RAPID Response: Brian Harvey to Study Re-Burned Yellowstone Forests

by Karl Wirsing/SEFS

In 1988, wildfires burned about a third of Yellowstone National Park’s forests. Most of those wooded areas hadn’t burned in 100 to 300 years, largely within the average burn cycle for those forests, and they bounced back really well from the disturbance. But what happens when the next fire comes far sooner than the average? With shorter-interval burns and changing climate conditions, will the younger trees and forest be as resilient to a severe fire? Along with collaborators at the University of Wisconsin, Professor Brian Harvey will try to answer those questions, among others, this summer as part of a new National Science Foundation grant for Rapid Response Research (RAPID).

A lodgepole forest in Yellowstone that naturally reseeded after the 1988 fires.

RAPID grants are a special category for funding research that needs to be carried out immediately. They provide a one-year pulse of money for time-critical projects that can’t wait for the usual funding cycle. In this case, more than 10 thousand hectares of forest in Yellowstone did in fact re-burn last summer—only 28 years after the 1988 fires—so this summer will be the first and best opportunity to observe how these forests respond to the short-interval disturbance. “This grant provides an awesome opportunity to get there as soon as the forest is likely to show signs of resilience, or if it is not going to be as resilient,” says Brian. “This is the key time and place to be testing these questions.”

Natural disturbances, of course, are integral to forests worldwide, but conifer forests in western North America are facing warmer temperatures and larger, more severe wildfires than at any time in recorded history. Changing climates—with hotter, drier summers—are increasing disturbance frequency in some areas, and disrupting long-established patterns of forest regrowth and succession. In Yellowstone’s forests, the dominant species is lodgepole pine, which has closed, serotinous cones that release their seeds only in response to fire. Nearly all of the seedlings then establish one year after a fire; historically, they’ve then had many decades to grow and start producing cones (and seeds) of their own before the next burn. But instead of a fire interval of 150 to 300 years, these Yellowstone forests could start seeing new fires within a matter of a few decades. “Some systems are used short-interval fires,” says Brian. “But throughout much of Yellowstone, that’s a novel thing.”

The ecological consequences of these changing fire regimes are unclear and could be profound in the next century. The results of this study, in turn, could be widely relevant for understanding abrupt changes in forest ecosystems across the globe.

“This project is a unique opportunity to test what’s going on at the leading edge of climate change and changing fire regimes in these areas,” says Brian. “We’re really seeing the start of conditions in Yellowstone that may be heading outside the range we’ve seen in the paleo-ecological record. No matter what we find, it’s going to be extremely exciting, and very important. On one hand, these ecosystems can always surprise us in their resilience. On the other hand, as many times as we’ve been surprised by their resilience, we may be heading toward a state where things could be changing pretty rapidly.”

Similar to the sites Brian will be studying this summer, this lodgepole pine forest—originally burned in the 1988 fire—was re-burned in 2012 (with this photo taken in 2015).

Starting this July, Brian will head out to the burned sites in Yellowstone with his incoming master’s student, Saba Saberi, along with an undergrad field intern. They will meet up with a team from the University of Wisconsin, and together they’ll be investigating and measuring a number of factors for how the shortened fire interval is affecting the forest, including burn severity, post-fire tree seedling establishment and carbon storage.

A major component of this research, which Brian’s master’s student will be leading, involves studying how well satellites can measure burn severity in forests that are still very young since the last severe fire. “We have well-developed satellite indices to measure burn severity in forests, but most of these indices have really only been tested on older forests with much greater live biomass,” says Brian. “However, when fire burns through a dense stand of 25-year-old trees, we don’t know how accurately the satellite can detect burn severity. This is a big part of what Saba will be testing in her master’s research at SEFS. “Calibrating these satellite indices will allow us to investigate spatial patterns of burn severity over much broader scales, and gain insight into how fire regimes may be changing right before our eyes.”

The RAPID grant provides a total of $200,000 in funding, with just under $60,000 coming to Brian for his role in the project, and the rest supporting his collaborators at the University of Wisconsin.

Also joining the crew in the field will be a freelance writer from the New York Times to spend a weekend a write a store about the project. The Discovery Channel will be sending a team, as well, as part of documentary about the research on climate change and fire. Brian and his collaborators plan to produce a series of mini-documentaries (5-8 minutes in length), in English and Spanish, to explain effects of increased fire activity and climate warming on western forests to a wide audience.

It’s going to be a packed July for Brian and his partners, and we look forward to hearing reports from the field!

Photos © Brian Harvey.

Undergrad Spotlight: Julie Hower

Julie Hower, a senior Environmental Science and Resource Management (ESRM) major, split her childhood between the two coasts: first out west in the Los Angeles area, and then back east near Tampa, Fla., for her high school years. By the time she started looking at colleges, though, she felt the call of the West once again.

“Because I grew up in LA,” she says, “my dad would take me to Yosemite and Sequoia, so I really missed the West Coast.”

She considered a number of schools, including a few in California, but a University of Washington campus tour in 2008 sealed it for her. “It felt like a great fit,” she says.

Julie Hower

“Each national park is different, but Yellowstone is something else,” says Hower, who has also worked on summer projects at Mount Rainier and Olympic National Parks.

Hower arrived on campus originally interested in studying marine biology and fisheries, but later in her freshman year she attended a seminar with Professor Aaron Wirsing involving his research with tiger sharks and dugongs, and wolves and elk. She loved the concept of predator-prey ecology and quickly shifted her focus to the School of Environmental and Forest Sciences (SEFS). “I knew I wanted to be a wildlife major,” she says.

In the next few years, she took advantage of a wide range of field courses, including Spring Comes to the Cascades (ESRM 401) with Professor Tom Hinckley, and Wildlife Research Techniques (ESRM 351) with Professor Steve West. Then she took “Wildlife Conservation in Northwest Ecosystems” (ESRM 459), which begins during spring break with an intensive week in Yellowstone National Park. Led by Professors John Marzluff, Monika Moskal and Wirsing, the course focuses on a range of wildlife and management issues in the park, including corvid distribution and wolf predation.

The experience really resonated with Hower, and this past winter she signed up to take part in a long-running study of the wolves in Yellowstone as part of the Yellowstone Wolf Project.

Back in 1995 and 1996, after decades of wolves being completely absent from the ecosystem, 31 were reintroduced to the park. Since then, the Yellowstone Park Foundation has worked with the National Park Service (NPS) to research and closely monitor the wolves, including carrying out two 30-day winter surveys every year—one at the start of the season, and one at the end. Technicians receive a small stipend and free housing, and they operate as volunteers for the NPS.

Julie Hower

Hower sizes up a wolf track in Yellowstone.

This year marked the 19th winter of observations. From the beginning, one of the project leaders has been Rick McIntyre, a biological technician for the Yellowstone Wolf Project who’s been involved with monitoring the park’s wolves since 1996. McIntyre is famous for the countless hours he’s invested in these observations, at one point logging more than 3,000 consecutive days heading out to look for wolves. The survey crews who work with him don’t quite have to match that standard, but they don’t fall too far off that pace.

Each volunteer is assigned to follow one specific pack. Hower and the other members of her crew—which included two graduate students, one from South Dakota and another from Wisconsin—were charged with tracking the seven wolves of the Junction Butte Pack.

For 30 days in March, their weekly schedule involved six days in the field and one day off. Using radio telemetry, they’d drive through their pack’s territory along the main park road and try to locate the wolves, and then hike out for a closer view when they zeroed in on the pack. Their job was to record a number of behaviors, including monitoring interactions with elk, bison and bears, as well as predator-prey encounters: the chase and the attack, noting which wolves did what, whether it was a pup that initiated or the alpha took the lead. They also performed field necropsies of prey to determine the age, sex and condition of the individual.

Julie Hower

Her crew once spotted a grizzly and a wolf in the same area, and Hower says they were jumping up and down with excitement—albeit from a safe distance.

They’d routinely put in 13-hour days, topped off by some paperwork at the end of it. “It’s not a glamorous job,” says Hower, “and the days get very long and tiring. But it’s an awesome and rewarding experience seeing these amazing animals in the wild.”

Of course, finding the wolves in the first place was no easy task. “A lot of people have this ideal that you’re going to see wolves every day,” she says. Yet you’re talking about tracking 80 or so wolves—or actually seven, in the case of this one pack—ranging through Yellowstone’s nearly 3,500 square miles.

Numbers aren’t the only challenge, either. During Hower’s first week in the park, the temperature was about -22 degrees, and the wind was howling with 50-60 mph gusts. Toting their equipment, her crew spent hours hiking to the top of a ridge in pursuit of the wolves, and they didn’t get their first glimpse until the third day. They set up their tripod and spotting scopes, hands shaking in the bitter cold, bracing against the wind and hoping they weren’t blown off the mountain—but they had finally located the pack. “It was a grand introduction,” she says.

From then on, Hower never got tired of seeing the wolves. The excitement was fresh each day, because during the undisturbed quiet of a Yellowstone winter, you never know what’s lurking around the next bend.

“On my very last day, I was getting ready to leave the park and drive back to Seattle, and I decided to reminisce with a drive out to the Lamar Valley,” she says. “Right as I made the turn out of the Tower Ranger Station, a wolf crosses in front of my car about 10 feet ahead of me.”

Julie Hower

After a winter of surveying the wolves from a distance, Hower got to see 889F saunter across the road right in front her on her last day in the park.

It was a female, 889F, that used to be part of the Junction Butte Pack but had separated in February to go with a lone male, 755M. “I was just in shock and laughing,” says Hower. “I couldn’t believe it was happening as I was ready to leave the park.”

That was a fine send-off after five incredible weeks in the park, and she’s now back on campus wrapping up her final quarter before graduation this June. Graduate school might be down the road, yet for now she wants more field experience. In fact, she just accepted a position as a Wildlife Biological Sciences Technician with Helena National Forest, where she’ll be surveying wolverines, Canada lynx and snowshoe hares. She’ll be living in Lincoln, Mont., and can’t wait to get started shortly after graduation.

Given her many field courses and hands-on research training, as well as field tech jobs and internships at Mount Rainier and Olympic National Park, Hower has put herself in an excellent position to thrive as a wildlife researcher—and she’s already well on her way!

“I’m so happy I came up here,” she says. “It’s one of the best decisions I ever made.”

Photos © Julie Hower.

Julie Hower

SEFS Students Descend on Yellowstone


Clear blue skies greeted the research crew on a morning snowshoe hike to a wolf kill site in the Lamar Valley.

Before the crack of dawn this past Saturday morning, March 23, a caravan set off on the long, long drive to Gardiner, Mont., at the edge of Yellowstone National Park. On board were 15 students and three faculty members from the School of Environmental and Forest Sciences (SEFS), all heading out to spend roughly a week of field study in the northern Rockies as part of a spring course, “ESRM 459: Wildlife Conservation in Northwest Ecosystems.”

Led by SEFS Professors John Marzluff, Monika Moskal and Aaron Wirsing, the group will be using the Northern Range of Yellowstone National Park, between Gardiner and Cooke City, as a staging area to explore patterns of corvid, and especially raven, distribution; elk anti-predator behavior (vigilance); and wolf predation. The class also addresses regional management issues, including wolves and bison leaving the park.

It’s a glorious time to be trekking through the Yellowstone backcountry. The group has special access to remote research areas, tourists are few and far between, scores of bison are out hoofing through the snow, and students occasionally catch glimpses of wolves, grizzlies and other wilderness gems.


Professor John Marzluff helps orient students during their first full day in the park.

Of course, it’s a working research visit, and students spend long days trudging through the park—often at the mercy of the elements, which at this time of year can be ornery, if not downright savage. Then, after they return to campus on March 30, they begin working on group projects based on data collected. They will present their findings to the public at the end of spring quarter.

But even in the worst weather conditions, when even your expedition thermals can feel threadbare and drafty, how could you say no to this kind of hands-on experience in the wilds of Yellowstone?

Photos of Yellowstone trip © Monika Moskal/SEFS.