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Abstract
Analysis of protein mutants is an effective means to understand their function. Protein display is
an approach that allows large numbers of mutants of a protein to be selected based on their
activity, but only a handful with maximal activity have been traditionally identified for subsequent
functional analysis. However, the recent application of high-throughput DNA sequencing to
protein display and selection has enabled simultaneous assessment of the function of hundreds of
thousands of mutants that span the activity range from high to low. Such deep mutational scanning
approaches are rapid and inexpensive, with the potential for broad utility. Here, we discuss the
emergence of deep mutational scanning, the challenges associated with its use, and some of its
exciting applications.

Mutagenesis to understand protein function
Understanding the functional consequences of variation in protein coding sequence is of
utmost importance because protein sequence dictates function, and variation in sequence
often underlies pathogenesis. For example, non-synonymous mutations in protein coding
sequences account for ~57% of the mutations known to be involved in human disease [1].
For many diseases, protein variation can underlie differential prognoses [2]. Genomic
technologies, which are rapidly increasing in scale, are identifying large numbers of
candidate mutations for a wide variety of diseases [3]. For the most common of these
candidate mutations, genomic methods will likely succeed in uncovering functional
significance. However, for the large majority of mutations, direct measurement will likely be
required to determine their functional consequence. Furthermore, the field of protein
engineering is increasingly important both for drug development and for many
biotechnological applications. Effective protein engineering requires an understanding of
how sequence impacts function. Thus, from both a medical and an engineering perspective,
there is an acute need for better insight into how a protein’s sequence relates to its function.

Mutagenesis of protein-coding sequences is a powerful way to characterize protein
sequence-function relationships. Coupled to functional assays, mutagenesis has enabled the
targeted and systematic probing of amino acid substitutions for a wide range of protein
activities [4–6]. For example, the alanine scan involves the individual replacement of a set
of residues with alanine to assess the importance of each of these residues for function [7].
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Attempts to more fully characterize the sequence-function relationships of a protein by
evaluating large numbers of mutations have been hampered by the relatively low throughput
of traditional biochemical methods, which necessitate production and purification of
individual mutants. Higher-throughput methods such as protein arrays are useful, but at
present are limited to hundreds or a few thousand proteins [8–10]. Protein display
technologies facilitate the creation and selection for function of large libraries of protein
mutants (Box 1), and have traditionally been used to select a few highly functional variants
from heavily mutagenized libraries. Protein display has also been adapted to systematically
interrogate protein function [11]. For example, display of a library of human growth
hormone alanine mutants facilitated a shotgun alanine scan in which all alanine mutants
were evaluated in parallel [12]. Until recently, such approaches have been limited to
hundreds of mutants by the requirement for DNA sequencing [13].

Box 1

Protein display
Protein display refers to a diverse collection of methods that present very large numbers
(106–1012) of unique protein sequences in a format that preserves a physical link between
each protein and its encoding nucleic acid sequence [13]. An initial library of proteins, or
variants of a single protein, is used in a selection for a function of interest (e.g. for
binding to a target), often with repeated rounds. After selection is completed, DNA
sequencing of the selected library clones reveals the optimized sequences. Thus, protein
display has traditionally been used to select a small number of highly optimized
sequences from a diverse library. Many different protein display methods have been
developed, each with its own strengths and weaknesses.

In phage display, the proteins are displayed as in-frame fusions to a phage coat protein
[62]. The DNA encoding the displayed protein resides in the viral genome, packaged
within the phage. Phage display systems can be used to create and evaluate libraries of up
to 1012 clones. The commonly used M13 phage display system requires displayed
proteins to be secreted from the bacteria used to produce the phage, restricting its use to
short peptides [13]. The T7 phage system enables intracellular phage assembly,
facilitating the display of large, multimeric proteins [63].

Bacterial [64] and yeast display [65] are conceptually similar to phage display, with the
protein of interest displayed on the surface of the cell and the encoding DNA inside.
These methods are more limited in the number of clones that can be displayed (~1010 for
bacteria, ~106 for yeast). However, the displayed protein folds intracellularly and, in the
case of yeast display, can be post-translationally modified. Additionally, these methods
enable the use of fluorescence activated cell sorting (FACS) for selection. FACS
facilitates quantitative screening and reduces background [13]. A cell-free alternative,
ribosome display, employs in vitro transcription and translation of a library of mRNAs to
generate polysomes displaying proteins of interest [66]. Selection is followed by reverse
transcription of the attached mRNA molecules. Ribosome display has the central
advantage of not requiring a cloning step, thereby generating very large libraries of
displayed proteins (>1012).

Over the past several years, a series of DNA sequencing technologies, collectively termed
high-throughput sequencing (HTS), have been developed. These technologies acquire
sequence information from millions of DNA templates in parallel (Box 2). This enormous
leap in scale has made practical the use of DNA sequences as quantitative read-outs of
molecular phenomena. For example, gene expression, protein-nucleic acid interactions,
chromatin accessibility, chromosome conformations, translation rates, RNA modifications,
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and other assays have all been adapted to make use of counting DNA sequence reads as
output [3, 14–23].

Box 2

High-throughput sequencing technologies
High-throughput DNA sequencing (HTS) delivers gigabases of sequencing data at a low
cost per base [39]. To achieve this feat, HTS generates millions of short sequences (50–
500 bp) from solid-phase arrays of DNA molecules simultaneously. Currently available
platforms include Illumina, Roche/454, ABI/SOLiD, Polonator, Helicos, and Pacific
Biosciences. Sequencing proceeds by synthesis, where base incorporations are monitored
by fluorescence, or in the case of pyrosequencing, by luminance [39]. The sample
preparation, surface chemistry, template arraying, sequencing biochemistry, signal
chemistry, ploidy (single molecule versus multiple molecule), imaging techniques, scale
of miniaturization, and signal processing algorithms differ among platforms. These
differences result in a diverse range of read-lengths, error rates, and read numbers
produced per instrument run amongst these platforms [39].

Sequencing by synthesis strategies can be grouped into cyclic reversible termination
(CRT), single-nucleotide addition (SNA), sequencing by ligation (SBL), and real-time
sequencing approaches [39]. The most common of these approaches, CRT, underlies the
Illumina platform and employs fluorescent reversible terminators to monitor nucleotide
incorporation, producing large numbers of short reads (~100 bp). In CRT, synthesis
proceeds in cycles of single-base extension with a fluorescent nucleotide terminator,
imaging, cleavage of the terminator and fluorescent moiety, and washes. In sequencing
by ligation (SBL), DNA ligases mediate extension of the nascent chain with fluorescent
degenerate oligonucleotide sequences of fixed length flanking query positions [67]. The
SBL methodology underlies the ABI SOLiD and Polonator platforms, which produce
large numbers of short reads (26–50 bp).

Single nucleotide addition (SNA) approaches avoid modified bases; instead they directly
monitor nucleotide incorporation. For example, in pyrosequencing, bioluminescence is
used to measure the release of inorganic pyrophosphate (PPi), which is released upon
nucleotide addition [68]. This methodology, commercialized by Roche/454, allows
longer reads (~400 bp) than most other systems but produces lower numbers of reads per
run [69].

Recently, significant progress has been demonstrated in the real-time analysis of DNA
sequences polymerized by single polymerases [47]. In the Pacific Biosciences platform,
this approach enables rapid acquisition and expanded read-lengths (~900 bp), but suffers
from comparatively high error rates [47].

The data sets produced by HTS can be up to 50 Gb per instrument run, imposing
significant computational challenges. These challenges range from the infrastructure
requirements to maintain and process such volumes of data to the analysis of the
information content itself. For an excellent review of current sequencing technologies,
see Metzker et al. [39].

Recently, HTS has been coupled to protein display, making it possible to track the fitness of
massive (~105) collections of mutants of a protein (variants) during selection for function
(Figure 1). HTS quantifies the abundance of each variant in the input diversity library as
well as in libraries prepared at various points during the selection process. The selection
strength applied can be carefully chosen to avoid collapsing the diversity of the library
excessively. Variants bearing beneficial mutations are selected for and consequently become
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enriched after selection, whereas variants bearing deleterious mutations become depleted.
We call this approach “deep mutational scanning.” Deep mutational scanning is of general
utility, and can be applied to examine sequence-function relationships in proteins [24],
RNAs [25], promoters [26], and other DNA-encoded elements [27]. In this review, we
discuss the development of deep mutational scanning to analyze very large numbers of
protein variants, and we subsequently consider some of the challenges and opportunities that
lie ahead.

High throughput sequencing and protein display
Early studies established that HTS could be used to measure the frequency of sequences in
protein display libraries [28–31]. For example, Di Niro and colleagues used phage display in
combination with HTS to examine the binding to transglutaminase 2 of phage-encoded
proteins derived from mRNA from different tissues [29]. Proteins of interest were identified
by their abundance in the library after selection; 9 of 10 highly abundant clones were
validated as strong transglutaminase 2 binders using an ELISA assay. Dias-Neto and
colleagues focused on establishing the viability of using HTS to exhaustively sample a
phage library consisting of protein fragments derived from surgical biopsies [28]. They
sequenced 3840 individual phage clones using Sanger sequencing and compared these to the
319,361 sequences they obtained by HTS using the Roche/454 platform. They found that
HTS did not alter GC content, codon usage or amino acid frequencies reported for the
encoded protein fragments.

Several other examples involved one of the most prominent uses of phage display:
identifying high-affinity antibodies. Ge and coworkers developed an amplification-free
method for constructing and refining synthetic immunoglobulin libraries using DNA
oligonucleotide assembly followed by selection for in frame inserts [31]. To demonstrate the
utility of their approach they characterized >250,000 clones constructed by their method
using HTS, which illustrates the applicability of HTS for examining large libraries of protein
variants. Ravn and colleagues used HTS to facilitate the identification of high-affinity
antibody sequences in a phage display library of >107 antibody fragments (scFv),
mutagenized in an important loop region (CDR3) [30]. Sequencing of phage libraries after
selection for binding to an epitope enabled an enumeration of high-frequency sequences.
They tested six high-frequency sequences and found that all had enhanced affinity for the
epitope. This work showed that high affinity antibody fragments could be identified with
less up-front screening, illustrating how HTS approaches can vastly improve the
identification and characterization of novel antibodies. HTS has also been employed to
examine the repertoire of antibodies present within living organisms [32–35]; interested
readers are directed to Fischer’s useful commentary [36].

These studies illustrated that protein display experiments, which traditionally start with a
highly diverse library and converge on a small number of proteins bearing the function of
interest, can be greatly enhanced with HTS. By demonstrating that HTS can be used to
quantify the abundance of sequences in protein display libraries, these experiments
prefigured deep mutational scanning. They also outlined many of the inherent challenges in
combining HTS and protein display, particularly the biases in sequence representation and
the relatively high error rate associated with HTS.

Measuring sequence-function relationships
Recently, HTS has been employed to examine the effect of mutations on the function of
peptides and proteins. Ernst and colleagues [37] used deep mutational scanning to explore
the peptide binding preferences of 22 distinct members of the PDZ domain family. PDZ
domains are peptide recognition modules approximately 90 amino acids in length. Each of
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the 22 PDZ domains was evolved in vitro to have altered peptide-binding specificities.
These evolved domains were used to select peptide ligands from a phage displayed ~1011

member library of random heptapeptides. By employing a barcoding strategy, they
sequenced all 22 selections simultaneously.

The resulting 44,097 sequences represented 25,566 unique peptides divided amongst the 22
PDZ domains. Peptide binding sequences for each of the 22 domains were analyzed using a
machine-learning algorithm to uncover each domain’s specificity profile. Each specificity
profile represents the peptide binding preferences of its PDZ domain. Interestingly, many of
the domains exhibited multiple specificity profiles, showing that some domains could
accommodate several distinct peptide sequences. Comparison of the evolved domains
specificity profiles to profiles of natural PDZ domains revealed that the evolved PDZ
domains were less specific than their natural counterparts. As expected, the evolved PDZ
domains also bound their target peptides with higher affinity. The authors infer that the
reduced selectivity of their evolved PDZ domains arises from the fact that they have fewer
interactions with peptide side chains than do natural domains.

The authors examined their data for evidence of correlated changes between evolved PDZ
domains and their cognate peptides. They found evidence of significant correlation at four
positions within the PDZ domain. In each case, mutations altering the charge of the PDZ
domain introduced favorable electrostatic interactions with its peptide ligand. Thus, the use
of HTS to simultaneously profile the binding preferences of 22 distinct evolved PDZ
domains enabled the authors to gain insight into the co-evolution of a protein-peptide
interaction.

In a set of experiments explicitly designed to investigate protein sequence-function
relationships, Fowler and colleagues studied the interaction between the hYAP65 WW
domain and its cognate polyproline-rich peptide [24]. In the PDZ experiments discussed
above, the functional capacity of a given variant (i.e. variant fitness) was defined based only
on the variant’s abundance after selection. Ignoring the abundance of each variant in the
input library hinders accurate assessment of variant fitness because biases in library
construction mean that variants are generally not equally abundant in the input library. For
example, abundances in the input library of WW variants ranged over four orders of
magnitude. To ameliorate this problem, the authors used the abundance of each variant
before and after selection to calculate an enrichment ratio. The use of enrichment ratios
corrected for the nonuniform abundance of variants in the input library and resulted in more
accurate assessment of the fitness of each variant.

To facilitate the assessment of variants bearing deleterious mutations, an input library of low
complexity with an average of 2 mutations per variant was used [24]. Using a low-
complexity input library (i.e. one with fewer variants) ensured a large number of copies of
each variant. Thus, the decrease in abundance of variants bearing deleterious mutations
could be characterized with statistical confidence. Examination of the enrichment and
depletion of ~105 variants of the WW domain through selection allowed the construction of
a nearly complete map that describes the effects of mutations within the WW domain. The
effect of 53 out of 56 mutations previously measured by standard biochemical methods were
corroborated by the data generated by deep mutational scanning.

At the primary structure level, mutagenesis can reveal the precise location of catalytic
residues as in classical alanine scans [7]. In the context of secondary and tertiary structural
information, mutational preferences can highlight regions that are generally intolerant of or
favorable to mutation. The WW and PDZ domain studies discussed above illustrate how
deep mutational scanning, used in concert with domain and structural information, reveals
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critical residues and regions in proteins and in turn aids in understanding the molecular
determinants of fitness. Thus, by massively parallelizing a fitness assay, deep mutational
scanning enables rapid large-scale measurements of protein fitness and offers an
unprecedented view of protein sequence-function relationships.

Enhancing quantitation
Massive parallelization of measurement often results in low accuracy, and the relatively low
quality of HTS reads presents a potentially significant problem in faithfully identifying
variants within deep mutational scans. For example, the Illumina platform has an average
per-base error rate of ~1%, so a 75-base read would be expected to contain one incorrectly
identified point mutation [38]. These errors could introduce a large amount of noise when
estimating variant fitness, particularly for variants present at low copy number. The error
rates for other platforms vary, but all are high enough to be problematic [39]. Solutions to
high error rates have been implemented, including using a paired-end approach to enhance
fidelity or exclusion of sequences observed fewer than a certain number of times [24, 28,
29]. An effective solution to sequencing error requires that each library member bear a
unique barcode sequence [26, 40]. Barcodes can be used to identify replicate instances of
each library member. Examination of replicates enables error correction [40, 41].
Furthermore, barcoding each variant would enable explicit quantitation of and correction for
library biases introduced by amplification steps such as PCR.

Another major challenge in using deep mutational scanning is to enhance the accuracy of the
derived fitness measurements. Work using HTS to study libraries of DNA variants that are
selected for binding to a protein offer useful methods for accomplishing this goal. Studies by
Jolma and colleagues [42] and Zhao and colleagues [43] demonstrate the utility of explicitly
tracking DNA variants through sequential rounds of selection, which can facilitate
correction for artifacts such as non-specific carryover and saturation to greatly enhance the
accuracy of the fitness estimate for each variant. For example, the non-specific carryover
rate can be estimated using variants containing early stop codons, as these should be
completely non-functional. The estimated non-specific carryover rate can then be used to
adjust variant fitness estimates [42]. The application of these models to sequential selections
of protein libraries could significantly improve the accuracy of fitness estimates. In addition,
incorporation of error estimates that take into account the number, diversity, and quality of
sequences from which mutation effects are derived should greatly improve reliability.

The generation of variant libraries is another area that is ripe for improvement. Random
mutagenesis, either enzymatically or by chemical synthesis, produces variants containing
different numbers of mutations. The result is a library that contains some variants with fewer
than the desired number of mutations and some with more than the desired number.
Furthermore, the constraints of the genetic code dictate that, given a particular wild type
sequence, some amino acid changes are more likely than others. These biases reduce the
complexity of the library that can be employed. Thus, cost-effective library generation
methods that allow precise sequence tailoring and unbiased representation of variants are
needed. One possible solution is trinucleotide-based oligonucleotide synthesis, which
employs pre-synthesized, codon-sized nucleotide trimers that eliminate bias owing to the
constraints of the genetic code [44]. Another promising approach relies on the application of
custom DNA arrays and synthetic gene-assembly [31, 45, 46], which could enable exact
specification for relatively large libraries, eliminating the problems associated with random
mutagenesis.

The application of deep mutational scanning to proteins of increased size will necessitate
longer sequencing reads to cover the mutated region as well as higher read numbers to
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account for larger sequence space as length increases. Advances in HTS technology could
resolve this problem by increasing read lengths dramatically [47]. Currently available
alternative approaches to increase effective read length, such as subassembly, could also be
of great value [40].

Understanding high-dimensionality mutagenesis data
Previous mutagenesis studies generally yielded fitness data on, at most, hundreds of
variants. Deep mutational scanning has been used to analyze 104–105 variants [24, 37]. Of
these, only a small number were single mutants, and the rest were multiple mutants. Fitness
data of multiply mutated variants are of high dimensionality, so their visualization and
analysis present a challenge. Several approaches have been employed, including motifs,
maps and landscapes (Figure 2). Sequence motifs illustrate the average representation of
amino acids (or, more commonly, nucleotides) on a per-position basis within a set of
sequences (Figure 2a). In a selected library, motifs constitute a straightforward view of
beneficial amino acids at each position. Single motifs discard much of the detail generated
by deep mutational scanning, because all variants are averaged and deleterious amino acids
are not visualized. However, computational approaches that produce multiple motif profiles
offer a promising way to overcome this limitation [37]. Maps entail a set of sequence-
function relationships representing the fitness effect of every possible single mutation
(Figure 2b). As such, maps provide a detailed view of mutational preferences that includes
deleterious, neutral and beneficial mutations. Maps can be generated from single-mutant
data alone, or by averaging data from mutations occurring on multiply mutated backgrounds
[24]. However, maps ignore dependencies among interacting residues in multiply mutated
variants, which means that unique combinations of mutations that confer strong fitness
phenotypes are not visualized.

Landscapes constitute a third approach to understanding sequence-function relationships
generated by deep mutational scanning (Figure 2c). Landscapes display fitness as a function
of sequence distance, where peaks in the sequence-function landscape at increasing
distances from a wild type reveal functionally analogous but increasingly unrelated variants.
Deep mutational scanning using currently available sequencing technology can derive
fitness measurement for ~105 individual protein variants. A 50 amino acid sequence has 103

single mutants, 105 double mutants and 108 triple mutants. Thus, a deep mutational scan of a
small protein domain could be used to construct a nearly complete double mutant landscape,
or a much more sparsely populated higher-order landscape.

Constructing a landscape requires that the relatedness of each sequence be calculated. One
of the most common measures of distance is the number of mutations a variant has relative
to a master sequence (the Hamming distance) [48]. More advanced methods of calculating
distance are available [49, 50], but are beyond the scope of this review. Transformations of
high-dimensional sequence data to a lower-dimensional array can be problematic [29, 51–
53], but landscapes are attractive visual representations because the ability to identify
separate peaks allows motifs to be generated for distinct regions of sequence space.
Functionally analogous peaks, distinct in sequence space, could uncover functional
redundancy in genomes that would be inaccessible to conventional homology-based
searches. Several HTS-based studies illustrate the utility of landscape representations. These
include a study of ~1013 variants of the class II ligase ribozyme [25] and a study of the DNA
binding preferences of several transcription factors [50]. Motifs, maps and landscapes differ
in their utility, computational requirements and illustrative power. Ultimately, new
computational approaches are needed, which could include interactive tools or network-style
projections of interacting positions.
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Outlook and conclusions
The advances described here enable an exciting array of experiments. By obtaining fitness
measurements for hundreds of thousands of proteins simultaneously, deep mutational
scanning will facilitate experimental investigation of several long-discussed features of
proteins including epistasis and fitness landscape topology. Smaller-scale studies have
shown that most mutations have deleterious effects on protein fitness, and that as proteins
accumulate mutations their fitness decays [29, 52, 54, 55]. Deep mutational scanning
experiments provide experimental validation that the vast majority of mutations are
deleterious [24].

Deep mutational scanning could contribute substantially to the study of how multiple
mutations interact (epistasis). Epistatic interactions can either be negative, when the effect of
combined mutations is more deleterious than an independent model would predict, or
positive, when the effect of combined mutations is more beneficial than the model would
predict. Epistasis has important consequences for our understanding of protein evolution, as
it implies that lineages leading to fitter variants can require trajectories through non-optimal
intermediates. Therefore, the rate of protein evolution is likely to vary along different
evolutionary trajectories, with this variance introducing error into estimates of evolutionary
distances in protein families [56]. Furthermore, mutations that stabilize the folded structure
of a protein can have powerful positive epistatic interactions with other adaptive mutations
[53].

Although protein epistasis has been studied extensively, experimental limitations have
restricted the number of epistatic interactions tested. In deep mutational scanning
experiments with a WW domain, the fitness of 10,192 variants containing two mutations in
the domain could be predicted from single mutant data using a simple product model with
~70% accuracy [24]. These results illustrate the power of deep mutational scanning to
provide a large number of experimental epistasis measurements. With refined quantitation,
deep mutational scanning could be used to measure epistatic interactions between residues at
previously inaccessible levels of detail, thereby enabling more accurate epistasis models to
be constructed.

Computational analysis of protein folding mechanisms, protein structure and protein
function represents a frontier in protein science. Despite their recent astonishing advances,
computational methods can be improved significantly. Computational methods benefit from
training and validation data sets, but these have been limited in scope. Deep mutational
scanning offers the opportunity to generate empirical fitness measurements for thousands to
millions of protein variants, providing validation and training sets orders of magnitude larger
than those currently available. Thus, deep mutational scanning could engender a rich and
productive symbiosis between experiment and computation, thereby accelerating
innovations in drug and protein design.

The ability to catalog genomic alterations associated with disease has greatly accelerated
with the advent of HTS, but technologies for measuring the effect of these alterations have
been much more limited. For example, the Cancer Genome Atlas and other studies have
identified many genes that are mutated in cancer [57–60]. However, the abundance of
passenger mutations unrelated to cancer confounds these efforts and hampers our capacity to
gauge the effect of mutations within these candidate genes. Mutations also frequently
underlie the failure of targeted cancer therapeutics [61]. Deep mutational scanning of
cancer-related proteins can enable an understanding of how mutations affect protein function
and inhibitor efficacy, enhancing the meaning and clinical utility of genomic efforts. More
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generally, data derived from deep mutational scanning of disease-linked proteins could be
used to guide prognosis and prevention for individuals with deleterious variants.

Deep mutational scanning offers the capacity to parallelize biochemistry, measuring
fundamental biochemical properties such as substrate affinity, catalytic activity, and folding
energy on a massive scale. Furthermore, we anticipate that deep mutational scanning will be
extensively applied in vivo. However, deep mutational scanning in vivo may require
improvements to address the effects of cell-by-cell variances in protein expression and
stochastic fluctuations in library composition associated with transformation bottlenecks.
Understanding more complex phenotypes, such as fitness effects arising from variation in
gene regulatory activities, brings up numerous challenges in the interpretation of genotype-
phenotype relationships. Nevertheless, we envision that the use of sequencing as a way of
quantifying changes in DNA-encoded populations will continue to grow.
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Glossary

Protein display A collection of techniques that preserve the link between a protein and
its encoding nucleotide sequence, enabling the creation of libraries
consisting of a large number of different proteins (see Box 1)

High-
throughput
sequencing
(HTS)

A set of sequencing technologies that parallelize the acquisition of
DNA sequencing data, generating gigabases of sequence information at
low cost (see Box 2)

Barcoding Barcoding entails tagging each DNA element in a library with a DNA
barcode. Tagging facilitates combining DNA libraries for sequencing
with later deconvolution based on the barcode identity

Paired-end
sequencing

The acquisition of DNA sequence reads from both strands of the same
DNA molecule. Paired-end sequencing can be overlapping, resulting in
twofold coverage of the same DNA sequence from a single paired-end
read

Motif A representation that expresses, at each position within the motif, the
relative abundance of each amino acid or nucleotide

Sequence-
function map

A representation of the fitness effects of making all possible single
amino acid substitutions within a protein. Sequence-function maps can
be generated from single mutant variants or can be created by
averaging the effects of mutations occurring in multiply mutated
variants

Sequence-
function
landscape

A representation of fitness as a function of sequence, where increasing
distance in the landscape corresponds to increasing distance in
sequence space

Variant A unique protein or DNA sequence generated by mutagenesis from a
wild type sequence. A variant can be present in one or many copies in a
library
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Deep
mutational
scanning

A technique that assesses the fitness of a large number of mutants of a
protein (or other DNA-encoded functional elements) simultaneously
using high-throughput DNA sequencing in combination with selection
for function
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Figure 1. Deep mutational scanning to measure protein sequence-function relationships
Deep mutational scanning takes advantage of high-throughput DNA sequencing to measure
the function of variants of a protein on a massive scale. A color-coded population of DNA
encoded protein variants is shown (1). Each solid circle denotes a displayed protein variant
linked to its encoding DNA sequence. In this idealized input library, variants have equal
representation. The library is shown after selection for function of the displayed protein (2).
Variants bearing beneficial mutations increase in abundance in the selected library (e.g. red
and yellow) whereas deleterious variants decrease in abundance (e.g. blue). High-throughput
sequencing is performed on the selected and input libraries (3). The number of times each
variant is sequenced corresponds to its abundance in the library (the example shown is for
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the selected library). Sequencing data from the input and selected libraries are used to
calculate an enrichment ratio for each variant (4). The enrichment ratio of a variant is a
measure of its fitness.
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Figure 2. Motifs, maps and landscapes for visualizing sequence-function relationships
Deep mutational scanning generates a large set of sequence-function relationships; three
methods for visualizing these relationships are shown. Data for a 25 amino acid deep
mutational scan of the WW domain was used to create each panel (Sequence Read Archive
accession SRA020603) [24]. (a) An amino acid motif is shown. This motif illustrates the
abundance of each amino acid at each position in the selected library of variants. (b) A
sequence-function map is shown, which was generated by calculating the fitness effect of
each amino acid at every position. In the example given, fitness corresponds to the
enrichment or depletion of sequences with specific substitutions during selection. Mutations
are color coded from beneficial to deleterious in a red to blue color range, respectively. Gray
dots indicate substitutions with neutral fitness relative to the reference sequence. (c) A
sequence-function landscape is shown. The x- and y-axes denote measures of sequence
distance (i.e. points that are close to each other represent variants with similar sequences)
and the z-axis illustrates fitness. The region of the landscape within a single amino acid
substitution of the reference variant corresponds to the map described in (b) and is colored
accordingly.
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