Chinook Worksheet Page 1 of 4

HS Values Group: Chinook Worksheet

1.	The current fish bearing network is defined by a gradient cutoff of 16%. Is
	this appropriate for Chinook in the OWC study area?

- a. If not, please suggest a more appropriate value:
- b. Suggest other cutoffs appropriate to define the Chinook fish bearing network?
- 2. Are the default HS curves provided in the Chinook HS Curve Reference Sheet appropriate for the 4 selected outer coastal rivers?

Channel Gradient Yes No	Your confidence in this answer: High MediumLow
Floodplain Width/ Channel Width Yes	No Your confidence: High MediumLow
Mean Annual Flow (CMS) Yes No	Your confidence: High MediumLow

<u>Please indicate revisions you recommend on the Chinook HS Curve Reference Sheet.</u>

3. What additional intrinsic parameters would <u>significantly</u> improve the Chinook IP model?

Lists of intrinsic variables are provided below. Circle key variables and suggest information sources to build HS curves, if possible.

4.	How would you define the range of scores in the high, medium and low IP bins for Chinook? Maximum suitability =1 and Lowest suitability = 0
	High=
	Medium=
	Low=
5.	Are separate sub-regional models within the OWC Study area needed for Chinook? The current model uses hydrologic properties that are divided into regression regions according to Kresch, 1998 (see wall maps)
	Your confidence in this answer: High MediumLow

Chinook HS Curve Reference Sheet

Channel Gradient						
Suitability	1	0	0	0	0	0
Gradient	0	0.035	0.08	0.12	0.16	0.2
Weighting Scheme	1					
Floodplain Width / C	Width					
Suitability	0.5	0.5	1	1	1	1
Constraint Index	0	5.06	8.86	500	500	500
Weighting Scheme	1					
Mean Annual Flow (CMS)						
Suitability	0	0	1	1	1	1
Flow	0	0.5663	2.1238	1000	1000	1000
Weighting Scheme	1					

Chinook Worksheet Page 4 of 4

Lists of Intrinsic Variables

Table 2 from 2008 PNAMP. Examples of some hydrogeomorphic and climatic variables related to habitat quality that can be obtained from a modeled stream network and digital elevation models (DEM) (Sheer et al., in prep.).

Variable	Source
Channel gradient 1,2	From DEM ^{3,4}
Mean annual flow ^{1,2}	Regression of gauge data to drainage area (DEM) and mean annual precipitation $^{\rm 3}$
Channel constraint ^{1,2}	Valley-width index (ratio of valley to channel width, with channel width based on regional regression to mean annual flow) correlated with field inventoried constraint categories. Valley width estimated from DEM3,6
Mean Summer (August) Low Air Temperature ¹	Parameter-elevation Regressions on Independent Slopes Model (PRISM)1
Valley-width transitions	
(e.g., from confined to unconfined channels) ⁵	From DEM5
Tributary confluences ⁵	From DEM5
2	

¹ Agrawal et al. (2005); ² Burnett et al. (2003, 2007); ³ Clarke et al. (2008) ⁴ Davies et al. (2007) ⁵ Benda et al. (2004, 2007); ⁶ Hall et al. (2007).

Table B9 from 2008 PNAMP. Intrinsic variables suggested by workshop participants. (In addition to table 2 above.)

- Temperature (Agrawal et al., 2005; Cooney and Holzer, 2007)
- Erosion, sediment deposition potential (Benda et al., 2007; Cooney and Holzer, 2007)
- Downstream variation in valley confinement (Benda et al., 2007)
- Downstream variations in channel gradient (e.g., upstream of a fan or earthflow, Benda et al., 2007)
- Tributary confluences (Benda et al., 2007)
- Basin soils, geology (Cooney and Holzer, 2007)
- Patch size, abundance, separation distance between high IP zones (Benda et al., 2007)
- · Climatic attributes, such as mean annual snow fall, or 100-year, 24-hour storm intensity
- · Hydrologic attributes, such as 100-year peak discharge, mean annual low flow, skew of the flow duration curve
- Proportion of watershed in wetlands
- Elevation
- Downstream variation in confinement
- Tributary confluences
- Patches of habitat surrounding stream reach
- Distance from the ocean
- Measuring connectivity of high quality patches