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Abstract

Senataxin is a large 303 kDa protein linked to neuron survival, as recessive mutations cause Ataxia with Oculomotor Apraxia
type 2 (AOA2), and dominant mutations cause amyotrophic lateral sclerosis type 4 (ALS4). Senataxin contains an amino-
terminal protein-interaction domain and a carboxy-terminal DNA/RNA helicase domain. In this study, we focused upon the
common ALS4 mutation, L389S, by performing yeast two-hybrid screens of a human brain expression library with control
senataxin or L389S senataxin as bait. Interacting clones identified from the two screens were collated, and redundant hits
and false positives subtracted to yield a set of 13 protein interactors. Among these hits, we discovered a highly specific and
reproducible interaction of L389S senataxin with a peptide encoded by the antisense sequence of a brain-specific non-
coding RNA, known as BCYRN1. We further found that L389S senataxin interacts with other proteins containing regions of
conserved homology with the BCYRN1 reverse complement-encoded peptide, suggesting that such aberrant protein
interactions may contribute to L389S ALS4 disease pathogenesis. As the yeast two-hybrid screen also demonstrated
senataxin self-association, we confirmed senataxin dimerization via its amino-terminal binding domain and determined that
the L389S mutation does not abrogate senataxin self-association. Finally, based upon detection of interactions between
senataxin and ubiquitin–SUMO pathway modification enzymes, we examined senataxin for the presence of ubiquitin and
SUMO monomers, and observed this post-translational modification. Our senataxin protein interaction study reveals a
number of features of senataxin biology that shed light on senataxin normal function and likely on senataxin molecular
pathology in ALS4.
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Introduction

Senataxin is a large 303 kDa protein so named to signify its

homology with the yeast protein Sen1p. Senataxin is a nuclear

protein, and it contains a highly conserved DNA/RNA super-

family-1 helicase domain, indicative of its role in nucleic acid

processing. Disease-associated mutations in the senataxin gene

(SETX) fall into two distinct categories. Recessive mutations cause

a severe form of ataxia, Spinocerebellar Ataxia Autosomal

Recessive 1 (SCAR1– OMIM: 606002), which is also known as

Ataxia with Oculomotor Apraxia 2 (AOA2); while dominant

mutations cause a motor neuron disease known as amyotrophic

lateral sclerosis type 4 (ALS4; OMIM: 608465) [1,2]. As two

distinct neurodegenerative conditions result from SETX mutations,

senataxin is likely important for neuron survival [1,3,4].

ALS4 is an unusual familial form of ALS, with presumed disease

penetrance of 100%. Age of disease onset varies widely, ranging

from 5–63 years in the largest pedigree examined to date [2].

Pathologically, post-mortem examination has revealed atrophic

spinal cords with marked loss of anterior horn cells and

degeneration of corticospinal tracts, with an absence of sensory

clinical signs or symptoms [2]. ALS4 patients were originally

studied electrophysiologically, and noted to display hyperactive

deep tendon reflexes and normal sensory function [2,5]. Motor

conduction studies revealed reduced evoked amplitudes and
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normal conduction velocity. Overall, the clinical picture indicates

an essentially pure motor systems disorder typical of ALS.

Altered RNA processing is a known cause of neurodegenera-

tion, as documented in spinal muscular atrophy (SMA) [6], and

the fragile X syndrome of mental retardation [7]. The theme of

altered RNA processing in motor neuron disease has been further

emphasized by the recent discovery of roles for the RNA binding

proteins TDP-43 (ALS10) [8,9] and FUS (ALS6) [10,11] in

sporadic and familial ALS. Based on the strong conservation of the

senataxin helicase domain, aberrant RNA processing is also likely

to be a feature of ALS4 neurodegeneration. While the precise

functions of senataxin are yet to emerge [12–18], senataxin

mutations known to cause ALS4 are limited to three amino acid

substitutions. In one very large ALS4 pedigree, we discovered that

all 49 affected members carried a L389S substitution mutation [1].

Yet, while two other rare mutations were reported in other

senataxin protein domains (R2136H and T3I) [1], the L389S

mutation has emerged as the most common cause of ALS4 thus far

[19,20].

The L389S mutation resides in the middle of a domain with

functional importance for both senataxin and yeast Sen1p [21,22].

Interestingly, missense mutations, associated with both dominant

ALS4 and recessive SCAR1/AOA2, are located in either the

helicase domain or the amino-terminal protein-interaction domain

[4]. In yeast, the amino-terminal domain is defined by amino acids

1–600, and is the minimal fragment required to interact with key

proteins, including Rad2p, a deoxyribonuclease required in DNA

repair; Rnt1p (RNase III), an endoribonuclease required for RNA

maturation; but most prominently with Rpo21p (Rpb1p), a

subunit of RNA polymerase II (RNAP II) [22]. Interaction of

sen1p/senataxin with RNAP II is presumed essential to facilitate

their critical role in transcription termination and to resolve

transient RNAP II mediated R-loop structures via the conserved

helicase domain [14,15]. Given the high level of structural

conservation between Sen1p and senataxin [3] [4,23], and the

fact that Sen1p can bind functionally important proteins via its

amino-terminal domain, we used the first 650 residues of the

senataxin protein to screen a human brain expression library by

yeast two-hybrid (Y2H) analysis, and compared the results for wild

type senataxin and L389S senataxin. Our results revealed key

aspects of senataxin biology and yielded an unexpected interaction

that may have relevance to ALS4 disease pathogenesis.

Materials and Methods

Human Brain cDNA Expression Library: Y2H Screen
We wanted to compare proteins found to interact with wild type

senataxin, with those interacting selectively with the L389S mutant

form of the protein. To achieve this, we screened a human brain

expression library (Clontech) produced from cDNA sequences

isolated from the brains of three Caucasian patients aged 41–61

years, and subsequently cloned into the activation domain of

pGADT7-Rec vector by homologous recombination.

Using the Matchmaker GAL4-based system, two independent

Y2H screens were undertaken: (i) screen 1 utilized wild type

senataxin residues 1–650; and (ii) screen 2 utilized the same

fragment but containing the L389S mutation. Both senataxin bait

fragments were cloned into the binding domain vector, pGBKT7-

BD. The wt and L389S mutant bait constructs were cloned from

full-length cDNA expression constructs generated previously [3].

Y2H controls included: (i) determining that BD-SETX-wt and BD-

SETX-L389S expression were not toxic to yeast; (ii) testing for

non-specific auto-activation of reporter genes; (iii) non-interactor

negative controls, pGBKT7-53 and pGADT7-Lamin; and (iv)

positive control interactors, pGADT7-T and pGBKT7-53. These

screens were performed using a mating strategy with the library

pre-transformed into host strain Y187 [24,25].

Selected clones thought to result from valid prey-clone

interaction with senataxin (BD-SETX) were further tested in two

ways: (i) the mating was retested with the putative interacting

clones pre-transformed into the PJ69-4A strain; and (ii) the library

clone was isolated and co-transformed with senataxin bait vector

in a patch-selection/serial dilution strategy. The ‘patching’

strategy is based on first selecting the co-transformants on

Leu2/Trp- media. Then, single colonies were used to inoculate

an overnight (O/N) culture, and from this we ‘patched’ four, 5-

fold serial dilutions beginning with the stock O/N growth onto

Leu2/Trp2/His- selective media with 3 mM 3-AT. In addition to

the wild type and L389S bait clones, we generated a third bait

clone, the AOA2 mutant, W305C. We surmised this clone may

represent a loss-of-function mutant form of senataxin protein.

Blastn Analysis of Y2H Clone Containing BCYRN1
(NR_001568.1) Sequence

We took the DNA sequence from this ALS4 interacting Y2H

clone and subjected it to alignment analysis. The 138 bp of DNA

sequence is shown here: gat cta gag gcc gag gcg gcc gac atg ttt ttt

ttt ttt ttt tcc ttt ttc tgg aga acg ggg tct cgc tat att gcc cag gca ggt ctc

gaa ctc ctg ggc tca agc tat cct ccc gcc tct tag cct ccc tga gag.

This sequence was submitted to NCBI database search analysis:

Name - nr; Description - Nucleotide Collection nt; Program -

BLASTN 2.2.28. While the top alignment hit overall was Pan

paniscus (Bonobo) ncRNA BC200 (AF067778.1), the top human

hit was BCYRN1 (NR_001568.1). We then undertook a direct

alignment using NCBI Blastn between the 138 bp clone sequence

and human ncRNA BCYRN1. The portion of this clone encoding

a peptide with homology to known primate proteins is translated

here: ggg tct cgc tat att gcc cag gca ggt ctc gaa ctc ctg ggc tca agc

tat cct ccc gcc tct R GSRYIAQAGLELLGSSYPPAS.

SETX Expression Constructs
Expression constructs were based on PCR amplifying the

amino-terminal SETX 1–650 aa’s (n-Senataxin) from our existing

full-length SETX wt and L389S vectors [3]. We ruled out the

possibility of using the original full-length expression constructs for

these studies as they produce extremely low expression levels, even

when using the Amaxa nucleofection transfection method [3]. In

brief, PCR amplification utilized the following primers: forward

primer, 59-GGT ACC cca cca tgg att aca agg atg acg-39 (Kpn1

site) and reverse primer 59 GAA TTC cat tgg ttc ttt aga aaa tgt tgg

gct g - 39 (EcoR1 site). Flag epitope was already present in the

template plasmid. We cloned first into the pCRHII-TOPO holding

vector. Then by standard cloning, we directed the flag-tagged, n-

Senataxin into the final expression vector, pcDNA3.1, and

validated the coding sequences by DNA sequence analysis. For

the GST-tagged senataxin expression construct we utilized the

pGEX-4T-2 vector (GE, Life Sciences).

Cell Culture, Transfection, Immunoprecipitation and
Western Blot

HEK293 cells were obtained from the ATCC and cultured in

DMEM media supplemented with 10% fetal bovine serum (FBS)

at 37uC. Transfection of 293T cells was performed using

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s

protocol in 6-well culture dishes.

24 hours post-transfection, cells were washed with room

temperature (R/T) PBS and a second wash with PBS at 4uC.

ALS4 Senataxin Protein Interaction Analysis
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After gently removing the PBS wash, cells were lysed with 600 ml

of RIPA buffer for 30 min at 4uC. A cell scraper was used to

ensure efficient lysis. Lysates were syringed with a 26-gauge needle

and spun at 10,000 rpm for 10 min at 4uC. 60 ml of each sample

was collected as a control (Total Cell Lysate). In preparation for

the anti-GFP immunoprecipitation (IP), we performed a pre-clear

with protein A/G agarose magnetic beads to remove proteins

binding non-specifically to beads. In brief, we washed 10 ml of 1:1

ratio protein A/G beads with 1 ml RIPA, three times. Beads were

resuspended in 10 ml RIPA per sample and then added to each

sample, which was rotated for 30 min at 4uC. Supernatant was

removed to a new tube by binding A/G beads to the magnetic

column. Then to begin the anti-GFP binding, we added 5 ml

suspension of anti-GFP antibody (magnetic beads) (ab69315).

Samples were rotated O/N at 4uC. Unbound supernatant was

removed by washing 3-times with 500 ml RIPA buffer at 4uC.

Prior to gel electrophoresis protein separation, we added 100 ml of

SDS loading buffer to beads and boiled for 10 min at 80uC. After

removal of magnetic beads, IP-samples were further analysed by

Western blot (WB).

Protein lysates were resolved using NuPAGEH Tris-Acetate

gradient Gels (Invitrogen) and transferred to PVDF membrane

(Sigma) by 1 hr of electroblot at 30 volts and blocked with 4%

non-fat dry milk. To detect FLAG epitope, anti-FLAG M2

antibody (Sigma: F1804) was used (1:5,000) in conjunction with

anti-mouse HRP secondary antibodies (Sigma: A9044) (1:10,000).

The ECL Plus HRP detection kit (Amersham) was used for

chemiluminescent detection. The use of 20 mM N-Ethylmalei-

mide (Sigma-Aldrich) was used to inhibit ubiquitinase and

sumoylase enzyme activity.

Results

Senataxin Amino-terminal Protein Interactions Identified
by Y2H Analysis

We prepared wild type senataxin as bait (DB-SETX-wt) and

L389S senataxin as bait (DB-SETX-L389S), and proceeded to

screen a human brain cDNA prey library. This Y2H analysis

yielded 27 interacting clones for DB-SETX-wt and 57 interacting

clones for DB-SETX-L389S in the initial two screens. Sequence

analysis of the resultant clones revealed 18 unique transcripts,

which were then re-tested (Fig. 1). Five false-positives were

excluded from further analysis, as these clones also interacted with

the negative control prey (pGADT7-Lamin), or interactions were

not reproducible on re-testing. Most of the interacting library

clones were full-length or nearly full-length, suggesting the library

was of high quality. We categorized the 13 remaining validated

clones into five groups (Table 1), as follows, based upon putative

function.

Senataxin self-interaction (Group 1). We designated this

group for senataxin self-interaction or dimerization. Both wild-

type and L389S baits pulled out single, large independent clones

from the initial library screens, which were subsequently validated

by a range of assays (see below).

Ubiquitin/SUMO modifiers (Group 2). We identified five

interactors, each representing proteins in either the Ubiquitin

protein degradation pathway or the related SUMO cascade, a

moiety often used for protein trafficking [26]. Examples include

SAE2, which is the E1-activating enzyme subunit 2 in the

sumoylation pathway. SUMO is the small ubiquitin-like modifier

added to the target protein and UBC is the human poly-ubiquitin

protein. Interestingly, in addition to these Group 2 proteins with

overt sumoylation functions, TDG (Group 3), TOPORS (Group

3), and HIPK2 (Group 4) have also been implicated in

sumoylation pathway regulation – in addition to their defined

primary functions.

DNA/RNA binding proteins (Group 3). We observed a

unique group of four DNA/RNA binding proteins involved in

RNA surveillance, DNA repair, and other helicase functions. The

EXOSC9 protein (exosome component 9) is part of the exosome,

a multi-protein complex capable of degrading various types of

RNAs. This 39 to 59 exo-ribonuclease complex is required for 39

processing of 7S pre-rRNA to mature 5.8S rRNA that is localized

to the nucleolus [27]. Thymine DNA glycosylase (TDG) fulfills the

essential role of correcting G/T mismatches by a mismatch-

specific DNA-binding glycosylase activity, thereby linking tran-

scription and DNA repair [28]. TDG also exhibits sumoylation

pathway function, as the SUMO binding activity of TDG is

required prior to its covalent SUMO modification and subsequent

colocalization with the promyelocytic leukemia protein (PML)

within PML-containing nuclear bodies [29]. CHD3, the chromo-

domain helicase DNA-binding protein 3, is a central component of

the nucleosome remodeling and histone deacetylase repressive

complex (NuRD), and it has two chromatin organization domains

(i.e. chromo-domains) and a helicase domain [30]. Topoisomerase

I-Binding Arginine/Serine-Rich Protein (TOPORS) may perform

a variety of complex functions, and TOPORS mutations cause

autosomal dominant Retinitis Pigmentosa with perivascular retinal

pigment epithelium atrophy [31]. TOPORS is also known as p53-

binding protein 3 [32], and acts as a SUMO E3 ligase for p53

[33], in addition to serving as a binding partner for both SUMO-1

and SUMO-2 [34].

Kinase regulator (Group 4). We identified a single protein

known as the homeodomain interacting protein-kinase 2 (HIPK2).

HIPK2 co-localizes and interacts with p53 and CREB-binding

protein within PML nuclear bodies [35]. Interestingly, HIPK2

nuclear localization and function is mediated by a SUMO

interaction motif [36], further underscoring the extent of

sumoylation pathway interactome relationships existing among

senataxin interactors identified in this Y2H screen. Activation of

HIPK2 by UV-radiation leads to selective p53 phosphorylation,

facilitating CBP-mediated acetylation of p53 and promotion of

p53-dependent gene expression [35].

ALS4 specific interaction (Group 5). We noted a unique

and highly reproducible protein interaction specific to only L389S

senataxin. The interacting clone contained KIF1B cDNA

sequence, initially suggesting that it was KIF1B, a kinesin

molecular motor protein previously mutated in a pedigree with

neurological disease [37]. However, further DNA sequence

analysis revealed that this clone consists of two cDNA fragments,

likely fused during cDNA library construction. Specifically, this

clone contains the major portion of Brain cytoplasmic RNA 1,

BCYRN1 (NR_001568), fused to a KIF1B cDNA fragment

containing intron 5, exons 6–9, and ,1.4 kb of intron 9. This

interaction was not observed with the AOA2 mutant, DB-SETX-

W305C, when used as bait.

Senataxin Self-association is not Abrogated by the L389S
Mutation

ALS is one of a number of neurodegenerative proteinopathies in

which protein aggregation may play a role in disease pathogenesis.

As SOD1 aggregation in ALS1 may stem from impaired

dimerization [38], we chose to examine the effect of senataxin

mutation on its dimerization properties. To address this issue, we

expressed GST-tagged senataxin (1–600) in E. coli, and after in vitro

cleavage, we examined recombinantly produced amino-terminal

senataxin by size-exclusion chromatography. Coomasie staining

revealed the expected ,70 kDa band for senataxin (1–600)

ALS4 Senataxin Protein Interaction Analysis
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(Fig. 2A, insert), while size-exclusion chromatography revealed a

strong elution peak at ,140 kDa (Fig. 2A), consistent with dimer

formation. An initial smaller peak corresponding to a higher

molecular mass was also noted, and may represent aggregated

protein (Fig. 2A). To directly evaluate senataxin self-association,

we cloned the amino-terminal senataxin cDNA (both –wt and –

L389S) into the CheckMate mammalian two-hybrid (M2H)

expression system (Promega). M2H analysis revealed strong

interaction signals for SETX-wt homodimer, SETX-L389S homo-

dimer, and SETX-wt – SETX-L389S heterodimer, though the

self-association interaction appeared greatest for SETX-wt homo-

dimer (Fig. 2B). To confirm these findings, we performed cross-

linking studies using FLAG-tagged amino-terminal senataxin-wt

and amino-terminal senataxin-L389S expression constructs in

HeLa cells treated with disuccinimidyl suberate. Untreated HeLa

cells expressing either SETX-wt or SETX-L389S displayed an

intense band at ,75 kDa on Western blot analysis, corresponding

to senataxin monomer, as expected (Fig. 2C). When we

immunoblotted transfected cells treated with the cross-linking

agent, disuccinimidyl suberate, we observed two bands both

Figure 1. Validation tests of senataxin interactors identified from a human brain expression library. In (A) that follow, the four pGBKT7-
BD bait vectors (BD-SETX-wt, BD-SETX-L389S, BD-SETX-W305C and BD-p53) were used in array with each pGADT7-AD test library prey clone: (i),
senataxin; (ii), SAE2 (ubiquitin E1); (iii), Sumo; (iv), UBC and (v), KIF1B. Overnight cultures were plated 5-fold serial dilutions right to left (hatched
triangle below). In (B), the library clone containing KIF1B and BCYRN1-rc cDNA sequences were sub-cloned to test which fragments were required for
interaction as bait with: (i) the KIF1B coding exons 6–9; (ii) the 138bp of BCYRN1-rc; and (iii) the original full-length, ‘hybrid-clone’ was used as a
positive control. The BCYRN1-rc sequence was sufficient to interact with N-terminal L389S senataxin. A 4-fold serial dilution (from right to left –
hatched triangle) was undertaken for wt-SETX and L389S-SETX bait clones with each of the three prey fusion clones.
doi:10.1371/journal.pone.0078837.g001

Table 1. Y2H analysis for wt and L389S senataxin (1–650).

No Group Name Function NCBI ref wt L389S W305C Amino acids*

1 1 SETX DNA/RNA helicase NM_015046 +1 +1 + 1–668 N-term

2 2 SAE2 SUMO-1 activating enzyme subunit 2 NM_005499 +2 +3 + 451–641 ter

3 2 Ubc9 Ubiquitin-conjugating enzyme E2I NM_003345 +11 +31 + 1–159 tot

4 2 PIAS E3 SUMO-protein ligase NM_016166 +1 +3 + 318–652 ter

5 2 Sumo{ Small ubiquitin-like modifier NM_003352 +2 +4 + 1–102 tot

6 2 UBC Ubiquitin C - gene encoding 9 repeats NM_021009 +2 +2 + 1–532 tot

7 3 EXOSC9 Exosome component 9 NM_005033 +2 +3 + 158–440 ter

8 3 TDG G/T mismatch- thymine DNA glycosylase NM_003211 +2 +3 + 74–411 ter

9 3 CHD3 Chromodomain helicase DNA BP-3 NM_005852 +1 +1 + 1818–1967

10 3 TOPORS Topoisomerase I binding NM_005802 +2 +3 + 468–1046 ter

11 4 HIPK2 Homeodomain interacting protein-kinase2 NM_022740 +1 +2 + 216–527

12 5 KIF1B Kinesin, anterograde transport NM_015074 20 +1 2 out of frame

13 5 BCYRN1 Homo sapiens brain cytoplasmic RNA 1 NR_001568 20 +1 2 antisense

*Amino acids regions encoded by the representative clones are given for the wild type or mutant interacting clones that were used for subsequent validation retesting:
ter = terminus; tot = total protein; and antisense indicates that the BCYRN1 clone fragment was present in the 39 to 59 orientation. The number of independent clones
obtained from the original wt and mutant library screens are listed as superscript numbers to the+in the ‘wt’ and ‘L389S’ columns, respectively. The SUMO clones
(NM_003352) were isoform a, variant transcript 1 ({).
doi:10.1371/journal.pone.0078837.t001
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migrating at .300 kDa for SETX-wt and SETX-L389S-expressing

HeLa cells, without any senataxin monomer band present

(Fig. 2C). The production of senataxin multimers by both

SETX-wt and SETX-L389S confirmed that the L389S mutation

does not prevent senataxin self-association.

Senataxin is Subject to Ubiquitin – SUMO Post-
translational Modification

The Y2H screen identified five interacting proteins that

promote ubiquitination or SUMOylation (group 2), suggesting

that senataxin is regulated by one or both of these pathways.

Indeed, many redundant hits from both initial screens with wild-

type senataxin and L389S senataxin were from this group.

Previous studies with yeast Sen1p have documented that the

amino-terminal region of Sen1p contains domains required for

Sen1p degradation by the ubiquitin-proteasome system [39].

Although the basis of senataxin protein turnover is ill-defined,

another possible role for ubiquitination and sumoylation is

regulatory post-translational modification. To determine if sena-

taxin is subject to such post-translational modification, we

transfected FLAG-tagged senataxin-expression constructs into

HEK293 cells, and then prepared cell extracts in the presence of

NEM to inhibit ubiquitin and SUMO cleavage. We then

performed Western blot analysis and noted a ,7 kDa shift

upward for all FLAG-SETX-wt protein isolated from NEM-

treated HEK293 cell extracts (Fig. 3). A similar gel shift was

observed with analysis of extracts from cells transfected with the

FLAG-SETX-L389S construct suggesting the mutation does not

affect this modification. Given the limitation of protein size

estimates based on migration rates alone, this size increase is

potentially consistent with the addition of a single ubiquitin or

SUMO monomer.

Figure 2. Biochemical assays showing that amino-terminal senataxin (1–650) seldom exists as a monomer, but is stable as a dimer.
(A) Polyacrylamide gel electrophoresis was used to resolve purified senataxin peptide at ,70 kDa, visualized by Coomasie stain. The filtration elution
predicts a fragment size of , 140-kD suggesting that the predominant form of purified senataxin exists as a dimmer. (B) Average luciferase activity
(luminosity) for three transfection experiments. Column 1, pBIND/pACT (negative control); column 2, Id/MyoD (positive control); column 3, homo-wt
[pBIND-SETX (1–650 wt) with pACT-SETX (1–650 wt)]; column 4, homo-L389S [pBIND-SETX (1–650 L389S) with pACT-SETX (1–650 L389S)]; and
column 5, hetero [pBIND-SETX (1–650 wt) with pACT-SETX (1–650 L389S)]. (C) HeLa cells were transfected with Flag-tagged wt-SETX and L389S-SETX
expression constructs. Compared with untreated HeLa cells (U), treatment with cross-linking (CL) reagent (DSS) caused 75 kDa bands to shift to
greater than 300 kD with almost no monomer remaining.
doi:10.1371/journal.pone.0078837.g002
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L389S-senataxin Binds to a Unique Peptide Encoded by
BCYRN1-reverse Complement

Closer inspection of the fused BCYRN1-KIF1B clone revealed

that the BCYRN1 portion is oriented in the reverse complement

direction (BCYRN1-rc) relative to the Gal4 activation domain, and

DNA sequencing confirmed a stop codon immediately prior to the

KIF1B cDNA sequence (Fig. 4A), ruling out expression of this

gene product. We then separately subcloned BCYRN1-rc and

KIF1B coding exons 6–9 into the pGADT7-Rec vector (Fig. 4A),

and retested the L389S-senataxin bait construct for an interaction

with these two subclones by Y2H analysis. We found that

interaction with ALS4 L389S senataxin was dependent on

BCYRN1-rc, but not on KIF1B coding sequence (Fig. 4B), a result

that we robustly reproduced on repeated trials. A previous study

identified BCYRN1 as a non-coding RNA (ncRNA) gene that

yields an ,200 bp RNA, representing a primate neural-specific

RNA polymerase III transcript [40]. BCYRN1 (NR_001568.1)

spans ,80 kb on chromosome Xq13.1, and is transcribed across

11 X-linked genes including the CMT1X (OMIM: 302800)

peripheral neuropathy related gene, Connexin 32. Two related

brain cytoplasmic RNAs, BC1 and BCYRN1 (also known as

BC200) have been shown to modulate gene expression at the level

of protein translation [41–44]. This RNA class may represent a

recently evolved transcript type predicted to regulate protein

synthesis. BCYRN1 derives from a transcribed monomeric Alu

element which appears to have transposed from the signal

recognition particle (SRP) RNA, and in particular from the SRP

RNA region involved in translation arrest [45]. Although this

regulatory RNA class is very novel and therefore remains

uncharacterized, in normal aging, cortical BCYRN1 levels typically

decline and are reduced by .60% after age 48, but in Alzheimer’s

disease brains, BCYRN1 levels have been documented to increase

[40].

Following our NCBI Blastn analysis (Fig. 4C–D), our

identification of a peptide product from the BCYRN1-rc sequence

led us to consider the hypothesis that this translational product is

genuine and not simply an artefact. One approach to evaluate the

veracity of the BCYRN1-rc translational product is to scan the

proteome for homologous proteins containing this domain. When

we BLASTed the BCYRN1-rc peptide sequence against the NCBI

non-redundant protein sequence database, we identified a 21

amino acid region GSRYIAQAGLELLGSSYPPAS, within the

BCYRN1-rc coding sequence (Fig. 4C), that yielded highly

significant hits for a large number of proteins, all restricted to

the proteomes of primates. For humans, we found two proteins

with significant homology: Palmitoyl-protein thioesterase 1 (PPT1)

(NM_000310) and C14orf178 (NM_174943). The level of identity

between the BCYRN1-rc peptide and the PPT1 protein was 81%,

while the level of identity with the C14orf178 protein was slightly

higher at 86%. PPT1 protein is a small glycoprotein involved in

the catabolism of lipid-modified proteins during lysosomal

degradation, and mutations in the PPT1 gene cause infantile

neuronal ceroid lipofuscinosis 1 (CLN1; OMIM #256730) and

neuronal ceroid lipofuscinosis 4 (CLN4; OMIM #204300). The

C14orf178 gene encodes two small proteins of 92 amino acids and

122 amino acids, based upon its two predicted RNA isoforms

(Fig. 5A). Both predicted proteins are homologous to the

BCYRN1-rc peptide (Fig. 5B–C). The C14orf178 gene consists

of 3 exons, spanning ,9 kb of genomic sequence (NCBI UniGene

Hs. 375834). Although the C14orf178 gene encodes two protein

products, their functions remain unknown. Interestingly, the

C14orf178 protein contains a 32 amino acid domain with 61%

homology to the heterogeneous nuclear ribonucleoprotein U-like 1

protein (HNRNPUL1) (Fig. 5D).

L389S-senataxin Interacts with the C14orf178 Protein
Product in HEK293 Cells

To determine if L389S-senataxin would interact with human

proteins containing sequence similar to the BCYRN1-rc peptide, we

obtained a C14orf178 GFP-tagged isoform1 expression construct.

After we cloned the amino-terminal senataxin (both -wt and -

L389S) into a mammalian expression construct, with the inclusion

of a FLAG tag, we co-transfected senataxin-wt or senataxin-L389S

with C14orf178-GFP. Western blot analysis confirmed expression

of Flag-tagged recombinant senataxin protein. When we immu-

noprecipitated the C14orf178 expression product with an anti-

GFP antibody, we found that Flag-tagged senataxin containing the

L389S mutation is pulled down by C14orf178-GFP, but wild-type

senataxin is not pulled down by C14orf178-GFP (Fig. 6). When

we immunostained co-transfected HEK293 cells, we noted that

both FLAG-L389S-senataxin and C14orf178-GFP localize to the

nucleus (data not shown).

Discussion

We have attempted to shed light on the senataxin protein to

understand which of its functions are critical to neuron survival.

Despite the obvious link with nucleic acid processing indicated by

the presence of a conserved DNA/RNA helicase, the nature of

senataxin loss-of-function responsible for AOA2 neurodegenera-

tion remains unknown. Similarly, the molecular basis of senataxin

gain-of-function neurotoxicity in ALS4 also remains enigmatic. To

remedy this, we pursued an unbiased analysis of the senataxin

interactome using a yeast two-hybrid approach, and performed a

protein interaction screen with both wild-type senataxin protein

and L389S senataxin as the most common ALS4 mutation. Our

results revealed several unknown aspects of senataxin biology.

First, evidence in support of senataxin dimerization was obtained.

Direct analysis of self-association by mammalian two-hybrid

(M2H) interaction experiments and by disuccinimidyl suberate

cross-linking confirmed senataxin self-association. The L389S

mutation did not block dimer formation, but a reduced preference

for this state is suggested by the more sensitive M2H analysis.

It is important to emphasize that the ALS4 L389S substitution

and all AOA2 missense mutations within senataxin’s amino-

terminal protein interaction domain occur at residues that are

100% conserved in all vertebrate species from zebrafish

(XP_690945) to man. Indeed, Sen1p protein levels are tightly

regulated by a post-transcriptional mechanism requiring the

amino-terminal domain [39]. While similar regulation at the

protein level has not been shown for mammalian senataxin, high-

level protein expression of only truncated senataxin fragments, but

not full-length senataxin, can be achieved in mammalian cells [3].

Figure 3. HEK293 cells are transfected with 1.5 mg (lanes 1, 2),
1.0 mg (lanes 2, 3) and 0.5 mg (lanes 5, 6) of Flag-wt-SETX. Note
that in lanes, 2, 4, and 6 the transfected cells were treated with N-
ethylmaleimide (NEM) to prevent the cleavage of either SUMO or
ubiquitin and a band shift of ,7 kDa is observed, suggesting that this is
likely a sumoylation event.
doi:10.1371/journal.pone.0078837.g003
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Figure 4. Structure of the brain cDNA library clone showing specific interaction with ALS4 L389S amino-terminal senataxin. Here we
see a diagram of the fusion clone of BCYRN1 reverse complement (BCYRN1-rc) and KIF1B cDNA sequences, with subclones of BCYRN1-rc and KIF1B
coding exons 6–9 shown above the clone map (A), and relative length of relevant clone sequence in base pairs (B). Below is shown the minimal open
reading frame peptide product capable of binding L389S senataxin, contained within the BCYRN1 sequence (C). The unique protein fragment
highlighted in red text has near perfect homology with several human proteins with brain specific expression. When aligned by NCBI Blast, the
138 bp clone sequence (Query) shows 99% identity with BCYRN1 trancsript NR_001568.1 (Sbjct) over a 110 bp stretch (D).
doi:10.1371/journal.pone.0078837.g004

Figure 5. The 21 amino acid sequence which is translated from BCYRN1-rc (fragment-21) showed strong homology to two human
proteins PPt1 and C14orf178. (A) The gene sequence of C14orf178, in which both isoforms contain fragment-21. (B) The larger protein encoded
by C14orf178 isoform1. (C) The alignment of the BCYRN1-rc fragment with C14orf178. (D) The region of homology that C14orf178 isoform2 shares
with the hNRNPUL-1 protein.
doi:10.1371/journal.pone.0078837.g005
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As post-transcriptional regulation of Sen1p involves the ubiquitin

proteasome system, our discovery of an interaction between

mammalian senataxin and ubiquitination - SUMOylation path-

way factors suggests that regulation by this pathway may be

conserved between yeast and mammals. We confirmed the

functional significance of these putative interactions when we

found that NEM treatment of protein extracts (to prevent sumo/

ubiquitin cleavage) yielded an ,7 kDa shift in the molecular mass

of senataxin. Although an ,7 kDa shift is smaller than expected

for a single SUMO or ubiquitin addition and could instead

represent phosphorylation, the complete elimination of the

modification upon NEM treatment makes sumoylation or

ubiquitination most likely, as the small shift could represent the

migration characteristics of modified senataxin protein. Future

study into the nature of senataxin post-translational modification is

clearly needed to define the type and number of senataxin post-

translational modifications. Bioinformatics analysis indicates that

AOA2 or ALS4 point mutations in senataxin do not coincide with

predicted sites of ubiquitination or sumoylation; nonetheless, a

mono-ubiquitination or sumoylation modification could be

important for understanding senataxin normal function, involving

processes such as subcellular localization [26].

The DNA/RNA processing proteins (group 3) and homeodo-

main interacting protein-kinase 2 (group 4) interactors identified

by the screen also provide important clues to the normal function

of senataxin. Interestingly, the W305C AOA2 loss-of-function

mutant, used in the post Y2H screen analysis was also able to bind

all 13 wild type senataxin protein interactors. The significance of

this is unclear, but one possible explanation is that AOA2 missense

SETX mutations may yield unstable, reduced protein levels in

mammalian cells, a hypothesis that remains untested due to the

absence of reliable senataxin Ab’s. Nonetheless, lack of interaction

between W305C senataxin and BCYRN1-rc indicates the

interaction between L389S senataxin and BCYRN1-rc is specific,

and may represent the type gain-of-function interaction expected

from a dominant SETX mutation. BCYRN1 is part of the brain

cytoplasmic RNA class and shows a number of unique features: (i)

it is found only in primates [40]; (ii) it is specifically expressed in

neurons and transported to postsynaptic dendrites [46]; (iii) it is

derived from a signal recognition particle RNA involved in

translation arrest [41–44]; (iv) it interacts with poly(A)-binding

protein a regulator of translation initiation [47]; and (v) it is found

to interact with FMRP, binding with several FMRP mRNA

targets via direct base-pairing [48]. Data mining with the

BCYRN1-rc translation product revealed strong homology to

several proteins, including PPT1 and C14orf178. Further exper-

iments indicated that L389S-senataxin can specifically interact

with C14orf178 in mammalian cells, while wild-type senataxin did

not. Although further studies are needed to determine if

differential senataxin binding to the C14orf178 protein product

is relevant to ALS4 disease pathogenesis, evidence of this

interaction indicates that the L389S mutation may promote

disease pathology by aberrant binding to normally off-target

proteins. BCYRN1 is divided into three domains: (i) a 59 portion

homologous to the Alu Lm (Left Monomer); (ii) a central

adenosine-rich region; and (iii) a terminal 43-nt non-repetitive

domain [49]. The Alu Lm portion has homology to the Alu repeat

element common in the primate genome, and contains the

sequence that in reverse complement encodes the 21 amino acid

peptide which ALS4 L389S senataxin binds. Alu sequences will

inevitably be present in the reverse orientation ,50% of the time.

Given the growing awareness of complex human RNA transcrip-

tion and multiple regulatory RNA mechanisms [50,51], it is highly

possible that peptide sequences similar to that isolated from our

comparative Y2H screen could be generated, even if their

translation was unintended. For example, a new toxic mechanism

is gaining acceptance as the cause of sporadic and familial ALS

based on C9orf72 hexanucleotide repeat expansions. It has been

found that non ATG-mediated translation occurs when the

GGGGCC expansion within the normally untranslated intron

exceeds a certain limit, thereby generating toxic poly-(Gly-Ala)

peptides [52,53]. Further studies are required to explore this

potentially toxic mechanism that we suggest may occur in ALS4

patients based on aberrant L389S senataxin interactions.

This study has uncovered new avenues of research for senataxin

biology and ALS4/AOA2 associated mutations. But undoubtedly,

many questions remain unanswered. For example, why did a

protein such as C14orf178 not emerge during our Y2H screen?

One answer is that C14orf178 may not be highly expressed in

brain, and based on our analysis of UniGene clusters, C14orf178

was only expressed in rare cancer derived cDNA clones. Yet there

are examples that reversed Alu derived sequences find their way

into the human transcriptome. The PPT1 isoform identified by the

Wellcome Trust Sanger Institute, 13-JAN-2009 (CAI11026, 2009),

has an 87 bp alternate exon 2 which encodes a near perfect match

to our ALS4 interacting fragment with the addition of just eight

amino acids. Nevertheless, any mechanism put forward to

potentially address the ALS4 neuronopathy should provide

flexibility to account for the highly variable age of disease onset.

If ALS4 senataxin were to retain most normal functions (as in our

study it also bound all the same interactors as wild type senataxin),

but through point mutation gained the ability to bind ‘abnormally

generated’ proteins; this would be an example of the type of model

flexibility needed to account for the broad range of disease onset

associated with the L389S substitution in ALS4 patients.

Figure 6. HEK293 cells transfected with expression constructs
of Flag-wt-SETX (F-wt); Flag-L389S-SETX (F-L389S); and
C14orf178-GFP (C14orf178). In the upper panel, proteins isolated
upon GFP immunoprecipitation were immunoblotted with anti-Flag
antibody, and a band of ,75 kDa (arrow) representing Flag-Senataxin is
detected, but only when Flag-L389S-SETX is co-transfected with
C14orf178-GFP. No interaction is detected for Flag-wt-SETX with
C14orf178-GFP. In the lower panel, representing ‘Input’, anti-Flag signal
at , 75 kDa (arrow) is detected in lanes 1, 2, 4, and 5, as expected for
HEK293 cells transfected with recombinant Flag-tagged senataxin
protein, prior to anti-GFP IP. In the upper panel, a non-specific band
of variable intensity (arrowhead) is detected by anti-Flag antibody in
the GFP immunoprecipitates, and is not Flag-senataxin, as it is present
in HEK293 cells not expressing Flag-tagged senataxin, and likely
corresponds to IgG heavy chain.
doi:10.1371/journal.pone.0078837.g006
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Conclusions

In summary, our study of the senataxin interactome revealed a

number of novel aspects of senataxin biology. We report for the

first time strong evidence for senataxin self-association and for

ubiquitin-SUMO post-translational modification of senataxin,

potentially through a set of modifying enzymes and factors from

these pathways. For most of the interactions that we detected, both

wild type and ALS4 L389S senataxin engaged in these protein

interactions. As numerous recent reports have uncovered crucial

roles for mammalian senataxin, including the regulation of

circadian rhythm and microRNA production from the micropro-

cessor complex, our findings could further advance the under-

standing of the role of senataxin in these important processes [54–

56]. Whether mutations in senataxin, such as the L389S alteration,

lead to ALS4 motor neuron degeneration by affecting senataxin

function in these processes, or promote disease pathogenesis by

engaging in an entirely novel and unexpected set of interactions

with small peptide products generated from the transcription of

primate-specific repetitive elements will be the focus of future

studies.
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