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High-throughput profiling of amino acids in strains
of the Saccharomyces cerevisiae deletion collection
Sara J. Cooper,1 Gregory L. Finney,1 Shauna L. Brown,1 Sven K. Nelson,1

Jay Hesselberth,1,4 Michael J. MacCoss,1 and Stanley Fields1,2,3,5

1Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA; 2Howard Hughes Medical Institute,

Seattle, Washington 98195, USA; 3Department of Medicine, University of Washington, Seattle, Washington 98195, USA

The measurement of small molecule metabolites on a large scale offers the opportunity for a more complete un-
derstanding of cellular metabolism. We developed a high-throughput method to quantify primary amine-containing
metabolites in the yeast Saccharomyces cerevisiae by the use of capillary electrophoresis in combination with fluorescent
derivatization of cell extracts. We measured amino acid levels in the yeast deletion collection, a set of ~5000 strains each
lacking a single gene, and developed a computational pipeline for data analysis. Amino acid peak assignments were
validated by mass spectrometry, and the overall approach was validated by the result that expected pathway intermediates
accumulate in mutants of the arginine biosynthetic pathway. Global analysis of the deletion collection was carried out
using clustering methods. We grouped strains based on their metabolite profiles, revealing clusters of mutants enriched for
genes encoding mitochondrial proteins, urea cycle enzymes, and vacuolar ATPase functions. One of the most striking
profiles, common among several strains lacking ribosomal protein genes, accumulated lysine and a lysine-related me-
tabolite. Mutations in the homologous ribosomal protein genes in the human result in Diamond-Blackfan anemia, dem-
onstrating that metabolite data may have potential value in understanding disease pathology. This approach establishes
metabolite profiling as capable of characterizing genes in a large collection of genetic variants.

[Supplemental material is available online at http://www.genome.org.]

A primary goal of the genomic era—the characterization of the

function of all genes in a genome—has been typically approached

by high-throughput assays, including proteomics (Huh et al. 2003;

Krogan et al. 2006), global gene expression (Sherlock et al. 2001;

Edgar et al. 2002), and genetics (Tong et al. 2001). A complementary

strategy would focus on an aspect of cell biology often neglected

in genomic studies: the role of small molecules. These molecules,

which include amino acids, fatty acids, sugars, and nucleotides, not

only serve as building blocks of the cell, but they also play vital roles

in signaling, cell growth and division, energy homeostasis, tran-

scriptional regulation, and other cellular processes. In comparison

with transcriptional profiling and proteomics, which reveal in-

termediates of the cellular response to perturbation, changes in

small molecule abundance reflect the ultimate result of all the up-

stream regulatory actions: transcriptional, translational, and post-

translational. Accordingly, an understanding of how these mole-

cules respond to genetic perturbation is necessary to decipher

cell function. These ideas have led to the burgeoning field of

metabolomics, which seeks a comprehensive and quantitative mea-

surement of small molecules in a biological sample.

Metabolomics technologies have been driven by several dif-

ferent applications. Much interesting work has been done in plants

(for review, see Rochfort 2005), for which volatiles play an im-

portant role in defense and pollination. Metabolomics techniques

have also been used to assay samples from many other organisms,

including yeast (Raamsdonk et al. 2001a; Mohler et al. 2006),

worms (Blaise et al. 2007), mice (Minami et al. 2009), and humans

(Wishart 2007; Gieger et al. 2008). Initial work focused on cata-

loging small molecules; however, metabolomic analysis has also

proved useful for a deeper understanding of specific biological

processes. For example, it has been used to characterize the meta-

bolic requirements of embryonic stem cells (Wang et al. 2009) and

to identify a small molecule biomarker for metastatic prostate

cancer (Sreekumar et al. 2009).

Techniques for metabolomics based on mass spectrometry,

high-performance liquid chromatography, and nuclear magnetic

resonance studies are time intensive, so far precluding their use to

assay thousands of samples on a single platform. However, smaller

scale studies have demonstrated the utility of measuring metabo-

lite levels in yeast, worms, and other organisms to characterize

mutants and to place genes in a pathway (Raamsdonk et al. 2001b;

Allen et al. 2003; Blaise et al. 2007). For example, Allen et al. (2003)

demonstrated that metabolite profiling of extracellular metabo-

lites from 19 S. cerevisiae strains, each deleted for a single gene,

could be used to group together related genes.

We sought to quantify the variation in amine-containing

metabolites among a collection of nearly 5000 yeast strains, each

lacking a single gene. We developed data analysis tools and used

established genomics analysis methods to identify groups of re-

lated genes.

Metabolomic analysis of this collection of yeast strains dem-

onstrates the biochemical effects of genetic perturbations and the

feasibility of using metabolite levels to classify numerous genes in a

large set of genetic variants.

Results

Derivatization, separation, and identification of amino acids

We grew the approximately 5000 strains of the yeast deletion col-

lection overnight in 96-well plates containing synthetic complete
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media and measured growth with the

Victor V3 plate reader. Saturated cultures

on this instrument have an approximate

OD600 of 0.8. The median optical density

measurement was 0.370, with 80% of the

measurements falling between an OD600

of 0.3 and 0.6; 18% of the strains grew

more slowly (OD600 below 0.3), and only

2% approached saturation with an OD600

of >0.6. We performed a cold methanol

extraction of small molecules from the

yeast cells and derivatized the extracts

with the amine-reactive fluorophore,

4-nitro-7-benzofurazan (NBD-F) (Villas-

Boas et al. 2005; Zhu et al. 2005). Capil-

lary electrophoresis was used to separate

the derivatized samples and detection

was achieved by laser-induced fluores-

cence. The separations took approximately 8 min, which allowed

the entire collection to be screened in approximately 2 mo. Strains

were screened in duplicate, starting from fresh yeast colonies.

Separation resulted in a trace of approximately 20 peaks, each

corresponding to a single amino acid or, in a few cases, a mix of two

to three amino acids (Fig. 1).

We determined the identity of the peaks by spike-in experi-

ments, in which a concentrated solution of each amino acid (see

Methods for list) was added to a yeast extract. We concluded that

comigration of a peak in the sample with the spiked amino acid

was positive identification of the comigrating peak as that amino

acid. We further verified the peak identities by quantifying amino

acids with the capillary electrophoresis method and a two-

dimensional gas chromatography–mass spectrometry approach.

These data showed that in the four samples we compared, 12 out of

13 amino acids measured by both methods were correlated at R2 >

0.7 (six out of 13 had R2 > 0.9). The one amino acid that did not

show a high correlation was glutamine, which does not separate

from valine by capillary electrophoresis under these conditions.

These data indicate that the peak assignments are valid and that

contamination from other amine-containing small molecules

made up a minority of the signal.

Peak alignment and assignment

To streamline analysis of this large data set, we developed a compu-

tational pipeline. The methods we employed address the challenges

presented with this type of data. We had to normalize for variability

in migration times between plates (day-to-day) and variability in

migration times on a given day while maintaining the ability to

identify variation in peak size due to biological differences between

samples. Five representative traces chosen randomly from five dif-

ferent plates, run on different dates, demonstrate the variability we

observed in migration times between plates (Fig. 2, left panel).

We developed a method to align the traces that corrects for

variability in retention time by adapting the software program

CRAWDAD (see Methods), originally written to align chromato-

grams obtained from liquid chromatography–mass spectrometry

(Finney et al. 2008). The software uses dynamic time warping to

invoke nonuniform shrinking and stretching along the time axis,

within set parameters, to achieve optimal alignment between each

trace and a template. This method performs alignment and provides

an alignment score between the template and sample traces that can

be used to filter data that align poorly. The aligned output from

CRAWDAD for the five traces is shown in Figure 2, right panel.

Once the alignment was complete, a dynamic programming

algorithm was implemented to assign peaks to amino acids. The

algorithm matches peaks from each sample to a manually curated

canonical trace. The algorithm calculates a matrix of similarity

scores based on aligned retention times and peak size and opti-

mizes matching of each peak in the sample to an amino acid in

the template. The output of this algorithm is a list of amino acid

concentrations for each sample. After alignment and peak assign-

ment, we used quality control thresholds to eliminate data of poor

quality or traces with poor alignments. We obtained a quantitative

measurement of each amino acid by integrating the area under

each peak. We analyzed 4382 samples with data meeting quality

standards for at least one replicate. Using this pipeline, we esti-

mated based on manual curation of 20 randomly selected traces

that ;90% of the peaks were called correctly.

Because downstream analyses rely heavily on these align-

ments, we added an additional step of manual adjustment to im-

prove accuracy. Manual adjustment consisted of identification of

traces with missing or additional peaks compared with others in

the plate, followed by visual inspection of the trace and manual

changes to the peak assignment where necessary. Although there

is still error in the resulting data set, the peak calling improved

Figure 1. Canonical trace from a S. cerevisiae extract. Following over-
night growth in synthetic complete media, yeast cultures were extracted
with cold methanol. The extract was labeled with NBD-F, which fluo-
rescently labels amine groups, and separated by capillary electrophoresis.
The separation occurs in less than 10 min. Peaks were assigned by spike-in
experiments and are labeled 1–18, corresponding to the compounds
shown. Intensity, measured in relative fluorescent units, correlates with
relative amino acid concentration. (Lysine has two peaks as it has two
reactive amine groups and therefore can be labeled once or twice.)

Figure 2. The CRAWDAD algorithm was used to align traces. Raw data collected using the 32Karat
software show variability in migration time depending on the date of sample collection. The software
program CRAWDAD uses dynamic time warping to achieve optimal alignment of raw data by mini-
mizing distance between traces. Five traces from five different plates are plotted before (left) and after
(right) alignment with the two steps of the CRAWDAD alignment. Time is plotted along the x-axis in
minutes; intensity in relative fluorescent units is plotted along the y-axis.
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from ;90% correct calls before the manual adjustment. Since we

do not have a gold standard, we could not quantify the error rate in

the manually adjusted traces, but we observed one measurable im-

provement in the traces. We measured the correlation between the

values of the two lysine peaks (one peak for single-labeled, one for

double-labeled lysine). The sizes of the peaks representing these two

species should be highly correlated. Before manual adjustment, the

correlation between the two peaks over all samples was R2 = 0.62,

whereas after adjustment the correlation increased to R2 = 0.88.

Arginine pathway mutants display profiles consistent
with their gene deletions

As a test case, we examined strains carrying mutations in arginine

biosynthesis to determine whether they recapitulate known fea-

tures of the arginine biosynthetic pathway. Compared with the

parent strain, BY4742, arginine mutants had only one-quarter the

arginine in the extract (Fig. 3). In addition, they each accumulated

the expected metabolite based on the arginine biosynthetic path-

way: arg1, a sevenfold increase in citrulline; arg4, a threefold in-

crease in citrulline; and arg3, a sixfold increase in ornithine. These

three mutants, as well as the arg2, arg5,6, and arg7 mutants, all

accumulated lysine (two- to fourfold). Other studies have noted

that mutants in arginine biosynthesis, particularly those that ac-

cumulate ornithine, also accumulate lysine, perhaps through the

breakdown of ornithine (Caddick et al. 2007). Arginine mutants

grew to an optical density within one standard deviation of the

mean optical density, indicating that their metabolite changes are

not accounted for by reduced growth rate.

Slow growing strains have
a characteristic metabolite profile

Our initial analysis of the data suggested

that it was relevant to explore the depen-

dence of metabolite profiles on growth.

The greatest correlations we identified

were between growth rate (measured op-

tical densities) and lysine levels (lysine

peak 1 versus OD600, R =�0.32 and peak

2, R =�0.37). We compiled a list of strains

that had reduced growth rate based on

our measurements and were annotated

as slow growers by Giaever et al. (2002).

By comparing amino acid levels in strains

with slow growth to normal growing

strains, we confirmed our initial finding

and additionally identified significant

accumulations of ornithine, lysine, leu-

cine, and N-acetyl ornithine, as well as de-

pletion of glutamine in slow growers (Sup-

plemental Table 1). Because some amino

acid levels correlated with growth, further

analyses distinguished between changes

that are dependent on or independent

of growth phenotypes. For example, an

enrichment of genes known to influence

telomere maintenance (Gatbonton et al.

2006) among strains accumulating lysine

was confounded by a slow growth phe-

notype (;40% of mutants deleted for

genes involved in telomere maintenance

have a slow growth phenotype, com-

pared with ;10% of all genes). Enrichment of the Gene Ontol-

ogy (GO) term ‘‘telomere maintenance’’ in strains with high

lysine levels was not observed among strains with normal growth.

Characterization of strains with extreme amino acid levels

We asked whether strains with a significant change in amino acid

level were enriched for functionally related genes. We might ex-

pect strains with low levels of an amino acid to carry deletions of

genes involved in synthesis of that amino acid. Ranking all strains

for arginine level, we found that the arg1, arg3, arg4, and arg5,6

mutants are among the strains with the arginine content. In

agreement with our initial view, a GO analysis of genes deleted

in strains with low levels of arginine shows significant enrich-

ment for genes involved in arginine biosynthesis (P = 0.01;

Table 1).

Among other strains with low arginine levels, there was also

a significant enrichment for deletion of genes involved in vacuole

organization (VAM7, VMA22, VPH2, VMA5, and VPS41). Three of

these genes are involved in assembly of the vacuolar ATPase (VMA5,

VPS2, and VMA22). Arginine transport into the vacuole is regulated

in order to maintain an acidic pH, and the vacuolar ATPase plays

a role in that regulation (Forgac 1999). A functional vacuolar ATPase

is required for arginine transport into the vacuole (Kim et al. 2003).

Our data are consistent with these results and suggest that failure to

assemble the ATPase results in reduced levels of intracellular argi-

nine. While these data cannot distinguish vacuolar arginine from

cytosolic arginine, they suggest that vacuolar arginine is reduced,

leading to an overall reduction in intracellular arginine.

We conducted a similar analysis for each amino acid, identi-

fying groups of strains with extreme levels of each amino acid and

Figure 3. Arginine pathway mutants lack arginine and build up pathway intermediates. (A) Three
data traces of arg mutants are displayed, as collected via the high-throughput data pipeline, and
compared with the parental strain trace. Numbers above the peaks indicate percentage area. The arg1,
arg3, and arg4 mutants show depletion of arginine compared with the levels in the parental strain trace.
As expected from the arginine synthetic pathway, the arg1 and arg4 mutants accumulate citrulline and
the arg3 mutant accumulates ornithine. All three mutants accumulate lysine. (B) Metabolite conversions
in the arginine pathway of yeast. The gene names above the arrows correspond to the enzyme catalyzing
the reaction indicated.
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testing for significant enrichment of GO terms among the genes

deleted in these strains (Table 1). Some of these results are consis-

tent with known pathways; for example, strains accumulating

ornithine were more frequently deleted in genes involved in the

urea cycle. Other results are less readily explicable; for example,

strains accumulating lysine were enriched for deletion of genes

involved in RNA localization and transport.

Clustering strains based on metabolite profiles can reveal
functionally related genes

In addition to ranking genes by individual amino acid levels, we

used hierarchical clustering to identify groups of genes with similar

amino acid profiles (Fig. 4A). We clustered all data and identified

clusters based on accumulation or depletion of an amino acid, or

group of amino acids, without regard to a specific correlation

threshold. In the arginine biosynthetic pathway cluster, mutants

for other related genes are also found (Fig. 4B). Clustering together

with strains deleted for ARG1, ARG3, ARG4, and ARG5,6, we found

strains deleted for TPO2, a spermine transporter; CPA1, an enzyme

in citrulline biosynthesis; YOR302W, a regulatory uORF for CPA1;

ORT1, an ornithine transporter necessary for arginine biosyn-

thesis; and DOA4, a ubiquitin isopeptidase known to regulate

ammonia-sensitive amino acid permeases (Jauniaux et al. 1987;

Vandenbol et al. 1987).

In a second cluster with similar features, we found genes

encoding proteins of the mitochondria (Fig. 4B). In this cluster,

there are 15 genes annotated as ‘‘mitochondria or mitochondria

part.’’ The steps of arginine biosynthesis from glutamate to orni-

thine occur in the mitochondria. These data suggest that muta-

tions altering mitochondrial structure or function also affect argi-

nine biosynthesis. In addition, two strains are deleted for genes

Table 1. GO enrichment among strains with extreme levels of an individual amino acid

Amino acid

Significant GO
term low amino

acid levels P-value Genes

Significant GO
term high amino

acid levels P-value Genes

Alanine N/S N/S
Arginine 1. Arginine

biosynthesis
0.01 ARG1, ARG3,

ARG4
N/S

2. Vacuole
organization

0.0008 VAM7, VMA22, VPH2,
VMA5, VPS41

N/S

Asparagine + tyrosine N/S N/S
Glutamine + valine N/S Cytokinesis 0.037 CTS1, DSE4
Glutamate N/S N/S
Glycine Phospholipid

catabolism
0.0067 PLB3, GDE1,

YPL103C
N/S

Biotin N/S N/S
Leucine N/S N/S
Lysine-pk1 N/S N/S
Lysine-pk2 Carnitine

metabolism
0.0095 CAT2, YAT1 RNA localization,

transport
0.0055 SHE4, RPB4, RHP2,

LOC1, STO1, MOG1,
NUP133

N-acetyl ornithine Hyperosmotic
response

0.0381 MET22, PUS2, HSP12,
MSB2, HOT1

1. Invasive growth 0.002 RXT2, DIG2, RIM20,
GAL83

2. Filamentous growth
response to drug

0.048 RXT2, DIG2, RIM20,
GAL83

Methionine + proline N/S 0.025 YOR1, RHR2, MLF3,
YKL075C, SOD1, YCF1

Ornithine mAAA complex YTA12, AFG3 1. Carbamoyl phosphate
synthase complex

0.014 CPA1, CPA2, YOR302W

2. Telomere maintenance 2.5 3 10�6 20 genes
3. Urea cycle 0.0024 ARG1, ARG3, CPA1, CPA2,

DUR1,2
4. Arginine metabolism 0.0024 ARG1, ARG3, CPA1, CPA2,

DUR1,2
Lysine-related N/S 1. Telomere maintenance 4.2 3 10�5 21 genes

2. Ribosomal genes 0.013 RPS19B, RPS27B, RPS26B,
PAT1, RPS17A, RPS11B,
RPS7A, RPS1B, RPS0A,
MRPL27, MRP51

3. Small ribosomal subunit 0.00075 RPS27B, RPS26B, PAT1,
RPS17A, RPS11B, RPS7A,
RPS1B, RPS0A

4. Regulation of cellular
catabolism

0.034 PTH2, PFK26

Threonine N/S N/S
Lysine-related + lysine N/S Ribosomal genes 0.015 RPS9B, RPS0B, RPP2, RPS17A,

RPL34B, RPS19B, RPL39,
RPS0A

For each amino acid measured, a list of strains with statistically significantly increased or decreased levels (greater than threefold above or below the
average among all strains) was assessed for GO term enrichment. P-values were calculated using the HIDRA visualization software with a Bonferonni
correction for multiple hypothesis testing.
N/S, No significant enrichments identified among this class.
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with uncharacterized function: YKR023W, encoding a protein that

localizes to mitochondria, and YMR155W, which may play a role

in a cell cycle checkpoint. Our data support the localization data

for the YKR023W protein and suggest that YMR155W may also

have a role in mitochondrial function.

Ribosomal protein gene deletion strains have a unique
metabolite profile

Based on the clustering algorithm and increased levels of lysine, we

identified a set of strains that accumulated an unusual metabolite

that did not correspond to any assigned amino acid (Fig. 5). Assays

of high concentrations of a lysine standard by capillary electro-

phoresis resulted in a comigrating peak; therefore, it is likely that

this metabolite is biochemically related

to lysine and may correspond to a ly-

sine degradation product or multimer,

or a modified lysine.

Among strains with this profile, 40

contain deletions of genes annotated as

‘‘structural component of the ribosome,’’

a significant enrichment compared with

random (P = 0.012). Of all strains lacking

a ribosomal protein gene, 40% showed

at least some accumulation of this un-

identified molecule. This phenotype was

also observed in strains with regulated

expression of an essential ribosomal pro-

tein gene. Loss of expression in three of

seven strains tested led to the accumula-

tion of lysine and this related molecule

(data not shown). Because several strains

in this cluster are slow growers, we con-

sidered slow growers alone. Among these

strains, the lysine-related metabolite ac-

cumulated in strains deleted for genes

assigned to the GO categories: ribosome,

P = 0.003; large ribosomal subunit, P =

0.002; and telomere maintenance, P =

0.0017, x2 test.

A striking example of the accumu-

lation of the lysine-related metabolite

occurs in strains lacking the ribosomal

protein gene RPS19A or RPS19B (Fig. 5A).

In humans, mutations in RPS19 and other

ribosomal protein genes result in the rare

disorder Diamond-Blackfan anemia. De-

letion of other yeast genes (RPS7A/B and

RPS17A/B) homologous with those known

to cause Diamond-Blackfan anemia re-

sulted in similar accumulations of lysine

and this unidentified metabolite. We

sought to determine whether the pheno-

type observed in yeast has parallels in

human cells. We used siRNA to reduce the

level of RPS19 in the human cell line

K-562, a multipotent hematopoetic lym-

phoblast cell line, and observed a small

but reproducible accumulation of lysine

and a peak comigrating with the lysine-

related metabolite observed in the rps19

yeast strains (Supplemental Fig. 1). Knock-

down of RPS19 in two epithelial cell lines (RKO and HEK293) did not

result in these metabolite accumulations (data not shown). While

the genetic causes of Diamond-Blackfan anemia are known, the

pathophysiology of the disease is just beginning to be understood

(McGowan et al. 2008). Based on these preliminary experiments, the

metabolite changes seen in yeast that occur to a more limited extent

in the K-562 human cells may warrant further investigation.

Discussion
Here, we demonstrate that small molecule metabolite profiling,

using fluorescent derivatization and capillary electrophoresis, can

be carried out on a scale of thousands of samples over a short pe-

riod of time. Using this technology to profile amino acids, we

Figure 4. Hierarchical clustering of metabolite profiles. (A) To identify groups of related genes, we
ordered 4337 yeast deletion strains using hierarchical clustering as implemented by Cluster software.
Columns represent each amino acid as labeled in B. Rows correspond to the profile of a strain lacking
a single gene. Yellow represents an increased metabolite level relative to the normalized average; blue
represents a decreased level, as indicated in the scale (bottom left). The highlighted region is expanded
in panel B. (B) A single cluster of strains showing decreased levels of arginine contains several arginine
mutants. This cluster also shows increased lysine and increased citrulline. Along with the arginine
mutants, this group with reduced arginine levels is enriched for mutants in mitochondrial protein genes
(highlighted in red).
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identified among strains with altered profiles both genes known

to be involved in amino acid biosynthesis as well as many other

classes of genes. In fact, 729 strains had at least one amino acid

with a minimum eightfold change compared with the parent

strain. Considering that ;135 nonessential genes are known to be

involved in amino acid metabolism (Kanehisa and Goto 2000), it

may be surprising that so many genes affect amino acid quantities

in the cell. However, 1293 yeast genes are annotated as involved in

metabolism (Christie et al. 2004), and our data support a role for

genes involved in organelle structure and function affecting amino

acid metabolism. These results suggest that a variety of factors af-

fect the levels of amino acids, including

vacuolar structure and mitochondrial ac-

tivity/efficiency. It is also encouraging

that a small number of metabolites may

be diagnostic for gene function in many

cellular processes.

While we demonstrated a convinc-

ing pattern of metabolite accumulations

among some known biochemical path-

ways, we did not observe the clustering

of genes involved in the metabolism of

amino acids outside the arginine and urea

cycle pathways. One possible explana-

tion is that the media contained 14 of the

20 coding amino acids, such that in many

cases cells could import amino acids or

precursors and maintain their intracellular

amino acid levels. Another factor that

could affect metabolic phenotypes is the

parent strain of the deletion collection,

which contains auxotrophies for histidine,

leucine, and lysine. These mutations could

affect amino acid levels. Another potential

explanation for unexpected phenotypes

among known amino acid biosynthesis

mutants is the accumulation of unknown

mutations in the deletion strains. Other

groups have noted increased rates of an-

euploidy (Hughes et al. 2000) and other

mutations among these strains (Huang

and O’Shea 2005). Most of these muta-

tions increase growth rate, suggesting that

they more likely lead to false negatives

rather than false positives. Finally, arginine

and the other urea cycle amino acids are

isolated from the remaining amino acids

in the biosynthetic pathway. Whereas the

arginine biosynthetic pathway is essen-

tially linear, synthesis of many of the other

amino acids can be accomplished by con-

version from several other precursors. The

result may be that the loss of a single gene

in many amino acid biosynthesis path-

ways does not drastically affect cellular

amino acid levels under these conditions.

This data set demonstrates that large-

scale characterization of small molecules

in biological systems can contribute to an

understanding of cell biology and human

disease. Even in S. cerevisiae, more than 900

genes remain uncharacterized. Analyzing

only amino acids, we could classify some genes based on the clus-

tering of similar profiles. We also identified an interesting phenotype

that may be relevant to the human disease Diamond-Blackfan ane-

mia. Accumulation of a metabolite in both a yeast mutant and

a human cell line treated with siRNA to reduce expression of the

homologous gene suggests the possibility of a parallel mechanism.

Metabolite profiling offers the opportunity to continue to

characterize the function of every gene in the genome. Methods

such as the fluorescent derivatization approach described here

should further the understanding of biology as a system beyond

DNA, transcripts, and proteins.

Figure 5. Deletion of ribosomal proteins causes accumulation of lysine and a lysine-related molecule.
(A) Traces of rps19a and rps19b mutants, compared with the trace of the parental strain. The two
ribosomal protein mutant strains show significant accumulation, exceeding that observed in slow
growers alone, of both lysine and a lysine-related molecule compared with the parent strain. (To
generate these data, we regrew and made fresh extracts of these strains, as the rps19a mutant seemed to
have a suppressor mutation in the original set, as has been observed previously [Steffen et al. 2008].) (B)
Hierarchical clustering of all strains reveals a group of genes, enriched for ribosomal proteins, with
accumulation of lysine and the lysine-related metabolite. The rps19b mutant is shown separately as it
does not cluster with this group but shows a similar pattern.
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Methods

Yeast strains
Haploid yeast deletion strains of the MATa mating type were
obtained from Open Biosystems (YSC1053), originally constructed
as part of the Saccharomyces Genome Deletion Project (Winzeler
et al. 1999). We obtained the tet-promoter collection allowing
regulation of essential genes by doxycycline from Open Bio-
systems (YSC1182) (Mnaimneh et al. 2004). Yeast growth was in
synthetic complete media (adenine 140 mM, arginine 109 mM,
aspartic acid 720 mM, glutamic acid 651 mM, histidine 122 mM,
isoleucine 579 mM, leucine 579 mM, lysine 390 mM, methionine
127 mM, phenylalanine 289 mM, serine 3.64 mM, threonine 1.6
mM, tryptophan 372 mM, tyrosine 314 mM, and valine 1.19 mM).
Initial tests with YPD, synthetic complete and a minimal media
suggested that synthetic complete media provided a good com-
promise between YPD, where some phenotypes may be masked,
and the minimal media where several of the tested strains grew
very slowly, and therefore would not be ideal for high-throughput
growth.

Sample collection

After overnight growth of yeast, optical densities (OD600) were
measured in 96-well format using the Victor3V spectrophotome-
ter/fluorometer (Perkin Elmer). Methanol extraction was per-
formed in 96-well format based on (Villas-Boas et al. 2005). In brief,
cells were grown for ;16 h in synthetic complete media in deep-
well 96 well plates (VWR). Cells were spun down, washed with
water, and resuspended in 75 mL of water. We added 75 mL of cold
methanol and incubated the cell suspension in a dry-ice ethanol
bath for 30 min. After thawing on ice, we centrifuged samples and
saved the supernatant containing the small molecule metabolites.
Samples were stored frozen at �80°C until derivatization.

Derivatization and separation

We performed derivatizations based on previously published work
(Tsunoda et al. 1999; Zhu et al. 2005). We conducted all protocols
in 96-well format. We thawed extracts on ice and combined 20 mL
of cell extract with 2 mL of 185 mM NBD-F (Anaspec) and in-
cubated the samples at 55°C for 15 min in a thermal cycler. After
incubation, we brought the volume to 100 mL by adding 78 mL of
running buffer (10 mM tetraborate at pH 9.3 [Microsolv], 35 mM
sodium deoxycholate [Sigma], 7.5 mM methyl-beta-cyclodextrin
[Sigma]). Samples were injected electrokinetically at 10 keV and
separated at 15°C for 8 min in a 40-cm fused silica capillary with
a voltage of �30 keV using the Beckman ProteomeLab PA800.

Essential gene knockdown

These strains were constructed by Mnaimneh et al. (2004). We
followed the published protocol for growing the strains and
knocking down gene expression. Yeast strains with tet-off con-
trolled versions of an essential gene were used to inoculate 1-mL
cultures. These cultures were grown overnight. After 16 h, doxy-
cycline was added to each sample at a final concentration of 1 mg/
mL and cultures continued to grow for 8 h.

Amino acid spike-ins for peak assignment

Standards of 1 mM were derivatized with NBD-F and spiked into an
extract from the parent strain (BY4742) to determine the peak
identifies for each amine-containing metabolite. Overlap of a
standard with a peak in the wild-type extract indicated that the

peak contains that compound. The following amine-containing
molecules were tested: all 20 coding amino acids, spermidine,
spermine, ornithine, citrulline, glutathione, biotin, creatine,
N-acetyl lysine, N-acetyl ornithine, N-acetyl aspartate, diamino-
butane, carnitine, and carnosine (all from Sigma-Aldrich).

Capillary electrophoresis data analysis

Using Beckman’s 32Karat, we exported fluorescence intensity
measurements taken at a frequency of 4 Hz for each trace and in-
tegration data (migration time, percentage area, height and width
for each peak) (Supplemental Tables 2A,B, 3A,B). We performed
a background subtraction of the trace data, subtracting three times
the mode signal over the length of the trace to minimize align-
ment based on background. To align traces, we implemented a
version of CRAWDAD modified for single-channel data, which
uses a dynamic time warping to align the exported chromato-
grams (Finney et al. 2008). To minimize the effects of plate-to-plate
variation, we chose the template from each plate that had the
highest average correlation before alignment to the remaining
traces in the plate. We then used CRAWDAD for a second round of
alignment, aligning all 52 traces to a master template chosen in the
same way.

Here we describe the adaptation of CRAWDAD to the single
channel data. A single CE template was used for alignment in a
pairwise fashion. First, the optimal linear shift between a trace A
and a template trace T was determined by a cross-correlation be-
tween A and T. Second, a nonlinear warping was determined using
a variant of dynamic time warping to find an optimal set of time
corrections to align A with T. A score matrix S of the similarities
between time points of T,A was calculated using the normalized
distance between values

Sði;jÞ = 1�
Ti � Aj

�� ��
maxðTi;AjÞ

: ð1Þ

The path score P was built iteratively by adding the scores from the
cells of S multiplied by a weight dependent upon whether the
transition used signifies a stretch in A relative to T, a shrink in A
relative to T, or an equal time progression in both runs (Equation 2)

Pði;jÞ = max
Pði�1;jÞ + w1Sði;jÞ
Pði�1;j�1Þ + w2Sði;jÞ
Pði;j�1Þ + w3Sði;jÞ

8<
:

9=
;: ð2Þ

A set of weights w = {1, 2.5, 1} was used to give a slight bias when
no relative change in retention time is made between the runs,
diminishing jitter in the alignment. Dynamic programming was
used to find the optimal score through P. Finally, a bicubic linear
spline was fitted to P, and used to provide a smoother path.

Following alignment of all the traces, we eliminated data for
which correlation with the template was below 0.35. Once the
traces were aligned, we transformed the peak data generated by
32Karat based on the CRAWDAD alignments. To assign each peak
in the trace to an amino acid peak we implemented a dynamic
programming algorithm that assigns sample peaks to a manually
generated template based on a composite of peaks observed in the
whole data set. Similar to what was performed by Robinson et al.
(2007), the dynamic programming algorithm forces aligning peaks
to emerge in the same order in the template as the sample and assigns
the peak identity based on a scoring scheme incorporating migra-
tion time and size. The resulting output is a quantification of peak
area correlating to relative amino acid concentration in each profile.
In a final step, profiles generated by computation were manually
inspected by scanning the files for outliers and visually examining
the raw data to confirm or revoke the peak assignment. In the cases
where a mistake was identified, the data were manually adjusted.
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Data normalization

For each sample, a log2-transformed ratio of the amino acid
quantity in the sample to the average for the plate was calculated.
This ratio corrects for plate effects. All peak areas were calculated
before the CRAWDAD alignments were run to avoid the potential
complication of altering area by uneven time warping of the trace.
An average of the two replicates was calculated (Supplemental
Table 4). In the case where only one quality trace was collected,
those data were used alone.

Clustering and GO analysis

Normalized data were clustered by profile similarity. We used
Cluster software (Eisen et al. 1998) to implement hierarchical
clustering of the log-transformed ratios based on uncentered
correlation and visualized the clusters using Java Treeview and
HIDRA (Saldanha 2004). GO analysis was part of the HIDRA soft-
ware package. The parameters for GO analysis used a Bonferonni
correction for multiple hypothesis testing and had a cutoff of
P < 0.05 (Hibbs et al. 2008).

Amino acid profiling by GCxGC-MS

Extractions were performed as described above. Solvent was re-
moved from 100 mL of extract using a SpeedVac on medium heat.
Excess water was removed by adding 100 mL of methylene chloride
and drying again. Trimethylsilylation derivatization was per-
formed in glass as described (Humston et al. 2008; Mohler et al.
2008). In brief, to each sample, we added 30 mL of a 20-mg/mL
solution of methoxyamine in pyridine to protect carbonyl
groups. We heated the samples for 90 min at 30°C. Then, we added
70 mL of N-methyl-N-trifluoroacetamide (MSTFA) with 1% tri-
chloromethylsilane (TCMS) (Thermo Fisher Scientific) and in-
cubated for 60 min at 60°C. The samples were assayed immedi-
ately after derivatization on a Leco 4D GCxGC-TOFMS system
(Leco). The primary column is a 20-m 3 250-mm i.d. 3 0.5 mm
RTX-5MS film (Restek), and the secondary column is a 2-m 3

180-mm i.d. 3 0.2-mm RTX-200MS film (Restek). Injections of 1 mL
were made in split mode with a split ratio of 1:5. The inlet was set
to 280°C, and the transfer line was set to 305°C. Flow rate for the
carrier gas, helium, was 1 mL/min. Initial oven temperatures were
60°C for the primary oven and 75°C for the secondary oven.
Modulator temperature was maintained at 30°C above the primary
oven temperature. Oven temperatures were increased at a rate of
7°C/min to final temperatures of 325°C and 340°C, respectively.
The modulation time for the second dimension was 5 sec with 0.4
sec hot, 2.1 sec cold. The ion source was set at 250°C, and data were
collected at a rate of 100 spectra per second after a 7-min solvent
delay. The total run time was ;50 min. Data were processed using
the Chromatof 4.22 software for deconvolution and peak calling.
For each amino acid, quantification was based on counts of the m/z
73 ion, the mass-to-charge ratio of the fragment released from
the derivatized molecules. Each compound was identified by
searching acquired spectra against the NIST library and the com-
mercially available Fiehn Library (Leco) (Kind et al. 2009), as well as
by comparison to spectra obtained from standards. We assayed
standards at multiple concentrations to demonstrate that the mass
spectrometry data were within the linear range.

siRNA knockdown of RPS19 in human cell lines

We knocked down the RPS19 gene in three different human cell
lines: RKO, a colon cancer epithelial cell line; HEK293, a kidney
epithelial cell; and K-562 cells, a multipotent hematopoetic lym-
phoblast cell line. All cells were grown under conditions suggested

by ATCC with 10% fetal bovine serum. Cells were transfected with
30 pmol of siRNA from Qiagen with target sequence, TACCGTC
AAGCTGGCCAAGCA (Qiagen). Approximately 5 3 105 cells were
seeded in each well of a six-well plate and transfected using 30 mL
of HiPerfect transfection reagent following the HiPerfect protocol.
Transfections of RKO and HEK293 were performed once, and
transfections of K-562 cells were performed in triplicate on differ-
ent days. After 24 h, cells were harvested for RNA isolation and
metabolite extraction. Cold methanol extraction was performed
on one-fifth of the cells, following the yeast protocol, except the
cell wash was performed with phosphate buffered saline. Extracts
were labeled and separated using the same protocol as the yeast
except the extracts were run on a 50-cm capillary to increase res-
olution as the human cell line samples were more complex. For
this reason, migration times in this panel are not comparable to
other figures. Total RNA was isolated from the remaining four-fifths
of the cells using the Qiagen RNAeasy Mini Kit. RNA was treated
with DNase for 60 min at 37°C, and then 1 mg of RNA was reverse
transcribed using the Superscript III kit (Invitrogen) as directed,
except that we used 100 ng of random hexamer primers. Following
reverse transcription, the reaction was treated with RNase H for 20
min at 37°C. Knockdown was assessed by quantitative real-time
PCR using two sets of primers to RPS19, one set each to exons 3 and
4. QPCR was performed using the LightCycler 480 SYBR Green I
Master mix (Roche) with a final primer concentration of 0.5 mM.
Data were collected on the LightCycler 480 (Roche), and the levels
of RPS19 transcript were normalized to the mean of the levels of
actinB and gapdh transcripts. Fold change siRNA was calculated
relative to a mock siRNA treatment. Primer sequences were exon3L,
GAAGCTGAAAGTCCCCGAATG; exon3R, CAGTTCTCATCGTAGG
GAGCAAG; exon4L, AGCCGAGGCTCCAAGAGTGT; exon4R, ATC
TTGGTCCTTTTCCACCATTT; actbR, CGGGACCTGACTGACTACC
TCAT; actbL, CTCCTTAATGTCACGCACGATTT; gapdhR, AGGAA
ATGAGCTTGACAAAGTGG; gapdhL, GGTGGTCTCCTCTGACTTC
AACA.
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