Hardwood Biofuels Webinar Series

Next Wednesday, December 11, from 10-11 a.m. PST, Advanced Hardwood Biofuels Northwest (AHB) is hosting the second webinar in an ongoing series about aspects of the biofuels industry and current research. The webinar, “Assessing the economic and environmental impacts of poplar-based biofuel production,” will feature three presenters from the School of Environmental and Forest Sciences: Professor Rick Gustafson along with graduate students Erik Budsberg and Jordan Crawford.

The webinar is free, and online registration is now open!

Advanced Hardwood Biofuels NorthwestWho Should Attend

Extension educators, potential landowners/growers, agriculture and natural resource professionals, poplar and bioenergy researchers, environmental professionals, government officials and other biomass producers.

What’s Covered? 

•           Economic assessment of the bioconversion process based on ASPEN model outputs
•           Profitability analysis, including options to produce hydrogen
•           Life-cycle inventory of resources and energy inputs and emissions
•           Life-cycle analysis in consideration of global warming and fossil fuel and water use

Summary
A technical feasibility and economic performance analysis examines the production of biofuels using the ZeaChem conversion technology with options for producing the hydrogen that is required in the process. Using outputs from an ASPEN simulation model of the bioconversion process for the economic assessment, we will present operating and capital cost results as well as an evaluation of economies of scale. Profitability is presented in terms of the cash cost to produce the fuel and the selling price required to generate a reasonable return on investment.

Life-cycle assessments (LCA) examine all the resource demands and outputs to the environment associated with the production and use of a product. Starting from establishment of the bioenergy farm to combustion of the fuel product, we inventory the resources and energy acquired from the environment and all emissions that go back into the environment. The life-cycle inventories are then translated into environmental impacts using standard LCA protocols. In this LCA we examine life-cycle global warming potential, fossil fuel usage and water usage. The life-cycle impacts of hydrogen production options are examined in detail to complement the techno/economic analysis research in this area.

How to Access the Webinar
After you’ve registered, you should start connecting 10 minutes prior to the start time. You’ll need a computer with internet access and speakers. At the meeting time, you can enter the meeting online or paste  this link, http://breeze.wsu.edu/growinggreen/, into your internet browser. The link will open to a login page. “Enter as guest” with your name and business or institution, and click “Enter Room.” (If you have any difficulty registering online, contact Nora Haider at nora.haider@wsu.edu.)

Sponsored by the  University of Washington and Washington State University, this webinar is part of the Hardwood Biofuels Webinar Series. You can check out archived presentations, and the next installment is scheduled for February 5, 2014, from 9:30 to 11:30 a.m. PST (details to come).

About AHB
Led by the School of Environmental and Forest Sciences, AHB is a consortium of university and industry partners in the Pacific Northwest working to support a sustainable hardwood biofuels industry for growing and converting hardwoods, such as hybrid poplars, into liquid biofuels. If you’d like to join the AHB mailing list and receive the latest news and event information, sign up now!

SEFS Seminar Series: Week 6 Preview

Biofuels Slide

Lignocellulose, or dry plant matter, is the most abundantly available raw material for the production of biofuels. But how can we improve the production of fuels and chemicals from lignocellulosic biomass? And how do we deal with heterogeneous biomass?

Join Professor Renata Bura this Wednesday, February 13, as she tackles these questions in Week 6 of the SEFS Seminar Series!

The seminars, held in Anderson 223 on Wednesdays from 4 to 5 p.m., are open to all faculty, staff and students. Check out the rest of the seminar schedule for the Winter Quarter, and join us each week for a reception in the Forest Room from 5 to 6:30 p.m.

Additional Background:
Professor Bura is part of the Biofuels and Bioproducts Laboratory (BBL), which includes Shannon Ewanick, Brian Marquardt, Rick Gustafson, Erik Budsberg and Jordan Crawford. Here’s what she says about the lab’s work and her seminar presentation:

Improvements in individual processes (pretreatment, saccharification and fermentation) have been ongoing, but few researchers have considered the effect that the incoming heterogeneous raw biomass can have on the process. Even within the same species, biomass is physically and chemically very heterogeneous due to the agronomy practices, water and nutrients management, weed control, harvest and storage, seasonal changes, and age. Rather than designing a biorefinery around an ideal source of a given feedstock, it is preferable to understand how we can process heterogeneous feedstock. How can we alter the heterogeneous biomass to provide the maximum yield of hydrolysable and fermentable sugars from whatever is available?

In this presentation we discuss how by preconditioning of biomass, online reaction control, techno-economic and life cycle analysis we can deal with heterogeneous biomass such as switchgrass, sugarcane bagasse and hybrid poplar. We will present that by improving the uniformity of heterogeneous biomass in terms of moisture content, we could improve sugar yields by 28 percent. Another means of dealing with heterogeneous biomass is to improve overall process control by increasing the level of data collection. We will show how Raman spectroscopy could provide early detection of feedstock heterogeneity, leading to increased real-time awareness. Finally, when processing heterogeneous biomass, overall results of the techno-economic analysis have to be incorporated into life cycle assessment work to estimate life cycle greenhouse gas emissions from mixed lignocellulosics.

Join us on tomorrow to learn more!

BBL Graphic © Renata Bura.