begins to account for precaution-
ary saving, improves upon the zeroth-order, certainty-equivalent consumption
function by about a factor of ten in terms of the relative distance between the
perturbed and numerical consumption functions. Meanwhile, the relatively
large negative skewness of this example leads to additional precautionary sav-
ing, and the third-order consumption function improves upon the second-order
approximation by a factor of five.

To see what happens with positive skewness, consider the reverse exam-
ple of Fig. 2 where p = 0.1, corresponding to a situation where an agent has a
ten percent chance of receiving a windfall that increases his income by a factor
of 3. The relative performance of the three perturbative consumption func-
tions is about the same for high wealth. In this case, however, the third-order
approximation does worse than the zeroth- and second-order consumption func-
tions in the low wealth regime. This is because the positive skewness, instead
of adding to precautionary saving, reduces it. Since the third-order correction
goes as w−3 while the second-order correction goes as w−2, the skewness effect
will actually outweigh the precautionary saving effect from the variance terms,
so that third-order consumption is even greater than the certainty-equivalent
consumption. However, the effects of the Aiyagari borrowing constraint, which
do not appear in these perturbation calculations, will overwhelm the skewness
effect, reducing the actual consumption function far below even the second-order
approximation.

To close this section, we can use third-order consumption function (38)
to derive an expression for the expected rate of consumption growth (see Ap-

9For more details on this procedure, see Feigenbaum (2001a).
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Figure 1: Relative distance between the nth-order consumption function cn and
the numerically computed consumption function bc for an agent with 41 periods
remaining, given R = β−1 = 1.04167, γ = 2, and the income distribution (39)
with p = .9 and δ = 0.5, so the variance is k2 = 0.09 and the skewness is
k3 = −.072.
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Figure 2: Relative distance between the nth-order consumption function cn and
the numerically computed consumption function bc for an agent with 41 periods
remaining, given R = β−1 = 1.04167, γ = 2, and the income distribution (39)
with p = .1 and δ = 0.5, so the variance is k2 = 0.09 and the skewness is
k3 = .072.
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pendix C):

Et[ecst+1]
cs+1t

= (βR)1/γ

"
1 +

γ + 1

2

δ2ks+12,t

Et[ ews+1t ]2
− (γ + 1)(γ + 2)

6

δ3ks+13,t

Et[ ews+1t ]3

#
+O(δ4).

(40)

Notice that only the moments of income at period t, eyt, enter this relative
expression. Unlike the absolute consumption function, consumption growth
does not depend on the moments of income at later periods, so the cumulative
moments Kn,t do not appear in (40). If we restrict our attention to second
order, we can obtain a similar expression for the actual rate of consumption
growth and not just its expectation10.

ecst+1
cs+1t

= (βR)1/γ
ewst+1
ws+1t

"
1 +

γ + 1

2

δ2ks+12,t

Et[ ews+1t ]2

#
+O(δ3). (41)

Given the assumptions we have made regarding the income process, this is
equivalent to the expression for the rate of consumption growth obtained by
Skinner (1988).

4 Large Lifetime Limit of Policy and Value Func-
tions

In Appendix B we compute the lowest-order contribution of the nth moment
to both the value function and the bond demand function for n ≥ 2:

v
(n)
t,s+1 = (−1)n+1

Γ(γ + n− 1)
n!Γ(γ)

δn(Ks+1
n,t − ks+1n,t )(s+ 2)

γ
φ−1(w

s+1
t )1−γ−n +O(δn+1)

(42)

b
(n)
t+1,s = (−1)n

Γ(γ + n)

n!Γ(γ + 1)

φs+1

(s+ 2)φ

δn(Ks+1
n,t − ks+1n,t )

wn−1t

+O(δn+1), (43)

where the K satisfy the difference equation (36).
Let us focus on the case where the only variation in income over time

comes from the presence of economic growth—i.e. the distribution of exst is in-
dependent of s. By assumption then, exs0t0 and Gt0−texst will have the same
distribution for all s, s0, t, and t0. This will imply that

ks
0
n,t0 = G

n(t0−t)ksn,t
10At third order, cross terms involving products of Σ2t,s+1 and exs+1t will occur. These

vanish upon taking expectations. However, the actual consumption growth rate will depend
on Σ2t,s+1 and therefore moments of income at later periods.
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for all s, s0, t, and t0 and n ≥ 2. If we definebKs
n = G

−ntKs
n,t

and bkn = G−ntksn,t,
we can rewrite (36) as

bKs
n =

(s+ 1)n−1φ

(s)n−1φ

µ
G

R

¶n bKs−1
n + bkn. (44)

Now consider what happens to bKs
n in the limit as s → ∞, which cor-

responds to the limit of a large lifetime. We will assume that R > G so that
net interest rates are positive and the present value of future income is finite.
We can also assume that φ > 1 because this is the usual condition that must be
satisfied in order to guarantee that lifetime utility, defined by (1)-(2), is finite
for all feasible consumption paths. In that case, the limit

lim
s→∞

φs

(s+ 1)φ
= lim
s→∞(s)

−1
φ−1 = lim

s→∞(φ− 1)
φs

φs+1 − 1 =
φ− 1
φ

exists. Consequently, the finiteness of (42)-(43) depends entirely on the behav-

ior of the coefficients Ks
n,t (and thereby bKs

n).
For large s,

lim
s→∞

(s+ 1)φ
(s)φ

= lim
s→∞

φs+1 − 1
φs − 1 = φ,

so Eq. (44) approximates to

bKs
n ≈ φn−1

µ
G

R

¶n bKs−1
n + bkn (45)

in that limit. The solution to (45) will be finite at large t if and only if

φn−1
µ
G

R

¶n
< 1. (46)

Let

RG = β−1Gγ . (47)

This is the interest rate for which consumption will grow at the constant rate
G in an economy without uncertainty, and it is the unique equilibrium interest
rate for an infinite-horizon deterministic economy where income grows at the
rate G. This also corresponds to the interest rate which satisfies φG = R. If
R ≥ RG, then we will have φG ≤ R. Since we have also assumed G < R, the
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condition (46) must hold in that case. So for R ≥ RG, the expressions (42)-(43)
will be well-defined for all n.

On the other hand, if we solve the inequality (46) to isolate R, we find
the condition holds only for

R > Rn =
h
β
1−n
γ Gn

i γ
γ+n−1

.

The threshold interest rate for order n, Rn, is an increasing function of n and
converges to RG as n → ∞.11 This is a problem because when we introduce
precautionary saving into an infinite-horizon economy, the increased demand
for bonds will push the interest rate below the interest rate, RG, for the deter-
ministic economy. If R < RG, then there must be some n for which R > Rn.
That is, for some n, the nth-order value and policy functions must diverge.

We have to assume that R > G, which means the economy must be
dynamically efficient, in order for the zeroth-order policy and value functions
that we perturb around to exist. As long as φ > 1, which is also needed for the
zeroth-order functions to exist, the nth-order bound will be a stronger bound
than the bound required by dynamic efficiency since if G ≥ R and φ > 1 then
the condition (46) will be violated.12 Moreover, since φ is strictly greater than
1, there will be a neighborhood of G such that all R in that neighborhood will
be below the second-order threshold R2. Thus, we are not simply replicating
the trivial result that the economy must be dynamically efficient in order for
perturbation theory to work because, otherwise, the solution we are expanding
around does not exist.

What do these divergences in the perturbation calculations mean for
the practical application of perturbative methods? First, we should note that
these divergences are not real. If we solve for value and policy functions nu-
merically, we do not see any significant change when the interest rate crosses
any of the thresholds specified by (46). In Fig. 3, we compare the second-order
perturbation calculation of the consumption function c2 to a numerical calcula-
tion bc for a case where 41 periods remain and φG2/R2 = 1.16. Notice that the
numerical consumption function is well-behaved, deviating only slightly from a
straight line, and everywhere positive. The effect of the divergence is better
seen in Fig. 4, which compares the relative distances between the nth-order
consumption function cn and the numerical consumption function bc for n = 0
and n = 2. Notice that the zeroth-order consumption function is everywhere a
better approximation than the second-order consumption function. If we adjust
the risk aversion coefficient γ from 1.1 to 0.5, φG2/R2 increases to 1.43, and we

11Because these interest rate thresholds are scale-invariant, it is not possible to escape or
alleviate this pathology by changing the time scale. Suppose the length of a period is τ .
We define R = eqτ , G = egτ , and β = e−ρτ , where q, g, and ρ are the the continuous-time
interest, growth, and discount rates respectively. The condition φn−1(G/R)n < 1 holds if
and only if q > (n−1

γ
ρ+ ng)/(1 + n−1

γ
), independent of τ .

12A sufficient condition for φ(R) > 1 for R ∈ [G,RG] is that G < RG since that will
guarantee both φ(G) and φ(RG) > 1 and since φ(R) is monotonic.
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Figure 3: Second-order consumption function c2 and numerical consumption
function bc as a function of wealth w for β = 0.8, γ = 1.1, R = 1.03, and an
income distribution given by (39) with p = 0.5 and δ = 0.1.

get an even more spectacular failure of perturbation theory as seen in Fig. 5.13

Clearly, however, since bc is well-behaved in this case also, the divergence arises
because perturbative methods have broken down, not because there is anything
divergent about the exact problem.

What happens if φG2/R2 < 1? Although the second-order correction
will not blow up, we know that if R < RG then the nth-order consumption
function must diverge at large lifetimes for some n. Does this interfere with
the approximation ability of lower-order consumption functions? Consider Fig.
6, in which we compare the zeroth-order consumption function to the second-
order consumption function for a case where 249 periods remain, R = 1.03 <
β−1 = 1.04167, and φG2/R2 = 0.98. At such a large lifetime, if the second-
order approximation is going to be thrown off by divergences at higher orders,
we should see it here. However, the second-order calculation is always better
than the zeroth-order calculation and usually is significantly better. Thus, even
though perturbation calculations must diverge at some finite order if R < β−1,
this does not invalidate perturbation calculations at lower orders.

Notice that Ks
n,t will diverge if (46) is violated no matter how large δ

is. The coefficient of variation could be less than one part in a billion, and Ks
n,t

13Actually, Fig. 5 somewhat exaggerates the difference between the second-order consump-
tion function and the actual consumption function because we have not enforced the non-
negativity constraint on consumption in the perturbation calculations, and the second-order
consumption function is negative for all pictured wealth values.
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Figure 4: Relative distance between the nth-order consumption function cn and
the numerically computed consumption function bc for an agent with 41 periods
remaining, given β = 0.8, γ = 1.1, R = 1.03 and the income distribution (39)
with p = .5 and δ = 0.1. In this case, φG2/R2 = 1.16, so the second-order
consumption function diverges at large lifetimes.
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Figure 5: Relative distance between the nth-order consumption function cn and
the numerically computed consumption function bc for an agent with 41 periods
remaining, given β = 0.8, γ = 0.5, R = 1.03 and the income distribution (39)
with p = .5 and δ = 0.1. In this case, φG2/R2 = 1.43.
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Figure 6: Relative distance between the nth-order consumption function cn
and the numerically computed consumption function bc for an agent with 249
periods remaining, given R = 1.03 < β−1 = 1.04167, γ = 1.1, and the income
distribution (39) with p = .5 and δ = 0.1. In this case, φG2/R2 = 0.98.
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will still grow without bound, although this divergence might only affect the
value and policy functions at gigantic values of the remaining lifetime s. What
causes this divergence? As we discussed in Section 2, the perturbation series
of expected utility will only converge for values of wealth wst above some cutoff
related to the variance of income. Given a constant income process, this cutoff
should not vary with time. Yet here we find that for any value of wst , there will
be some s at which perturbation corrections explode if the interest rate is less
than RG.

The dependence of this effect on the interest rate suggests it is related
to how the long-term trend in consumption growth depends on the interest rate.
Consider the case without growth.14 From Eq. (40), we see that in the absence
of uncertainty, consumption will decay exponentially if the interest rate R is
less than the discount rate β−1. In this case, consumers will spend their wealth
down to its minimum value, zero, which is less than the minimum value allowed
if there is uncertainty (on account of the Aiyagari (1994) endogenous borrowing
constraint). Conversely, if R > β−1, consumption will increase without bound.
Consumption will remain stable over time only if R = β−1. When uncertainty is
turned on, consumption will still grow without bound almost surely if R > β−1

or if R = β−1 and income is sufficiently stochastic (Chamberlain and Wilson
(2000)). If R < β−1, then the convexity of the saving function will prevent
agents from spending their wealth down to its minimum. Instead, there will be
a unique steady state in the mapping of current wealth to expected next-period
wealth (Carroll (1997, 2001b)), and consumers will be attracted to this value of
wealth, known as the buffer-stock wealth.

Perturbative methods cannot properly represent the utility deriving
from a future eventuality where the agent has near-zero wealth. Neverthe-
less, if the buffer-stock wealth is high enough, one might hope that it would
be extremely unlikely for an agent at or above the buffer stock to approach
the minimum wealth and that the contribution to the value function from this
possible eventuality would, thus, be negligible. However, the buffer stock is not
a property of the zeroth-order solution that we are expanding around. Evi-
dently, the zeroth-order behavior of spending wealth down to zero gets reflected
in perturbation corrections. As R approaches β−1 from below, the rate at
which agents spend down their wealth in the zeroth-order solution will decrease
to nil, but a low income shock can speed up this process. Since information
about low-income shocks is conveyed by the higher-order moments of the income
process, it makes sense that the contribution of each successive moment should
become pathological at a higher threshold interest rate.

While these divergences arise in expressions of absolute consumption
and absolute wealth, it is worth noting that they cancel out of some relative
expressions. For example, the expressions for the rate of consumption growth
given by Eqs. (40)-(41) depend on ks2,t and k

s
3,t but not on the cumulative mo-

mentsKs
2,t andK

s
3,t where the divergences arise. This may be a special property

14The case with growth will essentially be the same if we substitute the consumption to
income ratio and the wealth to income ratio for consumption and wealth respectively.
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that only holds to third order though. It is not known whether it will persist
at fourth and higher orders where cross terms appear. Nevertheless, these di-
vergences are one perturbation pathology that may not beset Euler-equation
regressions of consumption growth. The finding above that the economy must
be dynamically efficient for perturbation theory to work may, however, relate to
another perturbation pathology involving Euler equations. Carroll (2001a) has
found in simulated economies that the estimation of second-order approxima-
tions to the Euler equation gives inconsistent estimates for the known preference
parameters of these artificial economies. However, all of the agents in his ex-
amples experience an interest rate less than or equal to their income growth
rate. Conceivably, this may account for his finding that the second-order Euler
equation is such a poor approximation to the true Euler equation.

5 Concluding Remarks

Perturbative methods can be a very powerful tool. In physics, they are
commonplace, and theorists have used them to accurately predict the magnetic
moment of the electron to a stunning nine decimal places. Nevertheless, per-
turbative methods are not foolproof. They need to be used with some care.
Applied blindly, they can produce nonsense just like any other method.

Unfortunately, the theory underlying perturbative methods is limited.
The Taylor theorem provides the foundational basis for perturbative methods
but offers little practical guidance regarding their usage. Given a function of
the perturbation parameter which is C∞ at a chosen point, it establishes that
a Taylor series for this function will converge within an open ball of that point,
and the radius of that ball will depend on the analyticity properties of the func-
tion. However, this does not help much if our knowledge of the function is
limited to a finite number of terms in its Taylor expansion or if higher-order
terms do not exist. In the rare situation where we know an entire perturbation
series, we can probably solve the relevant problem analytically without any need
for perturbative methods. If a radius of convergence exists, for values of the
perturbation parameter near but less than this radius, Taylor approximations
will only be accurate when computed to large orders. For values of the per-
turbation parameter above the radius, Taylor approximations are completely
uninformative. Consequently, it is of tantamount importance that any research
involving perturbative methods clearly specify what the perturbation parameter
is.

Similar considerations apply if a radius of convergence does not exist.
As the example of this paper demonstrates, that may often be the case in a
dynamic model. The singularity in the CRRA utility function implies that per-
turbation expansions of expected utility will only be valid at wealth levels above
some lower bound. This restriction reflects the above discussion and will hold
both in a static model where agents make decisions involving only a single pe-
riod of uncertainty and in a dynamic model where agents must make a sequence
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of decisions involving multiple periods of uncertainty. In the second case, how-
ever, the potential exists for the agent to eventually leave the convergent region
of the state space, and this can cause individual terms in the perturbation series
to diverge as the number of future periods increases no matter how small the
perturbation parameter is. The possibility of such dynamic pathologies will
have to be considered in any model involving CRRA preferences and stochastic
histories. In fact, they are a property of most of the hyperbolic absolute risk
aversion (HARA) class of utility functions (Feigenbaum (2001b)). (Quadratic
and CARA utility are immune to the specific pathology examined here.) Most
likely, these pathologies will show up in any dynamic model involving perturba-
tive approximations where the zeroth-order dynamics imply the state variables
should inevitably leave the convergence region for the perturbation series.

That said, we have only considered temporary income shocks in this
model. Viceira (2001) is another perturbative treatment of a consumption/saving
problem in which there are only permanent income shocks. This is a somewhat
more tractable problem under CRRA utility since it has more of the structure
of a standard portfolio-allocation problem (Koo (1999)). Viceira does not con-
sider the possibility of dynamic pathologies, so it remains to be seen whether
dynamic pathologies will arise in the absence of temporary income shocks.

I should emphasize here that while we established a lower bound on
the set of interest rates at which the perturbation series to a given order will
remain finite at large lifetimes, we only considered divergences that arise from
the lowest-order contribution of each moment of the income process. Higher-
order contributions may induce tighter bounds. For example, at fourth order,
the cross terms arising from products of variances may produce a tighter bound
on the interest rate than the bound we computed which comes from the pure
kurtosis terms.

Despite these words of caution, I do not wish to overly discourage re-
searchers from exploiting perturbative methods. In Feigenbaum (2001a), I close
the economy in the present paper by introducing an overlapping generations
(OLG) structure. If we continue with the assumption that the income process
has a “compact” distribution, then we can substitute our perturbed bond de-
mands into the market-clearing equation and solve for perturbation corrections
to the interest rate. The result is an approximate expression for the interest
rate that is a function of exogenous parameters, and, in fact, the second-order
expression expression is quite simple in the limit of large lifetimes15. I find that,
at least for short lifetimes, this second-order prediction compares favorably to
numerical results.

As a numerical method, hybrid perturbative methods may be superior
to value-function iteration for the purpose of computing interest rates in an
economy without borrowing constraints if they can more efficiently approximate
bond demand functions. Assuming only a small measure of agents fall outside
the region of the state space where perturbative methods are inaccurate, one

15For realistic values of the exogenous parameters, the bond demand should not diverge at
large lifetimes to second order. However, even if they do, these divergences will not show up
in the interest rate until fourth order.
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can aggregate these perturbed demand functions and solve for the equilibrating
interest rate with a numerical equation solver. I would not advocate using
perturbative methods to compute interest rates directly as a numerical method
for two reasons. First, this would be inefficient since a much greater effort is
needed to compute perturbation corrections than is required to input functions
into an equation solver. Second, direct computation of interest rates would
only be possible if the income distribution is compact. However, as we have
seen, a compact income distribution is not required to accurately perturb policy
functions for agents at high enough levels of wealth.

Throughout this paper, we have maintained the assumption of no ex-
ogenous borrowing constraints. This assumption was made because even the
zeroth-order problem without uncertainty becomes much more complicated when
borrowing constraints are introduced. Nevertheless, this problem is still analyt-
ically solvable for finite lifetimes. With borrowing constraints, value and policy
functions will be piecewise smooth functions. The number of intervals required
to define these functions will grow as the lifetime increases, and for that reason
the problem quickly loses tractability at large lifetimes. Yet for small lifetimes,
the zeroth-order problem will be tractable and can be perturbed around. In
Feigenbaum (2002), I use perturbative methods to study how borrowing con-
straints and precautionary saving interact in a simple general-equilibriummodel.

As a theoretical tool, I believe this last manner of application is where
perturbative methods will be most beneficial. They can be used quite effectively
to analyze models which are simple enough to afford insight about the workings
of more complicated models and yet which are complex enough themselves to
be unsolvable by exact methods.

A A Brief Introduction to q-Arithmetic

For real numbers q ≥ 0 and n, we define the q-analog of n as

(n)q =
1− qn
1− q .

In the limit as q → 1, we can apply l’Hôpital’s rule to evaluate (n)q:

lim
q→1

(n)q = lim
q→1
−nqn−1
−1 = n.

Thus as q deviates from 1, (n)q is a “deformation” of n.
Note that (0)q = 0 and (1)q = 1 for all values of q. For n a positive

integer,

(n)q =
n−1X
i=0

qi = 1 + q + . . .+ qn−1.
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Thus q-deformed numbers often arise in environments where geometric series
appear.

We can express (n)q in terms of (n)q−1 as follows.

(n)q−1 =
1− q−n
1− q−1

=
q−n

q−1
qn − 1
q − 1

Thus,

(n)q−1 = q
1−n(n)q. (48)

A useful result from q-arithmetic is

(n)q + q
n(m)q =

1− qn
1− q + q

n 1− qm
1− q

=
1− qn+m
1− q

(n)q + q
n(m)q = (n+m)q. (49)

B Lowest-Order Contribution of nth-Order Mo-
ment to Policy and Value Functions

We will consider the lowest-order contribution of the nth-order moment to
the solution of the perturbed problem (??). This term can be computed sepa-
rately from all other terms except the zeroth-order term because any interaction
between the nth-order moment and other moments (including itself) will occur
as higher-order cross terms, which we neglect here.

Recall that the Euler gamma function satisfies the property

Γ(t+ 1) = tΓ(t).

Thus, we can write the product of a sequence of factors differing by 1 as

γ(γ + 1) · · · (γ + n− 1) = Γ(γ + n)
Γ(γ)

.

(This ratio of gamma functions will be well-defined even if the individual gamma
functions are not.)
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Let us suppose that the value function for an agent t with s periods
remaining has the partial form

vst (w
s
t ) =

1

1− γ
(s+ 1)γ

φ−1(w
s
t )
1−γ

×
"
1 + (−1)nΓ(γ + n− 1)

n!Γ(γ − 1)
(s+ 1)n−1φ

(s)n−1φ

δnKs−1
n,t+1

Rn(wst )
n

#
, (50)

where we include only the lowest-order contribution of the nth-order moment
and the zeroth-order term. The variable wst is the wealth of the individual,
defined by Eq. (28), and Ks

n,t is a sequence of constants in s satisfying K
−1
n,t = 0

for all t. The determination of the Ks
n,t is the key to computing the value and

policy functions.
Notice that for s = 0,

v0t (w) =
(w0t )

1−γ

1− γ
,

the utility obtained from consuming all wealth, which will be known with cer-
tainty in the last period of life.

Next assume that (50) is correct for s ≥ 0. Then the Bellman equation
(??) generates the Lagrangian

Ls+1t =
1

1− γ

£
ys+1t +Rbs+1t − bst+1

¤1−γ
+ βEt[v

s
t+1(b

s
t+1, eyst+1)]. (51)

Inserting (50) into the Lagrangian, we obtain

Ls+1t =
1

1− γ

¡
ys+1t +Rbs+1t − bst+1

¢1−γ
+

1

1− γ
(s+ 1)γ

φ−1

×Et
"¡ ewst+1¢1−γ

Ã
1 + (−1)nΓ(γ + n− 1)

n!Γ(γ − 1)
(s+ 1)n−1φ

(s)n−1φ

δnKs−1
n,t+2

Rn
¡ ewst+1¢n

!#
.(52)

Note that the Ks−1
n,t+2 factor is indexed to time t + 2. This represents the

effects of uncertainty for all periods after t + 1, starting with t + 2. Since
d
¡ ewst+1¢ /dbst+1 = R, differentiating Ls+1t by the choice variable bst+1 gives the
first-order condition¡

ys+1t +Rbs+1t − bst+1
¢−γ

= βR(s+ 1)γ
φ−1Et

"¡ ewst+1¢−γ
Ã
1 + (−1)nΓ(γ + n− 1)

n!Γ(γ − 1)
(s+ 1)n−1φ

(s)n−1φ

δnKs−1
n,t+2

Rn
¡ ewst+1¢n

!

− ¡ ewst+1¢1−γ (−1)n n

1− γ

Γ(γ + n− 1)
n!Γ(γ − 1)

(s+ 1)n−1φ

(s)n−1φ

δnKs−1
n,t+2

Rn
¡ ewst+1¢n+1

#
. (53)
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Since µ
1− n

1− γ

¶
Γ(γ + n− 1)
Γ(γ − 1) =

1− γ − n
1− γ

Γ(γ + n− 1)
Γ(γ − 1)

=
Γ(γ + n)

Γ(γ)
,

we have ¡
ys+1t +Rbs+1t − bst+1

¢−γ
= βR(s+ 1)γ

φ−1 (54)

×Et
"¡ ewst+1¢−γ

Ã
1 + (−1)nΓ(γ + n)

n!Γ(γ)

(s+ 1)n−1φ

(s)n−1φ

δnKs−1
n,t+2

Rn
¡ ewst+1¢n

!#
.

Let us define

zst+1 = h
s
t+1 +R

¡
bst+1

¢(0)
(55)

and

Bst+1 = b
s
t+1 −

¡
bst+1

¢(0)
,

where
¡
bst+1

¢(0)
is the zeroth-order contribution to the bond demand function—

i.e. the bond demand function in the absence of uncertainty. Then

ewst+1 = zst+1 +RBst+1 + δexst+1. (56)

Notice that any deviation of
¡ ewst+1¢−n from ¡

zst+1
¢−n

will be of order δ, so we
can ignore such deviations since (δ/ ewst+1)n is already of order δn. Therefore, we
can factor out the terms in parentheses from the expectation.since they will be
known with certainty to order δn. The remaining factor inside the expectation
will then be

Et+1
£ ew−γt ¤

= (zt +RBt)
−γ
Et+1

"µ
1 +

δext
zt +RBt

¶−γ#
.

The Taylor expansion of

(1 + x)−γ = 1− γx+
γ(γ + 1)

2
x2 + · · ·+ (−1)nΓ(γ + n)

n!Γ(γ)
xn +O(xn+1).

Since we are only concerned with terms of order δn arising from the nth-order
moment,

Et

h¡ ewst+1¢−γi = ¡zst+1 +RBst+1¢−γ
"
1 + (−1)nΓ(γ + n)

n!Γ(γ)

δnksn,t+1¡
zst+1

¢n
#
.

(Notice that RBst+1 will be of order δ, so any contribution of the RB
s
t+1 in

the denominator will also be of order greater than δn.) We assume here that
zst+1 +RB

s
t+1 is larger than any possible realization of δexst+1.
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Thus, we can write (54) as¡
ys+1t +Rbs+1t − bst+1

¢−γ
= βR(s+ 1)γ

φ−1
¡
zst+1 +RB

s
t+1

¢−γ "
1 + (−1)nΓ(γ + n)

n!Γ(γ)

δnDs
n,t+1¡

zst+1
¢n
#
,(57)

where

Ds
n,t+1 =

(s+ 1)n−1φ

(s)n−1φ

Ks−1
n,t+2

Rn
+ ksn,t+1. (58)

Since

(1 + x)−1/γ = 1− x
γ
+O(x2),

we can raise (57) to the power of −1/γ:

ys+1t +Rbs+1t − bst+1

=
(βR)−1/γ

(s+ 1)φ−1

"
hst+1 +Rb

s
t+1 − (−1)n

Γ(γ + n)

n!Γ(γ + 1)

δnDt
n,s+1¡

zst+1
¢n−1

#
,

where we have used the identity

hst+1 +Rb
s
t+1 = z

s
t+1 +RB

s
t+1.

Multiplying and dividing the righthand side by R gives

ys+1t +Rbs+1t − bst+1

=
φt+1

(s+ 1)φ

"
hst+1
R

+ bst+1 − (−1)n
Γ(γ + n)

n!Γ(γ + 1)

δnDs
n,t+1

R
¡
zst+1

¢n−1
#
,

where we have used (48).
Using (49), we can solve for bt:

bst+1 =
(s+ 1)φ
(s+ 2)φ

(ys+1t +Rbs+1t )

− φs+1

(s+ 2)φ

"
hst+1
R
− (−1)n Γ(γ + n)

n!Γ(γ + 1)

δnDs
n,t+1

R
¡
zst+1

¢n−1
#
. (59)

Thus, we can read off that the zeroth-order contribution to the bond demand
is the familiar result that¡

bst+1
¢(0)

=
1

(s+ 2)φ

·
(s+ 1)φ(y

s+1
t +Rbs+1t )− φs+1

hst+1
R

¸
(60)
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while the lowest-order contribution of the nth moment is

(−1)n φs+1

(s+ 2)φ

Γ(γ + n)

n!Γ(γ + 1)

δnDs
n,t+1

R
¡
zst+1

¢n−1 . (61)

Notice that the sign of this contribution will alternate with n. The precaution-
ary saving effect is positive, the skewness effect is negative, the direct kurtosis
effect is positive again, etc.

Substituting (60) into (55) and using (28), we can determine how the
expected wealth at t+ 1 depends on current wealth at t.

zst+1 =
(s+ 1)φ
(s+ 2)φ

Rws+1t . (62)

Next, we consider consumption. The budget constraint gives

cs+1t = ys+1t +Rbs+1t − bst+1. (63)

Plugging (59) into (63) and using (??) to further simplify, we get

cs+1t =
φs+1

(s+ 2)φ

"
ws+1t − (−1)n Γ(γ + n)

n!Γ(γ + 1)

δnDs
n,t+1

R
¡
zst+1

¢n−1
#
.

Next we factor out ws+1t and make use of (48) and (62) to get

cs+1t =
ws+1t

(s+ 2)φ−1

"
1− (−1)n Γ(γ + n)

n!Γ(γ + 1)

(s+ 1)φ
(s+ 2)φ

δnDs
n,t+1¡

zst+1
¢n
#
. (64)

Raising cs+1t to the power of 1− γ as in the utility function,

¡
cs+1t

¢1−γ
=

µ
ws+1t

(s+ 2)φ−1

¶1−γ "
1− (−1)n (1− γ)Γ(γ + n)

n!Γ(γ + 1)

(s+ 1)φ
(s+ 2)φ

δnDs
n,t+1¡

zst+1
¢n
#
.

(65)

We also need to work out the expected value function, which depends onewst+1. Plugging the lowest-order contribution of the nth moment, as expressed
in (61) into (56),

ewst+1 = zst+1 + (−1)n φs+1

(s+ 2)φ

Γ(γ + n)

n!Γ(γ + 1)

δnDs
n,t+1¡

zst+1
¢n−1 + δexst+1. (66)

Inserting this into the value function (50), we obtain

vst+1( ewst+1) =
1

1− γ
(s+ 1)γ

φ−1
¡
zst+1

¢1−γ
×
"
1 + (−1)n φs+1

(s+ 2)φ

Γ(γ + n)

n!Γ(γ + 1)

δnDs
n,t+1¡

zst+1
¢n +

δexst+1
zst+1

#1−γ

×
"
1 + (−1)nΓ(γ + n− 1)

n!Γ(γ − 1)
(s+ 1)n−1φ

(s)n−1φ

δnKs−1
n,t

Rn
¡ ewst+1¢n

#
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Using the Taylor expansion (9), the expectation of the value function is (focusing
only on the lowest-order contribution of the nth moment)

Et
£
vst+1( ewst+1)¤ =

1

1− γ
(s+ 1)γ

φ−1
¡
zst+1

¢1−γ
×
"
1 + (−1)n φs+1

(s+ 2)φ

(1− γ)Γ(γ + n)

n!Γ(γ + 1)

δnDs
n,t+1¡

zst+1
¢n

+(−1)nΓ(γ + n− 1)
n!Γ(γ − 1)

δnksn,t+1¡
zst+1

¢n
+(−1)nΓ(γ + n− 1)

n!Γ(γ − 1)
(s+ 1)n−1φ

(s)n−1φ

δnKs−1
n,t+2

Rn
¡
zst+1

¢n
#
. (67)

Notice in the last term that we can replace ewst+1 by zst+1 since any deviations
from zst+1 will be of order δ. Making use of (58) and (62), we can write (67) as

Et
£
vst+1( ewst+1)¤ =

1

1− γ
(s+ 1)γ

φ−1

µ
(s+ 1)φ
(s+ 2)φ

Rws+1t

¶1−γ
×
"
1 + (−1)n φs+1

(s+ 2)φ

(1− γ)Γ(γ + n)

n!Γ(γ + 1)

δnDs
n,t+1¡

zst+1
¢n

+(−1)nΓ(γ + n− 1)
n!Γ(γ − 1)

δnDs
n,t+1¡

zst+1
¢n
#
. (68)

Using (48) once again,

Et
£
vst+1( ewst+1)¤ =

1

1− γ
(s+ 1)φ−1

µ
ws+1t

(s+ 2)φ−1

R

φ

¶1−γ
×
"
1 + (−1)n φs+1

(s+ 2)φ

(1− γ)Γ(γ + n)

n!Γ(γ + 1)

δnDs
n,t+1¡

zst+1
¢n

+(−1)nΓ(γ + n− 1)
n!Γ(γ − 1)

δnDs
n,t+1¡

zst+1
¢n
#
. (69)
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Finally, we substitute (65) and (69) into the Bellman equation (??):

vs+1t =
1

1− γ

µ
wst+1

(s+ 2)φ−1

¶1−γ
×
"
1− (−1)n (1− γ)Γ(γ + n)

n!Γ(γ + 1)

(s+ 1)φ
(s+ 2)φ

δnDs
n,t+1¡

zst+1
¢n
#

+
1

1− γ
(s+ 1)φ−1

βR1−γ

φ1−γ

µ
ws+1t

(s+ 2)φ−1

¶1−γ
×
"
1 + (−1)n φs+1

(s+ 2)φ

(1− γ)Γ(γ + n)

n!Γ(γ + 1)

δnDs
n,t+1¡

zst+1
¢n

+(−1)nΓ(γ + n− 1)
n!Γ(γ − 1)

δnDs
n,t+1¡

zst+1
¢n
#
.

Using (21) and combining terms, we obtain

vs+1t =
1

1− γ

µ
ws+1t

(s+ 2)φ−1

¶1−γ (
1− (−1)n (1− γ)Γ(γ + n)

n!Γ(γ + 1)

(s+ 1)φ
(s+ 2)φ

δnDs
n,t+1¡

zst+1
¢n

+(s+ 1)φ−1φ
−1
"
1 + (−1)n φs+1

(s+ 2)φ

(1− γ)Γ(γ + n)

n!Γ(γ + 1)

δnDs
n,t+1¡

zst+1
¢n

+(−1)nΓ(γ + n− 1)
n!Γ(γ − 1)

δnDs
n,t+1¡

zst+1
¢n
#)

.

The identities (48) and (49) imply

vs+1t =
1

1− γ

µ
ws+1t

(s+ 2)φ−1

¶1−γ
×
(
(s+ 2)φ−1 − (−1)n

(1− γ)Γ(γ + n)

n!Γ(γ + 1)

(s+ 1)φ
(s+ 2)φ

δnDs
n,t+1¡

zst+1
¢n

+(−1)n (s+ 1)φ
(s+ 2)φ

(1− γ)Γ(γ + n)

n!Γ(γ + 1)

δnDs
n,t+1¡

zst+1
¢n

+(−1)n(s+ 1)φ−1φ−1
Γ(γ + n− 1)
n!Γ(γ − 1)

δnDs
n,t+1¡

zst+1
¢n
)
.

Cancelling the second and third terms and factoring out (s + 2)φ−1 , the value
function becomes

vs+1t =
(s+ 2)γ

φ−1

1− γ

¡
ws+1t

¢1−γ
×
(
1 + (−1)n (s+ 1)φ−1φ

−1

(s+ 2)φ−1

Γ(γ + n− 1)
n!Γ(γ − 1)

δnDs
n,t+1¡

zst+1
¢n
)
.
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Making use of (48) and (62), we get the expression

vs+1t =
(s+ 2)γ

φ−1

1− γ

¡
ws+1t

¢1−γ
×
(
1 + (−1)nΓ(γ + n− 1)

n!Γ(γ − 1)
µ
(s+ 2)φ
(s+ 1)φ

¶n−1 δnDs
n,t+1

Rn
¡
ws+1t

¢n
)
. (70)

Compare this to our posited value function (35). We see that the expressions
are the same if

Ks
n,t+1 = D

s
n,t+1.

Thus by Eq. (58), Ks
n,t+1 satisfies the difference equation

Ks
n,t+1 =

(s+ 1)n−1φ

(s)n−1φ

Ks−1
n,t+2

Rn
+ ksn,t+1. (71)

Making use of Eqs. (62) and (71), we can rewrite (59) and (70) as

vs+1t =
(s+ 2)γ

φ−1

1− γ

¡
ws+1t

¢1−γ
×
(
1 + (−1)nΓ(γ + n− 1)

n!Γ(γ − 1)
δn(Ks+1

n,t − ks+1n,t )¡
ws+1t

¢n
)
. (72)

bst+1 =
(s+ 1)φ
(s+ 2)φ

(ys+1t +Rbs+1t )

− φs+1

(s+ 2)φ

"
hst+1
R
− (−1)n Γ(γ + n)

n!Γ(γ + 1)

δn(Ks+1
n,t − ks+1n,t )¡
ws+1t

¢n−1
#
. (73)

Now, let us collect the second and third-order contributions expressed
in Eqs. (72) and (73). We stop at third order because cross terms will begin to
appear at fourth order. In order to compute the entire fourth-order correction,
we would have to include terms involving products of variances in addition to the
lowest order contribution of the fourth-order moment computed above. The
algebra of these cross terms is messier than the algebra for the lowest-order
contributions, so we leave that to future work. We obtain

vs+1t (bs+1t , ys+1t ) =
(s+ 2)γ

φ−1

1− γ

¡
ws+1t

¢1−γ "
1− δ2

(1− γ)γ

2

Ks+1
2,t − ks+12,t¡
ws+1t

¢2
+δ3

(1− γ2)γ

6

Ks+1
3,t − ks+13,t¡
ws+1t

¢3
#
+O(δ4)
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and

bst+1(b
s+1
t , ys+1t ) =

(s+ 1)φ
(s+ 2)φ

(ys+1t +Rbs+1t )

− φs+1

(s+ 2)φ

"
hst+1
R
− γ + 1

2

δ2(Ks+1
2,t − ks+12,t )

ws+1t

+
(γ + 1)(γ + 2)

6

δ3(Ks+1
3,t − ks+13,t )¡
ws+1t

¢2
#
+O(δ4).

These are the results reported in Section 3.

C Consumption Growth Equation

The consumption function to third order is given by Eq. (38):

cs+1t =
φs+1

(s+ 2)φ

"
ws+1t − γ + 1

2

δ2(Ks+1
2,t − ks+12,t )

ws+1t

+
(γ + 1)(γ + 2)

6

δ3(Ks+1
3,t − ks+13,t )¡
ws+1t

¢2
#
+O(δ4).

If we make use of Eqs. (62) and (71), we can rewrite this as

cs+1t =
φs+1

(s+ 2)φ

"
ws+1t − γ + 1

2

Ks
2,t+1

Rzst+1
+
(γ + 1)(γ + 2)

6

Ks
3,t+1

R
¡
zst+1

¢2
#
+O(δ4).

(74)

Expected wealth next period is

Et[ ewst+1] = hst+1 +Rbst+1.
Substituting in Eq. (37), we obtain

Et[ ewst+1] =
R(s+ 1)φ
(s+ 2)φ

ws+1t

+
φs+1

(s+ 2)φ

"
γ + 1

2

δ2Ks
2,t+1

zst+1
− (γ + 1)(γ + 2)

6

δ3Ks
3,t+1¡

zst+1
¢2
#
+O

¡
δ4
¢
.

Solving for ws+1t , we obtain

ws+1t =
(s+ 2)φ
R(s+ 1)φ

E[ ewst+1]
− φs+1

R(s+ 1)φ

"
γ + 1

2

δ2Ks
2,t+1

zst+1
− (γ + 1)(γ + 2)

6

δ3Ks
3,t+1¡

zst+1
¢2
#
+O

¡
δ4
¢
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This can be put into Eq. (74). Using (49), we then obtain

cs+1t =
φs+1

R(s+ 1)φ

"
E[ ewst+1]− γ + 1

2

Ks
2,t+1

zst+1
+
(γ + 1)(γ + 2)

6

Ks
3,t+1¡
zst+1

¢2
#
+O(δ4).

Since

E[ ewst+1] = zst+1 +O(δ2),
this can be simplified to

cs+1t =
φs+1

R(s+ 1)φ
E[ ewst+1]

"
1− γ + 1

2

δ2Ks
2,t+1

E[ ewst+1]2 + (γ + 1)(γ + 2)6

δ3Ks
3,t+1

E[ ewst+1]3
#
+O

¡
δ4
¢
.

(75)

Meanwhile if we update (38) to t+ 1, we obtain

ecst+1 =
φs

(s+ 1)φ

"
E[ ewst+1] + δexst+1 − γ + 1

2

δ2(Ks
2,t+1 − ks2,t+1)

E[ ewst+1] + δexst+1
+
(γ + 1)(γ + 2)

6

δ3(Ks
3,t+1 − ks3,t+1)

(E[ ewst+1] + δexst+1)2
#
+O(δ4)

=
φs

(s+ 1)φ

"
E[ ewst+1] + δexst+1 − γ + 1

2

δ2(Ks
2,t+1 − ks2,t+1)
E[ ewst+1]

µ
1− δexst+1

E[ ewst+1]
¶

+
(γ + 1)(γ + 2)

6

δ3(Ks
3,t+1 − k33,t+1)
E[ ewst+1]2

#
+O(δ4).

Taking the expectation,

Et[ecst+1] =
φs

(s+ 1)φ
E[ ewst+1]

"
1− γ + 1

2

δ2(Ks
2,t+1 − ks2,t+1)
E[ ewst+1]2

+
(γ + 1)(γ + 2)

6

δ3(Ks
3,t+1 − ks3,t+1)
E[ ewst+1]3

#
+O(δ4). (76)

Dividing (76) by (75), we obtain the expected rate of consumption growth

Et[ecst+1]
cs+1t

=
R

φ

"
1 +

γ + 1

2

δ2ks2,t+1
E[ ewst+1]2 − (γ + 1)(γ + 2)6

δ3ks3,t+1
E[ ewst+1]3

#
+O(δ4).
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