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Abstract

Evolutionary dynamics in evolutionary games as well as in evolution-
ary algorithms imply de—facto spiteful behavior of the players: In order to
‘survive’ the evolutionary process, players must perform better than their
opponents. This means they maximize relative rather than absolute payoffs.
The paper shows that there is a class of games resulting in different equilib-
ria if played by maximizers of absolute or of relative payoffs, respectively.

It is demonstrated that evolutionary equilibria (general ESS) can be found
by formally maximizing relative payoffs. This finding makes it much easier
to derive the long run behavior of evolutionary dynamics in these games.
The method is analytically deduced and demonstrated at the examples of
four relatively ‘large’ games: the Cournot oligopoly game, the public goods
game, the Tullock game of rent seeking and ‘tiae ( )
coordination game.

Zusammenfassung

Evolutionare Dynamiken sowohl in evolutionaren Spielen als auch in
Evolutionaren Algorithmen implizieren de—facto boshaftes Verhalten der
Spieler: Um den evolutionaren Prozel3 zu ,uberleben”, missen sich die Spie-
ler besser schlagen als inre Gegner. Das bedeutet, sie maximieren relative
anstelle von absoluten Auszahlungen. Das Papier zeigt, daf’ es eine Klasse
von Spielen gibt, die zu anderen Gleichgewichten flhrt, wenn sie von Maxi-
mierern absoluter beziehungsweise relativer Auszahlungen gespielt werden.
Es wird gezeigt, dal’ evolutionare Gleichgewichte (generelle ESS) durch
die formale Maximierung relativer Auszahlungen gefunden werden kon-
nen. Dieses Resultat macht es leichter, das langfristige Verhalten evolu-
tionarer Dynamiken in diesen Spielen vorherzusagen. Die Methode wird
analytisch hergeleitet und anhand der Beispiele von vier bekannten Spie-
len vorgefiihrt: dem Cournot Oligopol-Spiel, dem Offentlich—-Gut—Spiel,
dem Tullock—Spiel des Rent—Seeking und demi ( )
Koordinations—Spiel.

JEL Classifications: C73
Key Words: Evolutionary Games, Evolutionary Equilibrium, Spiteful Be-
havior, Relative Payoff



1 Introduction

The idea of evolution in games is central to many contributions from the last few
decades. Afirst step of formalizing an evolutionary equilibrium concept dates back
to ( ) and ( | ), introducing
the notion of an evolutionarily stable strategy (ESS). This idea implicitly relies on
a class of evolutionary dynamics, some members of which have been made more
explicit in form of various types of replicator dynamics (see, & j

).

In economics, evolutionary dynamics are often seen as metaphors for processes
of social learning by boundedly rational agentsa( | 1 ,

), 11999,

The central idea of all types of evolutionary dynamics is the Darwinian theory
of the ‘survival of the fittest’: In a population of players playing one strategy each,
over time, those strategies are adopted more frequently than others that are better
(in terms of payoff) than others. From a player’s point of view, this means that
she should use a strategy which performs better than the ones used by her oppo-
nents. If, for example, in a two—player game a player has the choice between a
strategy with a high absolute payoff, which yields the same payoff to the oppo-
nent, and a strategy with a lower payoff, the use of which decreases the opponent’s
payoff even more, under an evolutionary regime the player should use the second
strategy: Evolutionary dynamics imply maximization of relative rather than abso-
lute payoff. This behavior is spiteful behavior (and of course incompatible with
our traditional notion of the utility maximizing ‘homo oeconomicus’). Neverthe-
less, with evolutionary dynamics at work, this type of spiteful behavior does not
automatically mean that players have spiteful motives. It is simply the force of
evolution that leads to this type of ‘evolutionary spite’.

The impact of evolutionary spite is particularly strong in games with only a
finite number of players. It was ( , ) who first showed this result
and consequently extended the concept of an ESS to include games with finitely
many players: He introduced the concept of a general evolutionarily stable strategy
(general ESS). With this; laid the grounds for the more recent, elaborate
concepts of stability in dynamic games, particularly the ideas of a ‘long run stable
strategy’ ( | ) or a ‘stochastically stable equilibriumi¢ ,

).

Still, the ideas of evolutionary equilibria, although elaborate and clear, share

a common weakness: For many games, particularly in some of the ‘larger’ ones,

LAn alternative interpretation suggests that agents do hold spitefull motives, which means they
have ‘competitive preferences’. This interpretation, though, seems to be of only limited weight:
For simple decision problems, ( ) find the effect of such preferences
neglectible.



the computation of evolutionary equilibria is extremely complicated. This paper
aims to provide a solution to this problem. As will subsequently be shown, there
exists a class of games that allow for a ‘shortcut’ of finding evolutionary equilibria.
This is done by explicitly making use of the notion that spiteful behavior and the
maximization of relative payoff is the core concept of evolutionary dynamics.

The paper starts with a simple introductory example demonstrating the impact
of evolutionary spite and the finiteness of the number of players on the expected
outcome of a game. At this point, the idea of formally maximizing relative payoff
is introduced. The paper proceeds with a formal proof that a general ESS can
be found by maximization of relative payoff. After that, the implementation of
this method is demonstrated. The resulting equilibria are deduced and interpreted
for the general case as well as for four exemplary games: the Cournot game of
oligopolistic quantity choice, the Tullock rent seeking game, the public goods
game, and the cooperation game.

2 Relative Payoff and Evolutionary Spite

The core idea of evolutionary dynamics is to model processes similar to the process
of the ‘Darwinian evolution’ and its corresponding principle of the ‘survival of the
fittest’. What matters for a long run survival is to be ahead of the others. This does
not automatically mean being ‘good’ or successful in any other concern than pure
survival.

In the analysis of evolutionary games and evolutionary dynamics, the main
goal is to identify those strategies which in the long run will be played by most
of, if not even by all players of the game. Evolutionary dynamics thus describe a
process of changing frequencies of strategies played by a population of players.
In this, the growth rate of the population share of a strategy is determined by
its relative payoff: In order to spread throughout a population, a strategy has to
perform better than the average, i.e. the strategy’s payoff has to be higher than the
population mean payoff. Consequently, players in evolutionary games try to find
a strategy which leaves them better off than their opponents. (Note that this is
usuallynotthe primary goal of players in ‘normal’ games.) This might even mean
that a playedoes nouse a strategy which guarantees maxinalsolutepayoff, if
there is a strategy available which will increase the difference between the player’s
payoff and the population mean payoff, i.e. the playestative payoff. This type
of behavior is calledpiteful behavio( f } ): Players are willing
to hurt themselves, if by doing so they hurt their opponents even more.

There exists a class of games which are sensitive to spiteful behavior: Games
of this class will have a different outcome if agents maximize relative instead of



absolute payoff. This class of games will be callegpite sensitive gamés this

paper. The games in focus share a common important feature: They are games
with a finite number of players. For games similar to the ones analyzed here, but
with infinitely many players, the results derived in this paper will be shown to
coincide with the traditional findings, like e.g. for the Cournot game.

In order to provide a first, simple impression of the potential role of spiteful
behavior in spite sensitive games, consider the two—player—two—strategy—game
in normal form given in Tablé.(a) The players are assumed to be restricted to
playing pure strategies. Assumiag> b > ¢ > d, the profile(s;, s;) clearly
is the payoff dominant equilibrium of the game. Assuming common knowledge,
both players, A and B, can be expected to piayas long as their goal is the
maximization of absolute payoffs.

Player B Player B
S1 So S1 52
b 0,0 Lc—b), b—-c¢)
PlayerA ®1 | ®® © Plaver A o1 | ¥ 3(C=0), 3
s | bc dd y s2| S(b—¢), L(c=b) 0,0

(a) absolute payoffs (b) relative payoffs

Table 1: General Spite Game> b > ¢ > d

Moreover, due to the definition of ( ), the profile(sy, s1)
is the only evolutionarily stable equilibrium (ESS).

Payoffs in Tab.1(a) are absolute payoffs. In evolutionary games, though, it
is relative rather than absolute payoff which players try to maximize. In order to
illustrate the consequences of this change in scope, the game can be re—formulated
by explicitely stating relative payoffs in the normal form. Tallé) shows the
re—formulated normal form of the exemplary game.

The relative payoff to player k, playing, against player-£’s strategys;,
;. (si, s;), is simply the difference between playes payoff and the mean payoff
of all players in the game (i.e. playetsand—k in the example):

1
My (800 85) = M (i, 85) = 5 [me (i 85) + g (si, 85)] - (1)
This concept of relative payoff is the same as the one commonly used in con-

tinuous time replicator dynamics: ¢ . p. 66; y pp. 72—

2In the words of ( , p- 10): ‘There is an interesting class of games in which
every player gets a higher payoff from cooperating than from defecting, but where, paradoxically,
it is also true that [...] defectors receive higher payoffs than cooperators.

3



74). This concept of relative payoff will be linked to the concept of a general
evolutionarily stable strategys( I . ‘general ESSY later in this paper.

It is obvious that in relative payoffs, i.e. in the normal form of Taf), the
profile (s2, so) represents the dominant equilibrium. Thus, the exemplary game
is a game with ‘two faces’: For players maximizing absolute payoff, the profile
being played igs;, s1). On the other hand, players maximizing relative payoff,
i.e. behaving spitefully, will plays,, s;). Note, that even thougfs,, s,) is not
an equilibrium of the original game, in the re—formulated game it is.

It is an interesting question why the re—formulated games has its only equilib-
rium in (sz, so) althoughthe ESS of the original game (s, s1). The answer is
simple: The canonical definition of an ESS only holds for an infinitely large num-
ber of players. The simple game in focus can be used to illustrate the importance
of the number of players for the location of an evolutionary equilibrium.

Following the concept of a general ESS for finite populations introduced by

( ), it can be found that in an—player version of the spite game
(1(a) with ny of then players playing, the location of the general ESS depends
on the payoffsand on the ratio of the total number of players to the number of
players playing strategy; (or sq, respectively).

In any n—player version of the game from Tah. a strategys* constitutes a
globally stable general ESS, if in every possible population of strategies it per-
forms better than any other strategy. Inmamplayer version of the game, every
possible population of strategies can be completely characterized bye num-
ber of players playing;. Assuming players playing the field, i.e. every player
playing against everybody else, the average payoffs from playings,, respec-
tively, depend om,; andn:

w(sl{nm)) = = (n = at (n—m)e), @

7 (so|{n, n1}) = nil(nlb—l—(n—nl—l)d). (3)

Strategys; constitutes a general ESS, if in the population characterized by
andn,, it yields a higher payoff tham,, i.e. if 7 (s1]| {n, n1}) > 7 (s2| {n, n1}).
In the opposite case is a general ESS:

T(s1[{n, nm}) s 7 (s2[{n, m})
& (4)
b—d—a+c
n s n+a—d
= c—d !
3A textbook version of this concept can be found/at ( y pp. 31).
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For a more intuitive notion, consider the special case with4, b = 3, ¢ =
2, d = 1. Here, the spite game has a unique general ESS,ins,) as long as
n < 3 (and independent of,). For larger numbers of players, preciselyfor 3,
the unique general ESS is the same as the canonical ESS 5 ).

The general idea which should have become clear from this section is the fol-
lowing: There is a class of games with finitely many players, i.e. spite sensitive
games, whose results depend on the aim of players’ behavior: If players are ‘reg-
ular’ payoff maximizers, the results differ from the results arising from the same
game played by finitely many, spitefully behaving players.

3 Maximization of Relative Payoff and Evolutionary
Stability

Up to this point, the notion that maximization of relative payoffs should be the
central method in order to find evolutionarily stable strategies has been introduced
only intuitively. This section will provide a formal derivation of the finding that
maximization of relative payoffs leads to a general ESS.

Consider a game played by a populatiommoplayers. Players are restricted
to playing pure strategies only. Let the strategy space of each playgr-be
{51, S2, ...}; #(S) < 0.

As this paper will focus on one—population evolutionary games, i.e. symmetric
games only, the set atlevantdifferent strategy profile¥ can be written as a
set of vectorsv denoting the number of players playing each strategy¢ S:

v = (v(s1), v(s2), ...). Obviously,Y " _sv(s) = n. Further, letV,. denote the set
of profiles containing at least one player playiig V. := {v € V| v(s*) > 0}.

Let 7(s;) denote the payoff to a player playing strategyin a population

characterized by a profile.

Proposition 1 A globally stable general ESS can be computed by maximizing
relative payoff:

max 7' (s) = max |7(s) — 1 Zv(s') 7(s") (5)

s'eS

A sufficient (though not necessary) condition for a strategio constitute a
general ESS is the definition of a globally stable general ESS: In every population
of strategies containing at least one player playshgi.e. in everyv’ € V..,
strategys* yields a strictly higher payoff than any other strategy S \ s*:



Definition 1 (globally stable general ESS$ ) )) Strategys* € S is
called aglobally stable general evolutionarily stable strategy (general BES8)
any given strategy profile € V..

(s*)>n(s) V §eS\s (6)

Proof 1 As there arex — v(s*) players not using strategy, from (6) it follows
that

(n—o(s) m(s*) > Y w(s)m(s) (7)

s'eS\s*
Adding the payoff of all*—players to both sides of) results in
* 1 !/ /
n(s*) > = > u(s) (s (8)
s'eS

Rearranging ) yields the globally stable general ESS:

s* = argmax |7(s) — ! Zv(s/) 7(s") 9)

s s’'eS

Note that the expressioh >, < v(s') w(s') in (9) gives thepopulation mean
payoff. Consequently, the entire expression to be maximiz& is the relative
payoff to a player playing strategy =" (s).

This means that*, the general ESS, can be simply computed by maximizing

relative payoff as stated in the proposition.
O

This is the shortcut method to finding general ESS in spite sensitive games.
Apparently, there is an astonishingly large number of games this method can be
successfully applied to. Some possible applications and results of the method are
shown in the examples below.

4 Oligopolies: The Cournot Game

The Model One example of the class of spite sensitive games is the Cournot
game, which is a game of simultaneous quantity choice liiyms. Every firm

i produces a quantity; of a homogeneous good. The individual suppjlyis
assumed to be of non—negligible impact on aggregate supply and thus on the mar-
ket price:g—i # 0. Aggregate supply is the sum of the individual quantities firms
choose in the model. The market equilibrium ppaesults from the interaction of
aggregate supply and aggregate demand. Aggregate demand is given exogenously.
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The only assumption needed concerning aggregate demand is the assumption of a
downward sloping inverse demand function.

Absolute payoff of firmi, 7; (s;), is given by the difference between revenues
and costs,

The cost function is assumed to be the same for every firm and increasing in the
quantity. Marginal costs are assumed to be non—decreasing.

The ‘standard’ Cournot model is known to result in a unique symmetric Nash
equilibrium with each firm supplying a quantiy, implicitly given by

* * a
0 s 0 sk

The Game in Relative Payoffs The population mean payoff, is the average
absolute payoff of all firms,

n

_ 1
T= izlm (s;) - (12)
Consequently, relative payoff of fir) given by the difference between the
firm’s absolute payoff and the average payoff of the supply side, is

Assuming identical equilibrium behavior of all players, i.e. all players but

playeri, (13) becomes

w(s) = " L (si— 5.+ C(s) = C(s)] . (14)

Individual maximization of {4) with respect tos; yields

p = aSi + (S—i — Si)

Jp
aSi

. (15)

Note that (5) implicitly defines playet’s reaction function.
For completely symmetric equilibrium behavior, i€. = s V i, the term
(s_; — s;) vanishes, such that the evolutionarily optimal quantityjs implicitly
given by
_9C(sp)
b= dsx

(16)



This is exactly the ‘price equals marginal costs’ condition known as the optimum
condition for quantity choice in perfectly competitive markets. Consequetitly,
gives the Walrasian equilibrium quantity, antb) establishes a Walrasian equi-
librium.

The Walrasian equilibrium1@) is the only symmetric general ESS, i.e. the
only symmetric Nash equilibrium of the re-formulated Cournot game in relative
payoffs. Or, to make it sound a little more paradoxical: For relative payoffs, the
Walrasian equilibriums the only symmetric Cournot—Nash equilibrium.

Another feature of the Walrasian equilibrium should be stressed: In contrast to
the Cournot quantity, the Walrasian quantity is independent of the number of firms
in the game. Note, however, that for the number of firms approaching infinity,
the elasticity of inverse supplfs—p* as given in (1) tends to zero and thus the
regular Cournot quantity becomes the evolutionarily stable quantity, which is the
Walrasian oné:

lim s} = s (17)

n—oo

Related Literature The result given in this section is not new. It dates back to

( ) who showed that in a ‘Darwinian Model of Economic Natural Se-
lection’ in a Cournot game, the Walrasian strategy will be the only one to survive.
This result is fully in line with results by ( ), who finds the
Walrasian strategy to be the unique stochastically stable strategy in the Cournot
game. Although the general concept of stochastic stability in evolutionary games
( | ) is a concept of finding long run stable states of noisy evolutionary
dynamics, in spite sensitive games this concept results in strategies which can be
found by simply maximizing relative payoffs.

Experimental Results on Spiteful Behavior As certainly any form of spiteful
behavior, irrespective of the underlying motives, will lead to the result deduced
above, itis an interesting question to ask, if, apart from evolutionary spite, there is
evidence for different types spiteful behavior in the Cournot game. In fact, some
laboratory experiments with the Cournot game give some evidence that spiteful
behavior might possibly occur. In some early experiments with repeated Cournot
duopoly and triopoly games and anonymous players, ( )

find the resulting quantities to tend to be ‘more competitive’ than the Cournot—
Nash quantity. In a series of laboratory experimentsiby ( ), in their per-
sonal comments, some of the players even explicitely mentioned to have been
guided by spiteful motives-{ol, y p. 323), though himself comments

that most of the players tried to maximize absolute profits. Thus, there is little,

4This is a textbook result. See efy! (1999.



but more than no evidence of spiteful behavior induced by other than evolutionary
forces in the Cournot game.

Another line of thought might be enlightening: Although at first sight, spiteful
behavior in oligopoly games does not look too sensible to assume, there are certain
situations, e.g. firms trying to maximize market share instead of absolute profits,
which lead back to the idea of players’ trying to perform better than the others, i.e.
behaving spitefully.

5 Rent Seeking: The Tullock Game

The Model Another example of the effect of spiteful behavior is a class of rent
seeking games known as ‘Tullock games’. Starting with the seminal paperiby

( ), there are various papers on this topic. Surveys and in—depth analysis
can be found in ( ) and ( ). This paper
will focus the basic form of the model: A group ofplayers make an investment
x; in order to participate in a lottery. The prize to be worlis The higher a
player’s investment; the higher (ceteris paribus) is her chance of winning the
prize,p;:

pi = pi(x) with x={xy, zo, ..., 2.}, (18)

Opi(x)
o (19)

A commonly used form of the contest success functigr) is the one origi-
nally introduced by ( ):

pilX) == - (20)
Do T

In this function, the parametergives the main characteristic of the ‘rent seeking

technology’, its degree of homogeneity.

The expected payoff of playeresults as

SN S (21)
Zj:l x?

It is widely known that for the contest success functi@f) the unique sym-
metric pure Nash strategy (for absolute payoff3),is

. n—1
F =

T

oV (22)

n2



The interesting point of this finding is the fact that there is underdissipation of
the prizel” as long ap < "T‘l This means that in these cases players’ aggregate
investment: z7; falls short of the prizé/:

-1
nx, <V for p<nT. (23)

Whether there is underdissipation depends on the rent seeking technology,
which is characterized by the parameteand — which is important here — by
the number of players.

The Game in Relative Payoffs The re—formulation of the Tullock game into
relative payoffs is straightforward. Let again relative payoff be

T =T — W, (24)

I 1 o
T=- Wk:E<V—ZxZ->, (25)

P T
xl = f—%v_xi_KJrh (26)
PR n n

Maximization of relative payoff with respect tq and application of the sym-
metry conditionz; = x Vi yields

20-1(p — 1 1
pe (@ by 14 — 27)

(na’) n
o = Ly (28)

n

xx (28) gives the unique symmetric pure Nash strategy for relative payoffs, i.e.
characterizes the unique symmetric general ESS.

The interesting fact concerning this result follows from again considering the
question of over— or underdissipation. Considering the degree of dissipation of the
prizeV, it follows that

ne,<V & p<l. (29)

This means that for the given rent seeking technology, decreasing marginal
returns toz; will under all circumstances lead to underdissipation/of This

10



result holds irrespective and independent of the number of players involved in the
game.
Moreover, it becomes clear that the evolutionary optimal level of investment,
xy, is larger than the ‘regular’ one;, as long as the number of players is finite:
* n—1 * * *
x, = r, = x,<z;V n<oo. (30)

a n T

For the number of players approaching infinity, evolutionarily optimal and
regular optimal investment levels coincide:

lim 2z} = 2. (31)

n—oo

This notion is similar to the case of the Cournot game (see equdti®y for
which the regular Cournot—Nash quantity is known to approach the Walrasian one,
i.e. the evolutionarily stable strategy, for the number of firms approaching infinity.

Experimental Results on Spiteful Behavior In cases where agents compete for
a rent, the assumption of spiteful behavior might look quite sensible: What counts
in order to win the prize in the Tullock competition is to be better than the others.
Thus, apart from evolutionary forces, there could be other motives for spiteful
behavior in this game.

Nevertheless, results from laboratory experiments with the Tullock rent seek-
ing games give very little evidence for spiteful behavior. For the case of a linear

rent seeking technology (= 1), ( ) find their laboratory
players to significantly play the Nash strategy in absolute paydéffs.
( ) and ( ) find similar results with at least some evi-

dence that some players tend to invest more than the regular Nash amount, but still
clearly less than the evolutionarily optimal one. Thus, to the experimental results,
evolutionary forces can at best serve as a reason for deviations from the canonical
Nash solution, but not as a behavioral attractor towards a general ESS.

6 Public Goods Games

The Model For another example of the role of the spite effect in larger games,
consider the continuous public goods game. In order to provide a simple example,
a very basic variant of the model will be considered. The model in focus is a model
of quasilinear preferences, which helps to identify the optimal provision level of a
public good regardless of income effects. For more details on public goods games,
¢ ) is an excellent reference.
Consider a game of players. Each playeris endowed with a budget af,
which she can spend for an amount of a private good or for a contribution to the

11



public good,z;. Prices of both goods are assumed to be unity. The payaos$f
given as the player’s utility, which is quasilinear in the consumption of the private
good,w — z;, and the total amount of the public good providéd,

m=w—x;+ 0 InG, (32)

where the total amount of the public godd, is given as the sum of individual
contributions

Maximization of absolute payoff; with respect to the individual contribution
x; leads to a unique individual Nash strategy given by

T}, =max | — E zj; 0f . (34)
j=1
i

For symmetric behaviat; = = Vi this leads to a symmetric Nash strategy of

a=2 (35)

It is worth mentioning two important features of the variant model presented
here: First, the Nash contribution level is strictly positive:> 0. This is different
from many public goods games formulated throughout game theoretic literature.
For the purpose of this paper, however, it is a useful feature in that it helps to point
out the difference between a ‘regular’ optimal contribution level and an evolution-
arily optimal one. The second important feature of the model is the fact that the
optimal symmetric contribution leveBb) depends on the number of players in
the game: The more players take part in the game, the smaller is the symmetric
optimal contribution to the public good: Free riding increases with group size.

The Game in Relative Payoffs In order to find the evolutionarily optimal strat-
egy, i.e. the general ESS, the population mean payoff is computed as

1 « G
= E = InG— —. 36
T - 2- T =W+ G 1In " ( )
Consequently, relative payoff equals
1 & n—1
T=m—T=— § — i 37
M= T = 2. z; —z (37)
j#i



Maximization of 7} for plausible contributions of; > 0 results in a corner
solution. The optimal contribution in relative payoffs is

x* =27 =0. (38)

This means that in the public goods game presented here, there is a positive
symmetric Nash contribution off = (/n. This, however, is not the case for
the maximization of relative payoffs: The evolutionarily optimal contribution (the
symmetric general ESS) ig = 0. Moreover, this contribution is independent of
the number of players involved.

Note, that for the number of players approaching infinity, the optimal contri-
bution for absolute payoffs approaches the evolutionary one:

lim 2z} = 2. (39)
This result is similar to the outcomes derived for the Cournot game (equation
(17)) and the Tullock game (equatiofl)).

Related Literature The results presented in this section give a theoretical foun-
dation of the findings by ( ). con-
ducted a number of numerical simulations of replicator dynamics (i.e. evolutionary
dynamics) in a public goods game. Their most prominent result is the observation
that over time, the populations of players tended to converge to playing a common
contribution of zero. This long run result is found to be independent of the size
of the population, i.e. the number of players. Unfortunately for the purpose of
this paper, based their analysis on a model with the ‘regu-
lar’ symmetric equilibrium equal to the general ESS equal to zero. Thus, long
run results generated by maximization of absolute payoffs and those generated by
spiteful behavior coincide in their model.

Experimental Results on Spiteful Behavior Most of the experiment conducted

with public goods models share the same problem: The settings are such that the
individually optimal solution is a contribution of zero, the strategy of so called
‘complete free riding’. The common finding to public goods experiments (to be
more precise: to experiments with continuous public goods) is the fact that in the
long run, contributions decline, but that at the same time, complete free riding is
never achieved ( J ). This gives at least some evidence against strong
forces of spiteful behavior in public goods games.

13



7 Coordination Games: The Van Huyck/Battalio/Beil
Game

The Model Another example of the role of spiteful behavior is the model by
( ) ). The authors motivate the game by using a case

from labor economics: A group of players in a work group produce goods by
means of a Leontieff technology. Each playsrpayoff increases in the output
min; {s;} and decreases in personal effort

The game is am—player coordination game. Every player chooses from an
action space consisting of actions (effort levels) named 1, 2, 3, 4, 5, 6, and 7:
sieS={1,2, 3,4, 5,6, 7}. Each player's payoff is given by

m=amin{s;} —bs;, a>b>0. (40)
J

Table2 gives an example of the game for= 10 andb = 1. Note that there are

no entries below the main diagonal of the matrix, because the respective cases are
simply impossible: If, for example, playéchooses actiof, the minimum action

of all players cannot be larger than

min; {s;} min;z; {s;}

7 6 5 4 3 2 1 7 6 5 4 3 2 1

s; 7163 53 43 33 23 13 3 s; 7/0 -1 -2 -3 -4 -5 -6
6| — 54 44 34 24 14 4 6/1 0 -1 -2 -3 -4 -5

5| - - 45 35 25 15 5 5/2 1 0 -1 -2 -3 -4

4| - - — 36 26 16 6 4,3 2 1 0 -1 -2 -3

3| - - - =27 17 7 3/4 3 2 1 0 -1 -2

2| - - - - - 18 8 2|5 4 3 2 1 0 -1

1/ - - - - - -9 1/6 5 4 3 2 1 O

(a) Absolute Payoffs to Playeér (b) Relative Payoffs to Player

Table 2: Coordination Game.

The game has seven symmetric Nash equilibria in pure strategies: Every strat-
egy profile with all players playing the same strategy, é.e= (sx)", sy € S,
constitutes an equilibrium. It is easy to recognize that the equilibsium(7)" is
Pareto efficient and that= (1)" is the risk dominant equilibrium.

Empirical Findings The model has been the center of interest for a large number
experimental investigatiorss The common outcome of these experiments is the

5A survey can be found inchs(1999.
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finding that players tend to coordinate on the equilibrium with all players playing
strategy ‘1’ as the game is repeated. This is commonly applied to the fact that
this equilibrium represents the risk dominant one. It wasng ( ) who first
showed that at least in 2 by 2 coordination game the risk dominant equilibrium
coincides with the long run evolutionary one, i.e. with the equilibrium reached in
the long run by evolutionary processes with a minimal degree of noise. In this
case, the long run evolutionary equilibrium is the same as the general ESS, which
will be computed in the following.

The Game in Relative Payoffs The model in focus is different from the other
models introduced above: The strategy space is finite, the payoff function is non
differentiable. Consequently, re—formulating this game into a game of relative
payoff requires some consideration about the appropriate concept of relative pay-
off in this game. For each playérthe only determinant of her payoff apart from
her own strategy is the member of the population with the smallest strategy apart
from playeri’s one,min;; {s;}. This player is the one with the highest payoff in
the population without player max;, ;. {7;}. Thus, an appropriate measure of
relative payoff is
™ = m — max {m;} . (41)
Ji g

With the help of {1), Table2 can be re—written into relative payoffs, resulting
in Table2(b). From Table2(b), it is easy to recognize, that in relative payoffs, i.e.
under the regime of spiteful behavior, the only remaining equilibrium is the risk
dominant equilibriums = (1)".

Experimental Results on Spiteful Behavior Although the behavior leading to

a convergence of players’ strategies to thiestrategy is spiteful behavior in the
meaning of the term used in this paper, in this game players need not have spite-
ful motives in order to behave spitefully: If in each round of the game players
are confronted with the respective column of the payoff tatjte, maximization

of absolutepayoffs (in this row) will implicitly lead to maximization of relative
payoffs in the game as a whole. It is helpful to consider the following example:
Let us assume players are completely myopic and hold no memory of previous
periods. Then, let us assume the minimum strategy played in perotl was

3. If in periodt players get to see th-column of table2(a) only, even players
planning to maximizebsolutepayoff will play 3 (or even less) in the next period.
Thus, in this game, there is room for spiteful behavior which is solely induced by
the structure of the information available to the players.
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8 Summary

Spiteful behavior is the core ingredient of evolutionary dynamics: Players max-
imize relative rather than absolute payoffs. This notion is the basis of a method
for finding general evolutionarily stable strategies in a class of games with finitely
many players as discussed in this paper. The method simply consists of computing
the strategy that maximizes relative payoff. The class of games this method can be
applied to includes the Cournot game, the public goods game, the Tullock game of
rent seeking, and the coordination game. For all of these games

it can be shown that for finitely many players the evolutionarily stable equilibrium

is independent of the number of players and differs from the ‘regular’ equilibrium,
although these equilibria coincide if the number of players approaches infinity.
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